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ABSTRACT
Most state-of-the-art deep domain adaptation techniques align
source and target samples in a global fashion. That is, after align-
ment, each source sample is expected to become similar to any
target sample. However, global alignment may not always be opti-
mal or necessary in practice. For example, consider cross-domain
fraud detection, where there are two types of transactions: credit
and non-credit. Aligning credit and non-credit transactions sep-
arately may yield better performance than global alignment, as
credit transactions are unlikely to exhibit patterns similar to non-
credit transactions. To enable such fine-grained domain adaption,
we propose a novel Knowledge-Inspired Subdomain Adaptation
(KISA) framework. In particular, (1) We provide the theoretical in-
sight that KISA minimizes the shared expected loss which is the
premise for the success of domain adaptation methods. (2) We
propose the knowledge-inspired subdomain division problem that
plays a crucial role in fine-grained domain adaption. (3) We design
a knowledge fusion network to exploit diverse domain knowledge.
Extensive experiments demonstrate that KISA achieves remarkable
results on fraud detection and traffic demand prediction tasks.

CCS CONCEPTS
• Computing methodologies→ Transfer learning.
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1 INTRODUCTION
Deep networks have considerably advanced the state of the art for
a wide variety of real-world problems [12, 27, 34, 39, 49]. However,
we may still suffer from data scarcity when building applications to
new domains (e.g., expanding business to new countries or newmar-
kets). In recent decades, we have witnessed lots of effort focusing
on Unsupervised Domain Adaptation (UDA) and Semi-supervised
domain Adaptation (SSDA). This paper mainly focuses on the SSDA
setting where a few target labels are available, which becomes an
important practical issue such as traffic prediction [23, 48, 56], fraud
detection [60, 63], and image classification [38, 53, 64].

In recent years, there have been significant efforts to design
methods for domain adaptation. These can be divided into two
major categories: global domain adaptation [14–16, 31, 42, 43] and
categorical subdomain adaptation [26, 32, 38, 46, 53, 64].

Global domain adaptation methods primarily focus on aligning
the global distributions between source and target domains. How-
ever, after alignment, each source sample is expected to become
similar to any target sample resulting in inadequate performance.
For instance, in a binary classification task, positive samples from
the source domain may align with negative samples from the target
domain. Therefore, even if the distribution discrepancy between
source and target domains is minimized, it remains challenging
to classify different categories that are close to each other. To ad-
dress this issue, categorical subdomain adaptation methods [4, 32]
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have been proposed (also known as semantic alignments [53] or
conditional distribution matching [26, 32]). These methods take
category information (i.e., class) into account and align conditional
distributions between source and target domains.

Figure 1: The fraud probability at different periods. Midnight
transactions are more like frauds. The analysis is on the
cross-border fraud detection dataset (Sec. 4.1). Midnight and
daytime transactions can be divided into different subdo-
mains for alignment.

While categorical subdomain adaptation methods have proven
effective in many fields [32, 53, 63], they may not always be opti-
mal as they hardly conduct fine-grained knowledge transfer. For
instance, the findings depicted in Fig. 1, derived from an analysis
conducted on the cross-border fraud detection dataset (detailed in
Sec. 4.1), demonstrate midnight transactions are more like frauds.
This preference among fraudsters for conducting illicit actions dur-
ing this time arises from the fact that potential victims are typically
asleep, rendering them less likely to notice discrepancies in their ac-
counts [5]. This observation highlights shared characteristics, such
as occurrence time, among samples, leading to similar patterns in
fraud probability. This phenomenon is commonly recognized as
domain knowledge.

Consequently, there is a strong motivation to utilize domain
knowledge to find out similar samples and group them into subdo-
mains that exhibit analogous patterns, enabling knowledge transfer
from these aligning relevant subdomains. As highlighted by prior
literature, integrating domain knowledge into domain adaptation
methods can reduce uncertainty caused by limited data and en-
hance their effectiveness [9]. However, designing such a knowledge-
inspired subdomain adaptation framework poses several challenges:

Challenge 1.How to construct subdomains based on samples’ sim-
ilarity? A subdomain should contain samples with similar proper-
ties. Both original features and their latent representation extracted
by the deep networks can reflect sample similarity. A straightfor-
ward way is to concatenate original and latent representations into
a new feature vector, followed by clustering to obtain subdomains.
However, latent representations are more informative than the orig-
inal features, and this straightforward method may be affected by
poor-quality original features resulting in degraded performance.

Challenge 2. How to fully utilize diverse domain knowledge?
There may exist multiple types of domain knowledge that may
benefit an application. For example, in traffic prediction tasks, we
may observe that (1) regions with similar functionalities (e.g., busi-
ness areas) and (2) adjacent regions may exhibit comparable daily

patterns [47, 57]. Hence, it is crucial to develop a technique that
can effectively incorporate different types of domain knowledge.

To address these challenges, we propose a framework called
KISA. Our main contributions include:

• As far as we know, this is one of the pioneering efforts toward
knowledge-inspired deep subdomain adaptation methods.
Compared to global domain adaptation or categorical subdo-
main adaptation, our method facilitates a more fine-grained
transfer learning strategy through domain knowledge.

• Specifically, KISA proposes the knowledge-inspired subdo-
main division problem to construct subdomains, which is
crucial for fine-grained knowledge transfer. Moreover, KISA
introduces a knowledge fusion network to fully exploit di-
verse domain knowledge.

• We conducted extensive experiments on cross-domain fraud
detection and traffic demand prediction tasks. For each task,
we explored and utilized two types of domain knowledge to
facilitate fine-grained knowledge transfer. The experimental
results demonstrate the effectiveness of KISA. Compared to
state-of-the-art global adaptation and categorical subdomain
adaptation methods, KISA can improve the prediction per-
formance by up to 4.79% and 3.17% in fraud detection and
traffic demand prediction tasks, respectively.

2 FORMULATION
Definition 1. Semi-supervised Domain Adaptation. Given a
source domain D𝑠𝑟𝑐 = {(𝑥𝑠𝑟𝑐

𝑖
, 𝑦𝑠𝑟𝑐
𝑖

)} with 𝑁 𝑠𝑟𝑐 labeled samples
and a target domain D𝑡𝑔𝑡 = {(𝑥𝑡𝑔𝑡

𝑖
, 𝑦
𝑡𝑔𝑡

𝑖
)} with 𝑁

𝑡𝑔𝑡

𝑡𝑟𝑎𝑖𝑛
labeled

samples and 𝑁 𝑡𝑔𝑡𝑡𝑒𝑠𝑡 unlabeled samples. Note that 𝑁 𝑡𝑔𝑡
𝑡𝑟𝑎𝑖𝑛

≪ 𝑁 𝑠𝑟𝑐

and it is called semi-supervised transfer learning problem [43, 63].
The source and target domain are sampled from joint distributions
𝑃 (x𝑠𝑟𝑐 , y𝑠𝑟𝑐 ) and 𝑄 (x𝑡𝑔𝑡 , y𝑡𝑔𝑡 ) respectively. 𝑦𝑖 indicates the label
of 𝑥𝑖 . The task is to improve the prediction performance of the
unlabeled test set in the target domain with the help of D𝑠𝑟𝑐 by
optimizing a deep network 𝑓 (x) = y.
Definition 2. Domain Knowledge. In this study, domain knowl-
edge 𝑘 ∈ K (|K | = 𝐾 ) can be utilized to select or generate informa-
tive features𝑥𝑝 , satisfying the conditional entropy𝐻 (𝑃 (y|x\{𝑥𝑝 }))−
𝐻 (𝑃 (y|x)) > 𝛿 . 𝛿 is a positive number that filters less beneficial
features (x is the whole features sets).

This definition says that the prediction uncertainty is smaller by
taking the features from domain knowledge. Domain knowledge is
typically obtained through exploratory data analysis. For example,
in Fig. 2, we explore the fraud probability distribution at different
periods and find that midnight transactions are more likely to be
fraudulent than those in the daytime. This observation corresponds
with previous findings [5]. Note that in existing studies [6, 30, 63],
domain knowledge is often used in encoding original data into fea-
tures. In this paper, we try to further incorporate domain knowledge
into subdomain construction and alignment for domain adaptation.
Definition 3. Knowledge-based Feature Sets. Domain knowl-
edge helps reduce the prediction uncertainty by adding informa-
tive features 𝑥𝑝 into x\{𝑥𝑝 } and thus the conditional entropy
𝐻 (𝑃 (y|x)) and 𝐻 (𝑃 (y|𝑥𝑝 )) both are small. Since domain knowl-
edge is generalizable, in the target domain, we may still have
𝐻 (𝑄 (y|x\{𝑥𝑝 })) − 𝐻 (𝑄 (y|x)) > 𝛿 as well as small 𝐻 (𝑄 (y|𝑥𝑝 )).
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Figure 2: Generating domain knowledge-based feature sets.
Therefore, 𝑥𝑝 may provide a good perspective to transfer relevant
domain knowledge from source domains. Formally, derived from
domain knowledge 𝑘𝑖 ∈ K , 𝑥𝑖𝑝 is further defined as the 𝑖𝑡ℎ element
in the knowledge-based feature setsU = {𝑥1𝑝 , ..., 𝑥𝐾𝑝 }.

As shown in Fig. 2, recalling that midnight transactions are more
likely to be fraudulent, we could regard the transaction occurrence
time as the element in the knowledge-based feature sets.

3 METHOD
3.1 Framework Overview
The proposed framework comprises several knowledge-inspired
subdomain adaptation networks and a knowledge fusion network
(Fig. 3). Each subdomain adaption network incorporates a spe-
cific type of domain knowledge and learns a kind of represen-
tation, which is further integrated by the knowledge fusion net-
work. Each knowledge-inspired subdomain adaptation network
consists of three cascaded components: (a) Knowledge-Inspired
Subdomain Division (KISD), (b) Distance-Based Matching (DBM),
and (c) Subdomain-Aware Alignment (SAA). In KISD, we use do-
main knowledge to construct subdomains by solving the proposed
knowledge-inspired subdomain division problem. DBM measures
the distance between every subdomain and establishes matched
relationships between source and target subdomains. SAA then
transfers relevant knowledge from the source domain by aligning
corresponding subdomains.

3.2 Knowledge-inspired Subdomain Division
3.2.1 Problem of Knowledge-inspired Subdomain Division. As intro-
duced in Sec. 1, grouping similar samples into subdomains and align-
ing these subdomains across domains may enhance performance.
Thus, the central task is identifying shared sample properties. This
can be approached through two key aspects:
• Knowledge-based features: Samples with the close original features
may be similar (e.g., for knowledge-based features𝑥𝑝 ,𝐻 (𝑄 (y|𝑥𝑝 ))
is small). In spatiotemporal prediction tasks, social media check-
ins can be a useful proxy [55] and RegionTrans [48] further align
the regions across different cities with similar check-ins patterns.
Similarly, knowledge identified by literature [5] (e.g., transaction
time, card type) may also benefit fraud detection.

• Latent representation: Unlabeled data can significantly impact
classifier boundaries by guiding them towards regions with a
low density of data points [2]. In semi-supervised learning, mini-
mizing conditional entropy can shift predictor boundaries away
from high-density areas [18, 36]. The shared feature extractor
𝑔(·) has the capability to map similar samples into comparable
representations. Therefore, the distance between samples in the
representation space could be utilized as a similarity function.

As introduced in Sec. 1, concatenating the original knowledge-
based features and latent representation into a new feature vector
may be affected by poor-quality original features resulting in de-
graded clustering performance. A more reasonable approach would
be to emphasize the similarity of latent representation and constrain
clustering results with similar original knowledge-based features.
With this insight, we define the problem of knowledge-inspired
subdomain division:

Given a set of representation points Z = {𝑧𝑜
𝑖
|1 ≤ 𝑖 ≤ 𝑁𝑜 } (𝑧𝑜

𝑖
is

the representation extracted by 𝑔(·), 𝑜 ∈ {𝑠𝑟𝑐, 𝑡𝑔𝑡}), cluster number
𝑀 , and knowledge-based features 𝑥𝑖𝑝 ∈ R𝑁𝑜×𝐹 (𝐹 is the dimension
of knowledge-based features). We would like to find an optimal
division {Z1, ...,Z𝑀 } by minimizing the following objectives:

min
𝑀∑︁
𝑗=1

∑︁
𝑏∈Z𝑗

𝑑𝑖𝑠𝑡𝑟 (𝑏,Z 𝑗 ) (1)

𝑠 .𝑡 .
∑︁

𝑐′∈𝑥𝑝 (𝑖 )

𝑑𝑖𝑠𝑡𝑜 (𝑐′, 𝑥𝑝 (𝑖 ) ) ≤
∑︁

𝑐∈𝑥𝑝 ( 𝑗 )

𝑑𝑖𝑠𝑡𝑜 (𝑐, 𝑥𝑝 (𝑖 ) ) ∀𝑖 ≠ 𝑗 (2)

where Z𝑖 is the representation centroid of subdomain Z𝑖 . 𝑥𝑝 (𝑖 )
contains the knowledge-based features belonging to subdomain
Z𝑖 while 𝑥𝑝 (𝑖 ) is its centroid. 𝑑𝑖𝑠𝑡𝑜 (·) and 𝑑𝑖𝑠𝑡𝑟 (·) measure the
distance (e.g., Euclidean distance) in the original features and la-
tent representation space, respectively. Eq. 1 aims to minimize the
distance between each representation point and its corresponding
representation centroid within each subdomain. Additionally, Eq. 2
guarantees that the knowledge-based features of samples within
a divided subdomain are more similar to each other than to those
in other subdomains. By solving the above optimization problem,
we divide D𝑠𝑟𝑐 and D𝑡𝑔𝑡 into D𝑠𝑟𝑐

(𝑚) (1 ≤ 𝑚 ≤ 𝑀𝑠 ), and D𝑡𝑔𝑡

(𝑛)
(1 ≤ 𝑛 ≤ 𝑀𝑡 ), respectively.

3.2.2 Solution for Knowledge-inspired Subdomain Division Problem.
We introduce a dynamic programming [45] solution and a commu-
nity detection solution for the subdomain division problem using
1-D or high-dimensional knowledge-based features, respectively.

Optimal division for 1-D knowledge-based features. We first
sort the original knowledge features 𝑥𝑝 ∈ R𝑁×1 to ensure Eq. 2
is satisfied. Let {𝑧1, ..., 𝑧𝑁 } be the sorted representation array ex-
tracted by the feature extractor 𝑔(·). Recall that Eq. 1 aims to assign
elements of the sorted representation array into𝑀 clusters so that
the sum of squares of intra-cluster distances from each element
to its corresponding centroid is minimized. To this end, we define
a sub-problem as finding the minimum intra-cluster distance of
clustering 𝑧1, ..., 𝑧𝑖 into𝑚 clusters. The corresponding minimum
intra-cluster distance is recorded in 𝐶 [𝑖,𝑚]. Let 𝑗 be the index of
the smallest number in cluster𝑚 in an optimal solution to 𝐶 [𝑖,𝑚].
𝐶 [ 𝑗 − 1,𝑚 − 1] must be the optimal intra-cluster distance for the
first 𝑗 − 1 points in𝑚 − 1 clusters, for otherwise, one would have a
better solution to𝐶 [𝑖,𝑚]. This establishes the optimal substructure
for dynamic programming and leads to the recurrence equation:

𝐶 [𝑖,𝑚] = min
𝑚≤ 𝑗≤𝑖

{𝐶 [ 𝑗 − 1,𝑚 − 1] + 𝑑 (𝑧 𝑗 , ..., 𝑧𝑖 )} (3)

where 𝑑 (𝑧 𝑗 , ...., 𝑧𝑖 ) is the sum of squared distances from 𝑧 𝑗 , ..., 𝑧𝑖 to
their centroid. The above process is initialized with𝐶 [0, 0] = 0. This
algorithm requires𝑂 (𝑁 2𝑀) time to iteratively compute 𝑑 (𝑧 𝑗 , ..., 𝑧𝑖 )
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Figure 3: Left: The structure of the KISA framework consists of several knowledge-inspired subdomain adaptation networks
and a knowledge fusion network. Right: The structure of subdomain adaptation network which consists of three components
(a) knowledge-inspired subdomain division, (b) distance-based matching, and (c) subdomain-aware alignment.

using a recurrence structure. However, in practice, when 𝑁 is very
large, this algorithmmay take toomuch time to compute. To address
this issue, we can predefine 𝐵 split points (𝐵 ≪ 𝑁 ), and the dynamic
program will only split the samples among these preset split points.
This reduces the time complexity to 𝑂 (𝐵2𝑀).

Division for high-dimension knowledge-based features. We
first construct the graph 𝐺 = (𝑉 , 𝐸), where every sample is a node
in the graph. The edges between two nodes 𝑖 and 𝑗 are determined
using the following equation:

𝑒 (𝑖, 𝑗) =
{ 1

𝑑𝑖𝑠𝑡𝑟 (𝑧𝑖 ,𝑧 𝑗 ) if 𝑑𝑖𝑠𝑡𝑜 (𝑥𝑖𝑝 , 𝑥
𝑗
𝑝 ) ≤ 𝜅

0 , otherwise
(4)

where 𝜅 is the threshold that controls the number of edges. Samples
closer than 𝜅 in the original feature space connect via edges. We
apply community detection algorithms such as label propagation
[62] to identify subdomains within the graph. Samples with close
latent representations have larger edge weights, prompting them
to be grouped into the same subdomain (with identical labels). The
threshold value 𝜅 filters out edges between samples that are far
apart in the original feature space, ensuring that Eq. 2 remains valid.

3.3 Distance-based Matching
Getting several subdomains in the source and target domain, we
then introduce a distance-based matching module to help the target
subdomain utilize relevant source subdomains. By minimizing loss,
we move predictor boundaries away from high-density regions.
This allows us to treat the distance between samples in representa-
tion space as a similarity metric [18, 36]. Several distance metrics
have been extensively studied to measure the discrepancy between
source and target domains. These include Maximum Mean Discrep-
ancy (MMD) [31, 33], Central Moment Discrepancy (CMD) [58],
second-order statistics [42]), and reverse Kullback-Leibler diver-
gence [37]. In this paper, we opt for MMD [19] as our subdomain
divergence measure due to its quick computation using the kernel
function. Formally, the divergence of 𝑖𝑡ℎ source subdomain and the

𝑗𝑡ℎ target subdomain is defined as:

𝑑H (𝑝 (𝑖 ) , 𝑞 ( 𝑗 ) ) ≜ E𝑐 ∥E𝑝𝑐(𝑖 ) [𝜙 (𝑧
𝑠𝑟𝑐
(𝑖 ) )] − E𝑞𝑐( 𝑗 ) [𝜙 (𝑧

𝑡𝑔𝑡

( 𝑗 ) )] ∥
2
H (5)

whereH is the reproducing kernel Hilbert space (RKHS) and 𝜙 (·)
is the feature transformation that maps the original samples to
RKHS. E𝑐 [·] is the mathematical expectation of the class (i.e., label).
𝑝𝑐(𝑚) and 𝑞

𝑐
(𝑛) are the distributions of class 𝑐 in D𝑠𝑟𝑐

(𝑚) and D𝑡𝑔𝑡

(𝑛) ,
respectively. Since the divergence is calculated individually for each
class, samples in the target subdomain will seek samples with the
same label from the source subdomain to calculate their discrepancy.
Then the similarity function S(·, ·) is further formulated as:

S(D𝑠𝑟𝑐
(𝑚) ,D

𝑡𝑔𝑡

(𝑛) ) =
1

𝑑H (𝑝 (𝑚) , 𝑞 (𝑛) )
(6)

Based on the similarity function, the target subdomain may further
select one or several most relevant source subdomains with the
highest similarity score. We record the matching relationship (0
or 1) in matrix 𝑅 ∈ R𝑀𝑠×𝑀𝑡 (𝑅𝑖, 𝑗 = 1 represents the 𝑖𝑡ℎ source
subdomain and the 𝑗𝑡ℎ target subdomain are relevant).

3.4 Subdomain-aware Alignment
In many real-world problems, domain distribution may be seriously
unbalanced (e.g., in fraud detection and early sepsis prediction appli-
cations, the number of non-fraud or healthy samples is much larger
than the abnormal samples [10, 22, 29]). Hence, merely aligning the
marginal and conditional distributions (also known as intra-class
discrepancy) would lead to unsatisfying performance. To address
this issue, borrowing ideas from Zhu et al. [63], we extend the class-
aware discrepancy to the subdomain-aware discrepancy, which
explicitly takes the subdomain information into account and mea-
sures the intra-subdomain and inter-subdomain discrepancy across
domains. The subdomain-aware alignment loss is:

�̂�𝑆𝐴𝐿 (𝑝, 𝑞) =
𝑀𝑡∑︁
𝑗=1

∑𝑀𝑠

𝑖=1 𝑅𝑖, 𝑗 · 𝑑H (𝑝 (𝑖 ) , 𝑞 ( 𝑗 ) )∑𝑀𝑠

𝑖=1 (1 − 𝑅𝑖, 𝑗 ) · 𝑑H (𝑝 (𝑖 ) , 𝑞 ( 𝑗 ) )
(7)
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where𝑀𝑠 and𝑀𝑡 denote the number of source and target subdo-
mains, respectively. 𝑅𝑖, 𝑗 ∈ {0, 1} record the matching relationship
between the 𝑖𝑡ℎ source subdomain and the 𝑗𝑡ℎ target subdomain.

3.5 Attentive Multiple Knowledge Fusion
As shown in Fig. 3, every subdomain adaptation network learns
its feature extractor, and finally, we could obtain 𝐾 kinds of rep-
resentation for each sample. An attentive fusion mechanism [59]
is leveraged to build a comprehensive and robust representation.
Specifically, a learnable weight vector (𝛼 ∈ R𝐾 ) is to determine the
importance of the above knowledge-inspired representation.

𝛼𝑖 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊 𝑖𝑧𝑖 ), 1 ≤ 𝑖 ≤ 𝐾 (8)

where𝑊 𝑖 ∈ R1×𝐷 is the projection matrices and 𝑧𝑖 ∈ R𝐷×1 is
the representation extracted by 𝑖𝑡ℎ subdomain adaptation network.
To make sure the representations are comparable, we constraint∑𝐾
𝑖 𝛽

𝑖 = 1 by conducting normalization 𝛽𝑖 = 𝛼𝑖∑
𝑗 𝛼

𝑗 . Then the final
fused representation is:

ℎ =

𝐾∑︁
𝑖

𝛽𝑖 · 𝑧𝑖 (9)

Lastly, the output layer could give the final prediction via several
fully-connected layers, where Sigmoid or Tanh activation functions
are used for classification and regression tasks, respectively:

𝑦 = 𝑀𝐿𝑃𝑠 (ℎ) (10)

3.6 Network Parameter Optimization
3.6.1 Knowledge-inspired Subdomain Adaptation Network Opti-
mization. Every subdomain adaptation network aims to align the
distributions of relevant subdomains inspired by one kind of do-
main knowledge. Combining the task-specific loss and subdomain
alignment loss, the loss of the subdomain adaptation network is:

min
𝑓
E(x,𝑦) ∈D𝑠𝑟𝑐 ,D𝑡𝑔𝑡

𝑡𝑟𝑎𝑖𝑛

𝐽 (𝑓 (x), 𝑦) + 𝜆�̂�𝑆𝐴𝐿 (𝑝, 𝑞) (11)

where 𝐽 (·, ·) is the task-specific loss (e.g., cross-entropy loss for
classification tasks or mean squared error loss for regression tasks).
�̂�𝑆𝐴𝐿 (·, ·) is the subdomain-aware alignment loss. 𝜆 > 0 is the
trade-off parameter between these two losses. The training process
of each subdomain adaptation network (corresponding to each
type of domain knowledge) is independent, so the training can be
conducted in a parallel manner.

3.6.2 Knowledge Fusion Network Optimization. After training ev-
ery knowledge-inspired subdomain adaptation network, we obtain
a series of feature extractors 𝑔1 (·), ..., 𝑔𝐾 (·). The knowledge fusion
network aims to make full use of all kinds of representation and
eventually give predictions for the target domain. The loss of the
knowledge fusion network is:

min
Θ
E(x,𝑦) ∈D𝑡𝑔𝑡

𝑡𝑟𝑎𝑖𝑛

𝐽 (𝜃 (𝑔1 (x), ..., 𝑔𝐾 (x), 𝑦) (12)

where Θ is the learnable parameters mentioned in Sec. 3.5. 𝜃 (·) is
the learned mapping from diverse representations to prediction.

3.7 Theoretical Insight
Theorem 1 (Ben David et al. [1]) Let H be the common hypoth-
esis class for source and target. The expected error for the target
domain is upper bounded as:

𝜖𝑡 (ℎ) ≤ 𝜖𝑠 (ℎ) +
1
2
𝑑HΔH (𝑃,𝑄) +𝐶,∀ℎ ∈ H (13)

where 𝜖𝑠 (ℎ) is the expected error of ℎ on the source domain and
𝑑HΔH (𝑃,𝑄) is the domain divergence measure by a discrepancy
distance between two distributions.

Many domain adaptation methods aim to align global distribu-
tion between the source domain and target domain such that 𝑃
and 𝑄 are close. 𝐶 = minℎ∈H 𝑅S (ℎ, 𝑓S) + 𝑅T (ℎ, 𝑓T ) is the shared
expected loss that is expected to be negligibly small and usually
disregarded by previous methods [31]. However, if 𝐶 is large, we
cannot expect to learn a good target classifier by minimizing the
source error [1, 53].

Referring to the work of categorical subdomain adaptation [53,
64], the shared expected loss𝐶 can be decomposed as the following
four items based on the triangle inequality for classification error
[1, 7] which says that for any labeling functions 𝑓1, 𝑓2, 𝑓3, we have
𝑅(𝑓1, 𝑓2) ≤ 𝑅(𝑓1, 𝑓3) + 𝑅(𝑓2, 𝑓3):

𝐶 = min
ℎ∈H

𝑅S (ℎ, 𝑓S) + 𝑅T (ℎ, 𝑓T ) (14)

≤ min
ℎ∈H

𝑅S (ℎ, 𝑓S) + 𝑅T (ℎ, 𝑓S) + 𝑅T (𝑓S, 𝑓T ) (15)

≤ min
ℎ∈H

𝑅S (ℎ, 𝑓S) + 𝑅T (ℎ, 𝑓S) + 𝑅T (𝑓S, 𝑓T̂ ) + 𝑅T (𝑓T , 𝑓T̂ ) (16)

where 𝑓S and 𝑓T are true labeling functions for the source and target
domain, respectively. The first two terms should be small since ℎ is
learned with the labeled source samples. The last term 𝑅T (𝑓T , 𝑓T̂ )
denotes the disagreement between the ideal target labeling function
𝑓T and the learned labeling function 𝑓T̂ , which would be optimized
during the learning process.

We then mainly focus the third item 𝑅T (𝑓S, 𝑓T̂ ). Note that the
hypothesis ℎ could be decomposed into the feature extractor𝐺 and
classifier 𝐹 . The third item could be further rewritten as

𝑅T (𝑓S, 𝑓T̂ ) = E𝑥∼T [𝑙 (𝐹S ◦𝐺 (𝑥), 𝐹 T̂ ◦𝐺 (𝑥))] (17)

where 𝑙 (·) is typically 0-1 loss function. For clarity, we assign the in-
dex𝑘 to the source subdomain that is relevant with𝑘𝑡ℎ target subdo-
main. After aligning them, we have E𝑥∼S (𝑘 )𝐺 (𝑥) = E𝑥∼T (𝑘 )𝐺 (𝑥).
The above item will be small if the source labeling function 𝐹S and
the learned labeling function 𝐹 T̂ give the same prediction for the
target domain samples. Then, Eq. 17 is written as,

𝑅T (𝑓S, 𝑓T̂ ) = E𝑘 [E𝑥∼T (𝑘 ) [𝑙 (𝐹S (𝑘 ) ◦𝐺 (𝑥), 𝐹 T̂ (𝑘 ) ◦𝐺 (𝑥))]] (18)

For the samples in target subdomain 𝑘 (i.e., 𝑥 ∼ T (𝑘 ) ), we have
𝑃 (𝑘 ) (y|𝑥𝑝 ) ≈ 𝑄 (𝑘 ) (y|𝑥𝑝 ) (recall that we align the conditional dis-
tribution and their conditional entropy both are small as introduced
in Definition 3), so the classifiers 𝐹S (𝑘 ) and 𝐹 T̂ (𝑘 ) ) will give similar
predictions. Hence, for 𝑥 ∼ T (𝑘 ) , we may infer

E𝑥∼T (𝑘 ) 𝑙 (𝐹S (𝑘 ) ◦𝐺 (𝑥), 𝐹 T̂ (𝑘 ) ◦𝐺 (𝑥)) ≤ E𝑥∼T (𝑘 ) 𝑙 (𝐹S◦𝐺 (𝑥), 𝐹 T̂◦𝐺 (𝑥))
(19)

if we find a good pair of matching subdomains {S (𝑘 ) ,T (𝑘 ) }. Con-
sequently, the third item 𝑅T (𝑓S, 𝑓T̂ ) is expected to be small.



CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Liyue Chen et al.

4 EXPERIMENT
4.1 Cross-border Fraud Detection
4.1.1 Fraud Detection Dataset and Task. We collected four fraud
detection datasets from a leading cross-border e-commerce com-
pany. S1 and S2 are from high-activity, engaged countries; T1 and
T2 are from newly opened countries with data scarcity. S1 and S2
are the source domain, while T1 and T2 are the target domain. T2
has fewer samples compared to T1, with less conspicuous midnight
fraud transaction patterns (see Fig. 1). Table 1 illustrates the class
imbalance issue in all datasets, with significantly more negative
samples (normal cases).

The datasets record users’ historical event sequences and current
payment event behavior. Each event note details like routermac,
trade amount, and occurrence time. We partitioned the data into
chronological training, validation, and test sets. The objective is
binary fraud prediction for the current payment event.

Table 1: Statistics of the fraud detection datasets.

Dataset S1 T1 S2 T2

Training period 01.01-05.15 04.15-05.15 03.01-06.30 06.01-06.30
Validation period N/A 05.16-05.31 N/A 07.01-07.14
Test period N/A 06.01-07.01 N/A 07.15-08.15
# Sequences 192.46k 3.80k 180.70k 2.92k
# Events 1,701.03k 66.95k 1,559.55k 51.65k
# Fields 96 96 96 96
% Frauds 10.96% 8.17% 7.52% 9.08%

4.1.2 Baseline Models.

• LSTM [24, 50] and LSTM (FT): are based on the LSTM (Long
Short-Term Memory) model. Only target domain data are used to
train LSTM while LSTM (FT) trains based on the source domain
data and then fine-tunes using the limited target domain data.

• MMD [44] is a global domain adaptation method that uses MMD
(Maximum Mean Discrepancy) to align the distribution between
the source and target domain. Its loss function contains the MMD
loss and the cross-entropy loss.

• Transfer-HEN [63] is a categorical subdomain adaptationmethod
that exploits categorical information to construct subdomains
(i.e., the subdomain consists of samples within the same class). It
minimizes the distance between the subdomains with the same
label across the source and target domain while maximizing the
distance between the subdomains with different labels.

• DSAN [64] is a categorical subdomain adaptation method that
aligns the relevant subdomain distributions across different do-
mains based on LMMD (Local Maximum Mean Discrepancy).
LMMD adds a weight coefficient to the MMD formula. DSAN
generates the pseudo label for unlabeled data, then uses the label
to construct subdomains and calculate LMMD.

• KL [37] is a global domain adaptation method that minimizes the
reverse Kullback-Leibler divergence between source and target
representations for better generalization to the target domain.

4.1.3 Evaluation Metric. The fraud detection task is a binary classi-
fication task, we evaluate with AUC (Area Under ROC) and AUPRC
(Area Under the Precision-Recall Curve). The AUPRC metric is
suitable for evaluating highly imbalanced and skewed datasets [8]
like our fraud detection datasets.

4.1.4 Implementation Details. To ensure fair comparisons, all meth-
ods use the same backbone network consisting of two stacked LSTM
layers with a hidden size of 300. The fully connected network struc-
ture includes a dropout layer (with a keep probability of 0.8) to
prevent overfitting and takes in embedding vectors as input, pro-
ducing a 2-dimensional output indicating whether the transaction
is fraudulent. The trade-off parameter 𝜆 is set to 0.1, and training
is performed using stochastic gradient descent on shuffled mini-
batches with a batch size of 32. We utilize the Adagrad optimizer
[13] with a learning rate of 10−4 and implement an early stop
mechanism that halts training after no improvement for 50 epochs.

4.1.5 Domain-knowledge Exploration & Exploitation. KISA lever-
ages two kinds of domain knowledge for the fraud detection task.

Knowledge 1: midnight transactions are more like frauds.
Fraudsters tend to carry out fraudulent transactions at midnight
when victims are asleep and less likely to notice changes in their
accounts [5]. This trend is also observed in the S1, S2, T1, and
T2 datasets as depicted in Fig. 1. Therefore, KISA-Hour utilizes
transaction time (i.e., hour) to construct subdomains. We divide the
day into four periods - midnight, morning, afternoon, and evening
- based on our daily routines. Consequently, we construct four
subdomains (𝑀 in Eq. 1) for both source and target domains.

Knowledge 2: credit card transactions are more like frauds.
Credit card fraud is more common and dangerous than non-credit
card fraud due to the convenience and various incentives, such as
cashback and reward points. Our analysis of the fraud detection
dataset also reveals that credit card transactions are more likely to
be fraudulent. Therefore, KISA-CardType utilizes transaction card
type to construct subdomains. Card type (0-1 variable) is the special
case of 1-D knowledge-based feature and we build two subdomains
in both source and target domains.

4.1.6 Results. We conduct experiments on the baselines and KISA,
the results are in Table 2. We divide these baselines into three parts:
(1) without domain adaptation loss: LSTM and LSTM (FT); (2) with
global domain adaptation loss: MMD and KL; (3) with categorical
subdomain adaptation loss: Transfer-HEN and DSAN. The experi-
mental results offer us the following insightful observations:

First, LSTM surpasses LSTM (FT), which shows the ‘negative
transfer’ issue, indicating that the difference between the source
and target domains is huge and directly transferring source model
parameters may rapidly deteriorate the target models. Second, by
conducting global domain adaptation, MMD and KL are better than
LSTM, showing that domain adaptation is more suitable than fine-
tuning to alleviate the ‘negative transfer’ issue. Third, Transfer-HEN
and DSAN incorporate categorical information and get superior
performance thanMMD in the setting of S1→ T1. However, they do
not significantly outperform MMD when transferring knowledge
from S2 to T2, which is probably because T2 has fewer sequences
than T1. It is difficult to construct the categorical subdomains well
when lacking class labels. Moreover, KISA-Hour and KISA-CardType
have a consistent improvement compared to the baselines by align-
ing the subdomains constructed by domain knowledge. Lastly, by
integrating two domain knowledge, KISA significantly (𝑝 < 0.05)
outperforms the best baseline, demonstrating its effectiveness.
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Table 2: Results on the fraud detection task. ‘±’ denotes the standard deviation. ∗ represents 𝑝 < 0.05. The best results are in bold.

S1→ T1 S2 → T2

AUC AUPRC AUC AUPRC

Target Only
LSTM 0.7123±0.0162 0.3190±0.0442 0.6318±0.0063 0.1086±0.0087

Source & Target
LSTM (FT) 0.6637±0.0417 0.2595±0.0464 0.5934±0.0152 0.1353±0.0047
MMD 0.7475±0.0127 0.3707±0.0249 0.6120±0.0064 0.1454±0.0045
KL 0.7498±0.0048 0.4140±0.0111 0.6269±0.0135 0.1521±0.0078
Transfer-HEN 0.7506±0.0146 0.3733±0.0544 0.6132±0.0110 0.1457±0.0082
DSAN 0.7567±0.0078 0.3840±0.0067 0.6089±0.0078 0.1363±0.0055

Ours
KISA-W/O-Know. 0.7518±0.0198 0.3812±0.0040 0.6142±0.0019 0.1436±0.0024
KISA-Hour 0.7769±0.0071 0.4575±0.0293 0.6377±0.0131 0.1582±0.0057
KISA-CardType 0.7761±0.0045 0.4535±0.0245 0.6371±0.0065 0.1557±0.0013
KISA 0.7854∗±0.0037 0.4808∗±0.0013 0.6748∗±0.0055 0.1645∗±0.0025

4.2 Cross-city Taxi Demand Prediction
4.2.1 Demand Prediction Dataset and Task. The taxi demand datasets
are from the DiDi GAIA open research collaboration project1, in-
cluding the ride-sharing order data in Xi’an and Chengdu, China.
There are about 6 and 8 million historical records from 2016.10 to
2016.11 for Xi’an and Chengdu respectively, containing taxi order
messages including start location and start time. The location infor-
mation is represented by longitude and latitude, and these location
data cover the central city area of Xi’an and Chengdu. We divide
the whole area into 16 × 16 grids as Zhang et al. [61], each grid has
a size of 0.5km × 0.5km.

Table 3: Statistics of the taxi demand datasets.
Attributes Xi’an Chengdu
Time span 2016.10-2016.11 2016.10-2016.11
# of records 5,922,961 8,439,537
# of stations 16 × 16 16 × 16

Both two datasets have two months of historical records. The last
10% duration in each dataset is test data, and the 10% data before
the test is for validation. The source domain utilizes all the rest data
for training while the target domain only holds 1 or 3-day historical
data for training. The task is to predict the taxi demand at the next
hour for each grid. The statistics are listed in Table 3.

4.2.2 Baseline Models. As cross-city traffic prediction has many
specialized state-of-the-art methods [23, 48, 56], wemainly compare
KISA to these methods.
• ARIMA [51] is a widely used time series prediction model, con-
sidering the demand observations of the recent 24 slots.

• GBRT [28] and XGBoost [3] are tree-based learners that take
the same input features as ARIMA.

• LSTM [35] feeds the demand observations of the recent 24 slots
into the LSTM network and gets predictions by two MLP layers.

• STMeta and STMeta (FT) [47] are spatiotemporal prediction
models, considering both temporal and spatial factors. STMeta

1outreach.didichuxing.com

trains by target domain data while STMeta (FT) trains based on
source domain data and then fine-tunes in the target domain.

• RegionTrans [48] is a cross-city transfer learning method that
enables region-level knowledge transfer. It constructs the subdo-
main by intuitive division (i.e., the same geographic location).

• MetaST [56] is a transfer learning method that utilizes meta-
learning for source training and transfers the region-level spa-
tiotemporal knowledge from source cities.

• CrossTRes [23] transfers region-level knowledge by re-weighting
source regions. For a fair comparison, we adopt proximity and
function graph as STMeta to learn regional spatial embedding.

4.2.3 EvaluationMetric. We exploit the widely usedmetric, namely
RMSE (Root Mean Square Error) to assess the performance of pre-
diction models [48, 56, 61].

4.2.4 Implementation Details. For fair comparisons, all baseline
methods use the same input (i.e., the demand observations of the
recent 24 hourly slots). The backbone network structure for KISA
is STMeta. For the considerations of spatial knowledge, we build
two kinds of graphs as Wang et al. [47] (i.e., proximity and function
graph). The proximity graphs are calculated based on the Euclidean
distance. The function graphs are computed by the Pearson coeffi-
cient of the time series of stations. The hidden states of the STMeta
network are 64 (the dimension of spatiotemporal representations).
The degree of graph Laplacian is 1. We use Adam [25] as the opti-
mizer to train the network. The learning rate and batch size are set
to 10−5 and 32 respectively.

4.2.5 Domain-knowledge Exploration & Exploitation. KISA lever-
ages the following knowledge for the demand prediction task:

Knowledge 1: Spatial Proximity. As the ‘First Law of Geogra-
phy’ says, ‘Everything is related to everything else. But near things
are more related than distant things’. Proximity has been extensively
used in spatiotemporal prediction tasks [41, 52]. To utilize this
knowledge, in KISA-S.P., the knowledge-based features are the row
and columns index of grids and nearby grids are encouraged to
group into the same subdomain. We construct 40 subdomains in
both source and target domains.

outreach.didichuxing.com
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Knowledge 2: Temporal Heterogeneity. The transportation de-
mand can vary greatly for the same station at different periods
(heterogeneous temporal patterns) [20, 47, 61]. In KISA-T.H., sub-
domains contain grids with similar daily demand patterns and we
use the average daily demand as the knowledge-based feature. For
our 60-minute demand prediction task, we extract features with 24
dimensions, where each dimension corresponds to one hour within
a day. We built 32 subdomains in both source and target domains.

4.2.6 Results. Table 4 shows the results. We observe that deep
learning models (LSTM and STMeta) suffer from the data scarcity
issue in the target domain and perform poorly, and XGBoost show
its learning capability at small data scenarios. When the data for the
target city grow and the domain-specific pattern becomes more pro-
nounced, directly transferring the model (i.e., STMeta (FT)) may en-
counter the negative transfer issue (e.g., 3-day results fromChengdu
to Xi’an). Meanwhile, RegionTrans gets remarkable results and
shows that transferring region-level knowledge help alleviate the
negative transfer issue. KISA-S.P. is better than RegionTrans, which
demonstrates the superiority of subdomain-level transfer. MetaST,
a multi-source transfer algorithm, does not perform well in our
tasks perhaps due to the usage of only one source domain. Besides,
CrossTReS reweights source regions for transfer which effectively
alleviates the ‘negative transfer’ issue and performs better than all
other baselines. More importantly, KISA-T.H., by transferring knowl-
edge from subdomains with similar temporal patterns, achieves
lower error compared to all baselines. Moreover, by incorporating
more domain knowledge, KISA consistently outperforms the best
baseline, where the largest improvement is reducing RMSE by up
to 3.12%, verifying its generalizability and effectiveness.

Table 4: Results (RMSE) on the demand prediction task. The
target city has 1 or 3-day data. The best results are in bold.

Chengdu → Xi’an Xi’an → Chengdu

1-day 3-day 1-day 3-day

Target Only
ARIMA 11.641 9.977 16.038 13.565
GBRT 12.284 10.353 13.405 12.039
XGBoost 11.452 9.665 11.496 10.985
LSTM 12.382 10.451 14.112 10.013
STMeta 14.232 8.444 15.337 10.167

Source & Target
STMeta (FT) 11.226 9.225 10.020 9.890
RegionTrans 10.448 8.195 9.648 9.393
MetaST 10.882 8.500 10.648 9.966
CrossTReS 10.235 8.281 9.518 9.384

Ours
KISA-S.P. 10.395 8.151 9.615 9.356
KISA-T.H. 10.013 8.114 9.437 9.253
KISA 9.916 8.054 9.391 9.186

4.3 Analysis
4.3.1 Comparison of Domain Knowledge Utilizing. The key im-
provement of KISA in utilizing domain knowledge is constructing

knowledge-inspired subdomains for domain adaptation. To ana-
lyze the effectiveness of knowledge-inspired subdomains, we imple-
ment a variant calledKISA-W/O-Know. (KISAwithout Knowledge),
which constructs categorical subdomains (in fraud detection, just
two subdomains including positive or negative samples) rather than
by knowledge. This variant applies the same distance discrepancy
and alignment loss with KISA. In Table 2, we observe that KISA-
W/O-Know. rapidly deteriorates and can only achieve performance
commensurate with baselines. This verifies the importance of us-
ing domain knowledge to construct fine-grained subdomains for
knowledge transfer. On the other hand, compared toKISA-CardType
and KISA-Hour, KISA fully utilizes two domain knowledge factors
and achieves better performance. This inspires future research to
explore more domain knowledge for better performance.

4.3.2 Latent Feature Visualization. Based on the fraud detection
task (S1→T1), we present a visualization of the latent represen-
tations obtained from three domain adaptation methods, namely
MMD [44], DSAN [64], and KISA. We choose these three meth-
ods to study because they employ the same domain divergence
measure (i.e., MMD). t-SNE technique [11] is adopted to project
high-dimension representation into 2-D space. In Fig. 4, the red
cross and blue round represent fraud and normal samples, respec-
tively. Fig. 4(a) shows the result for MMD, which aligns the global
distribution across two domains. It shows that several fraud samples
are entangled with normal samples and thus are hard to classify.
Fig. 4(b) shows the result for DSAN, a categorical subdomain adap-
tation method. It effectively aggregates the class manifolds, yet
a substantial overlap persists between the domains of fraud and
normal samples. In contrast, Fig. 4(c) presents the learned represen-
tations by KISA, wherein a distinct boundary between fraud and
normal samples is discernible. Remarkably, KISA successfully com-
presses the fraud manifold while minimizing the mixing of fraud
samples with normal ones. Consequently, these findings suggest
that KISA exhibits superior capabilities in learning more robust and
distinguishable representations compared to MMD and DSAN.

(a) MMD (b) DSAN (c) KISA

Figure 4: Latent feature visualization using t-SNE forMMD,
DSAN, and KISA. The visualization is conducted on fraud
detection tasks under the setting of S1→ S2. Different colors
indicate different classes (red cross: fraud, blue round: nor-
mal). Best viewed in color.

4.3.3 Case Study of Subdomain Matching. To investigate the gen-
erated subdomains and their associated matching relationships,
we conduct a case study in the demand prediction task under the
setting of Chengdu→ Xi’an. We chose this task because it allows
for easy visualization of subdomains (i.e., clustering of spatial grids)
in figures. The subdomains used in this study are from KISA-S.P..
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Figure 5: Case study of subdomain matching under the setting of Chengdu→ Xi’an.
Figure 6: Performance vs. source
training data size.

Fig. 5 shows the geographical distribution of target subdomain Z
and its corresponding source subdomains A, B, and C. We observe
that each subdomain consists of adjacent grids (spatial proximity).
Fig. 5 depicts the target subdomain Z in Xi’an, which includes the
Xiaozhai commercial zone where mall openings result in a surge of
taxi demand after 10 a.m., peaking in the late afternoon. Addition-
ally, daily patterns of source subdomains A, B, and C in Chengdu
exhibit remarkable similarities. This observed similarity between
source subdomains and their target counterparts demonstrates the
effectiveness of KISA in identifying source subdomains that enable
focused, fine-grained transfer learning. By aligning subdomains
selectively, KISA reduces the risk of "negative transfer" problems
that can arise from global domain adaptation approaches.

4.3.4 Sensitivity on Training Data Size. We train different models2
by varying the training data size of the source domain. In particular,
we sample 1%, 5%, 10%, 15%, 20%, 60%, and 100% from the training
data and collect the associated AUC and AUPRC of the test data in
the target domain. From Fig. 6, we observe that the more training
data we use, the better performance we get. Besides, our method
is capable of transferring reasonable knowledge from much less
source domain data. In our scenarios, we could get competitive
performance with 20% data (i.e., about 38.5k transaction records).

5 RELATEDWORK
Global Domain Adaptation. There have been extensive efforts
on global domain adaptation during the past several years. The
latest advances embed domain adaptation modules in deep feature
learning networks to extract domain-invariant representations [14–
16, 31, 32, 40, 43, 54]. Following the taxonomy from Zhu et al. [64],
there are two main approaches: (i) statistic moment matching based
approaches conduct alignment according to the statistic distance
between source and target domain (e.g., maximum mean discrep-
ancy [31, 33], central moment discrepancy [58], and second-order
statistics [42]); (ii) adversarial approaches [15, 21] integrate two
adversarial players similarly to Generative Adversarial Networks
(GANs) [17]. A domain discriminator is learned by minimizing the
classification error of distinguishing the source from the target
domains, while a deep classification model learns transferable rep-
resentations that are indistinguishable by the domain discriminator
[32]. Compared to previous global domain adaptation methods,
KISA is one of the pioneering efforts toward fine-grained domain
adaptation by incorporating domain knowledge.

2We choose KISA-CardType in the setting of S1→ T1 to conduct this experiment.

SubdomainAdaptation. Recently, there has been substantial in-
terest and efforts [26, 32, 38, 48, 53] for subdomain adaptationwhich
focuses on aligning the distributions of the relevant subdomains.
According to the definition of subdomains, there are two main ap-
proaches: (i) class label based methods: consider a subdomain as a
set with the same label and most subdomain methods follow this
paradigm. For example, by matching labeled source centroids and
pseudo-labeled target centroids, MSTN [53] learns semantic repre-
sentations for unlabeled target samples. Co-DA [26] builds several
different feature spaces and aligns the source and target distribu-
tions in each of them separately while promoting alignments that
concur with one another concerning the class predictions on the
unlabeled target data. (ii) intuitive division approaches: construct
subdomains by domain-specific intuitions. For example, Region-
Trans [48] treats intuitively divided fixed grids as subdomains and
then aligns learned representation with the region-matching func-
tion using crowd flow and check-in data. Compared to previous
subdomain adaptation methods, KISA is a data-driven solution that
can adaptively construct subdomains by providing the selected do-
main knowledge and samples, which extends the ability to perform
fine-grained domain adaptation.

6 CONCLUSION
In this paper, we propose a novel transfer learning framework called
KISA by leveraging domain knowledge to enable fine-grained sub-
domain adaptation. We propose the knowledge-inspired subdomain
division problem to construct subdomains and corresponding so-
lutions to solve it. Moreover, KISA introduces a knowledge fusion
network to fully exploit diverse domain knowledge, which is more
applicable in real-world applications. Finally, we prove the effec-
tiveness of KISA by conducting extensive experiments on fraud
detection and demand prediction tasks.

Limitations and future work. The knowledge-inspired sub-
domain division problem takes in the predefined number of sub-
domains, which is given based on our experience. Whether there
exists an optimal number of subdomains is still not yet known. In
future work, we will try our best to give a theoretical analysis of
how the subdomain number affects the performance of subdomain
adaptation and test KISA’s generalizability for more applications.
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