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ABSTRACT

The time-series anomaly detection is one of the most fundamen-

tal tasks for time-series. Unlike the time-series forecasting and

classification, the time-series anomaly detection typically requires

unsupervised (or self-supervised) training since collecting and la-

beling anomalous observations are difficult. In addition, most ex-

isting methods resort to limited forms of anomaly measurements

and therefore, it is not clear whether they are optimal in all cir-

cumstances. To this end, we present a multivariate time-series

anomaly detector based on score-based generative models, called

MadSGM, which considers the broadest ever set of anomaly mea-

surement factors: i) reconstruction-based, ii) density-based, and

iii) gradient-based anomaly measurements. We also design a con-

ditional score network and its denoising score matching loss for

the time-series anomaly detection. Experiments on five real-world

benchmark datasets illustrate that MadSGM achieves the most ro-

bust and accurate predictions.
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1 INTRODUCTION

Time-series-based applications are abundant in our daily life. For

instance, traffic condition monitoring systems [36], and indus-

trial/scientific remote sensing systems [8] are their representa-

tive examples. One common task in those applications is to detect

anomalous observations, which may cause severe damage to our

society. However, it is hard to label anomalous observations and

perform supervised training. Therefore, most of the well-known

time-series anomaly detection algorithms are unsupervised (or self-

supervised). These existing methods are known to be successful

for many time-series datasets. Nevertheless, one limitation of most

existing detection methods is that they resort to a single type of

anomaly measurement, such as reconstruction-based or density-

based anomaly measurement (see Table 1). A single type of anomaly

measurement may not work well in real-world time-series data due

to its complicated characteristics. For example, when normal points

are similar to abnormal ones in a feature space, reconstruction-

based models frequently fail. Moreover, it is difficult for density-

based models to discern between normal points in a low-density

region and abnormal points whose probabilities are naturally low.

In order to overcome the limitations, we consider simultaneously

three anomaly measurement types to detect as many anomalies

as possible: i) reconstruction-based, ii) density-based, iii) gradi-

ent
1
-based anomaly measurements. To compute the three anomaly

measurements in a robust manner, we apply score-based generative

models (SGMs) [14, 30] to our task. Recent work has demonstrated

that SGMs possess great strengths in reproducing high-quality

samples and obtaining exact probability densities via score func-

tions, i.e., the gradient of the log-density of samples. We design

an SGM-based method for our time-series task since SGMs have

been typically studied for images and there exist a few papers for

the time-series forecasting only. All three anomaly measurements

can be acquired naturally through the training and sampling pro-

cedures of our proposed SGM method. To be more specific, we

i) design our own conditional score network and ii) redesign the

denoising score matching loss [17] for our time-series-based task,

1
The gradient in our context means the gradient of the log-density of data, which is

called as score. The term ‘score’ of score-based generative models also means it. One

may consider that the anomaly detection based on the gradient, therefore, falls into the

category of the density-based type. However, the gradient-based anomaly detection

yields prediction outcomes distinctive from the density-based methods.
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which is specialized for capturing subtle points between normal ob-

servations and anomalies. Our designed conditional SGM method,

which consists of a conditional score network and its denoising

score matching training, is basically autoregressive since it learns

∇
x
𝑙
𝑡−𝜔 :𝑡

log𝑝 (x𝑙𝑡−𝜔 :𝑡 |x0

𝑡−𝜔 :𝑡−1
) at the diffusion step 𝑙 — in other

words, our SGM model is able to sample x
0

𝑡−𝜔 :𝑡 given x
0

𝑡−𝜔 :𝑡−1
.

However, there exists one subtle point in our autoregressive ap-

proach. Once an anomalous observation is fed into our method, all

following observations can be predicted as anomalies in the worst

case — in other words, the prior anomalous observation influences

its following normal observations, which is not preferred since

our task is to pinpoint a narrow temporal window with anomalies.

Thus, we need to prevent the propagation of anomaly decisions

and do it via a purification step, which is the process of calibrating

anomaly measurement (see Sec. 3.5). The purification step consists

of two operations: noising and denoising. First, we add noises to

the prior observations and then denoise to derive purified obser-

vations. At the end, we use them as a condition for sampling the

next observation during our autoregressive processing. We found

that this approach significantly stabilizes the overall processing and

therefore, we can extract the reconstruction-based, density-based,

and gradient-based anomaly measurements in a robust manner

— we call them as calibrated anomaly measurements in order to

distinguish them from naïve ones (cf. Sec. 3.4 vs. Sec. 3.5).

We conduct experiments on five benchmark datasets with nine

baselines. To assess the detection performance, we mainly use the

F1-score with the PA%K strategy as our main evaluation metric,

which is known to be more appropriate for the time-series anom-

aly detection. We also consider the widely-used point adjustment

approach. Our model shows the best detection performance in

terms of the two evaluation metrics on almost all datasets. Our

contributions can be summarized as follows:

(1) To our best knowledge, we present a time-series anomaly

detection method based on SGMs for the first time and con-

sider the broadest ever set of anomaly measurements: i)

the reconstruction-based, ii) the density-based, and iii) the

gradient-based ones.

(2) We train our conditional score network by using our pro-

posed denoising score matching loss, which is specially de-

signed for time-series anomaly detection. We also adopt the

purification strategy to achieve the fairness in the decision

process by preventing the propagation of anomaly decisions.

(3) We conduct comprehensive experiments on five benchmark

datasets for the time-series anomaly detection. Our results

illustrate that MadSGM has better and more robust perfor-

mance than baselines.

2 RELATEDWORKS

2.1 Anomaly Detection

Anomaly detection is the process to find rare observations deviating

from a normal pattern distribution. However, because abnormal

observations are scarce [5] and it is hard to collect and label abnor-

mal observations, we cannot easily apply supervised learning to

anomaly detection. Therefore, an unsupervised setting is common

in an anomaly detection task. There are several methods for this

Table 1: Comparison among various methods, including

MadSGM, in terms of the detection method. We point out

that none of the baselines consider multiple criterion.

Reconst.-based Density-based Gradient-based

LSTM-VAE ✓ × ×
MAD-GAN ✓ × ×

USAD ✓ × ×
AT ✓ × ×

DAGMM × ✓ ×
MadSGM (Ours) ✓ ✓ ✓

task: i) reconstruction-based, ii) density-based, and iii) boundary-

based methods. Each method is characterized by the assumption

about the characteristics of anomalies.

The reconstruction-based methods assume that anomalous sam-

ples can’t be accurately reconstructed by their trained models.

Their anomaly measurements are based on the reconstruction error.

LSTM-VAE [20] utilizes LSTMs in variational autoencoder (VAE)

to take into account the temporal dependency of time-series data.

OmniAnomaly [31] adds a stochastic module in the LSTM-VAE to

capture stochastic properties in time-series. MAD-GAN [16] and

TAnoGAN [3] use a GAN architecture composed of a discrimina-

tor and a generator with LSTM layers. It detects anomalies using

both discrimination and reconstruction losses. USAD [2] employs

two autoencoders and trains them with adversarial loss to isolate

anomalous samples and provide fast training. MSCRED [40] con-

structs attention-based ConvLSTMnetworks for temporal modeling

and a convolutional autoencoder to compress and reconstruct the

inter-sensor (time-series) correlation patterns. For AT [38], they

introduce the series-association from Transformers [34] and Gauss-

ian prior-association to differentiate between normal and abnormal

patterns. TadGAN [10] not only uses reconstruction error like other

GAN-based methods, but also devises other measurement by using

discriminator, which is called ‘Critic’. TadGAN mainly focuses on

univariate time-series, but it can be generalized into multivariate

time-series.

Density-based methods estimate the distribution of normal data

and can compute probabilities of normal and abnormal points. The

assumption of these methods is that in the estimated distribution,

the probability of anomalous observations is lower than that of nor-

mal ones. LOF [6] is a traditional method calculating local density

for outlier determination. DAGMM [42] combines an autoencoder

for dimension reduction with a finite gaussian mixture model for

density estimation of latent variables. Adaptive-KD [41] estimates

local densities using an adaptive kernel density estimation approach

in nonlinear systems.

As for the boundary-based methods, it is supposed that in a

good representation space, there is a boundary that distinguishes

abnormal points from normal ones. OCSVM [33] maps the training

data into the feature space via kernel functions and finds an optimal

hyperplane of maximal margin that separates the normal data from

the origin. DeepSVDD [23] constructs neural networks to find a

hypersphere of minimum volume that includes the normal data

on the latent space. THOC [27] extracts multi-scale temporal fea-

tures by using a multi-layer dilated RNN and builds a hierarchical

structure with multiple hyperspheres for each resolution.
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Figure 1: The overall framework of training process. Note that each score network learns 𝑆𝜽 (x𝑙𝑡−𝜔 :𝑡 , x
0

𝑡−𝜔 :𝑡−1
, 𝑙) ≈

∇
x
𝑙
𝑡−𝜔 :𝑡

log𝑝 (x𝑙𝑡−𝜔 :𝑡 |x0

𝑡−𝜔 :𝑡−1
) and 𝑆𝜽 (x̄𝑙𝑡−𝜔 :𝑡 , 0, 𝑙) ≈ ∇

x̄
𝑙
𝑡−𝜔 :𝑡

log𝑝 (x̄𝑙𝑡−𝜔 :𝑡 ), respectively (cf. Section 3.3).

Usually, extant studies are based on only one type of method.

However, it is not desirable to stick to a single one. This is be-

cause the complex nature of real-world time-series data makes it

hard for only one of the methods to be sufficient. Therefore, we

devise our model which can utilize multiple methods at the same

time. We show the effectiveness of combining multiple methods in

Section 5.1.

2.2 Score-based Generative Models

SGMs [30] diffuse a data distribution 𝑝0 (x) to a noise distribution

𝜋 (x) with an Itô stochastic differential equation (SDE):

𝑑x = f(x, 𝑙)𝑑𝑙 + 𝑔(𝑙)𝑑w, 𝑙 ∈ [0, 1], (1)

where f(·, 𝑙) : R𝑛 → R𝑛 and 𝑔 : [0, 1] → R denote drift and dif-

fusion coefficients of x
𝑙
, respectively, and w ∈ R𝑛 is a Brownian

motion. There are several types of SDE such as variance exploding

(VE), variance preserving (VP), and subVP, depending on the defini-

tion of coefficients f and 𝑔 as in Song et al. [30]. A diffusion process

{x𝑙 }𝑙∈[0,1] can be derived by solving the SDE (1). By sufficiently

perturbing the data x
0
using SDE, the distribution of x

1
at the end

step can be approximated by the noise distribution.

The reverse SDE for generating samples x
0
from noisy samples

x
1
is as follows:

𝑑x =
[
f(x, 𝑙) − 𝑔2 (𝑙)∇xlog𝑝𝑙 (x)

]
𝑑𝑙 + 𝑔(𝑙)𝑑w̄, 𝑙 ∈ [0, 1],

where ∇xlog𝑝𝑙 (x) is the score function of x
𝑙
, w̄ is a Brownian

motion in the reverse time direction and 𝑑𝑙 is a negative time step.

In the reverse SDE, the unknown score function ∇xlog𝑝𝑙 (x) can
be estimated as a score network 𝑆𝜽 (x, 𝑙) using the denoising score

matching [30, 35]. The loss function to train the score network is

given by

𝐿(𝜽 ) = E𝑙
{
𝜆(𝑙)E

x
0E

x
𝑙 |x0

[


𝑆𝜽 (x𝑙 , 𝑙) − ∇
x
𝑙 log𝑝 (x𝑙 |x0)




2

2

]}
,

where 𝜆(𝑙) > 0 is a weighting function and 𝑝 (x𝑙 |x0) denotes a
transition kernel. Note that the transition kernel is a Gaussian

distribution when the drift coefficient f(·, 𝑙) is affine as in [32].

There are two numerical approaches to solve the reverse SDE

for sampling: the predictor-corrector and using well-known ODE

solvers on probability flow ODE [7]. The ODE solver can be used to

the following ordinary differential equation (ODE) which has the

same probability distribution of x
𝑙
as that of the SDE (Eq. (1)):

𝑑x =

[
f(x, 𝑙) − 1

2

𝑔2 (𝑙)∇xlog𝑝𝑙 (x)
]
𝑑𝑙,

where ∇xlog𝑝𝑙 (x) can be replaced by 𝑆𝜽 (x𝑙 , 𝑙). [7] proved that one
can compute the exact log-likelihood of x

0
from the formula:

log 𝑝 (x0) = log𝑝 (x1) +
∫

1

0

∇
x
𝑙 · ˜

f(x𝑙 , 𝑙)𝑑𝑙, (2)

where
˜
f(x𝑙 , 𝑙) = f(x𝑙 , 𝑙) − 1

2
𝑔2 (𝑙)∇

x
𝑙 log𝑝 (x𝑙 ). The Hutchinson’s

trace estimator enables the unbiased linear-time estimation of ∇
x
𝑙 ·

˜
f(x𝑙 , 𝑙) [11]. As such, we can use both the generated samples and the

log-likelihood computed from the probability flow ODE to define

the proposed anomaly measurement described in Section 3.

2.3 Adversarial Purification

Deep neural networks in the image domain are known to have a

high vulnerability to adversarial attacks using the adversarially

perturbed images to cause misclassification. As a defense strategy

against such attacks, there is adversarial purification that purifies

perturbed images into clean images. Many existing purification

methods focused on deep generative models. Defense-GAN [24]

reduces the effect of the adversarial perturbation using a WGAN-

based method. Yoon et al. [39] utilizes an energy-based model

trained using denoising score matching. DiffPure [19] removes

noises from attacked images via the forward and reverse SDEs in

SGM [30], whose main intuition is that gradually reducing noises

in the reverse process is similar to the role of the purification model.

We further enhance our method by adopting this adversarial purifi-

cation idea.

3 PROPOSED METHOD

In this section, we describe the proposed anomaly detection method

in detail. The key points in our method are that i) we use a con-

ditional score network to preserve the temporal dependencies on

time-series and introduce a denoising score matching loss function

to train the conditional score network for the purpose of anomaly

detection, ii) we define three types of anomaly measurements: a)

reconstruction-based, b) probability-based, c) gradient-based anom-

aly measurements, and iii) we propose a calibrating strategy based

on a purificationmethod for the conditional input of our conditional

score network.

3.1 Problem Statement

LetT = {x1, · · · , x𝑇 }, wherex𝑡 ∈ R𝑚 is an observation at time 𝑡 , be

a multivariate time-series sequence, and x𝑡−𝜔 :𝑡 = {x𝑡−𝜔 , · · · , x𝑡 }
be a window of length 𝜔 + 1. Thus, T can be divided into 𝑇 − 𝜔
sliding windows, i.e., {T𝑗 }𝑁𝑗=1

, where 𝑁 = 𝑇 − 𝜔 . We consider the
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challenging environment that all observations in our training data

{T𝑗 }𝑁𝑗=1
are unlabeled, i.e., unsupervised training. When training

our model and computing the anomaly measurement, our predic-

tion granularity is a window x𝑡−𝜔 :𝑡 = {x𝑡−𝜔 , · · · , x𝑡 }. In other

words, our task is to detect whether each window has anomalies or

not.

3.2 Score Network for Time-series Anomaly

Detection

For non-sequential data such as images [25] and tables [28], anom-

aly detection methods can independently determine whether each

sample is abnormal or not, whereas in the time-series domain

there exist temporal dependencies among observations, requiring

a different approach utilizing them. Therefore, to capture the con-

ditional data distribution 𝑝 (x𝑡−𝜔 :𝑡 |x𝑡−𝜔 :𝑡−1), the score network
𝑆𝜽 (·, ·, ·) must take 3 inputs: a diffusion step 𝑙 , a diffused sample

x
𝑙
𝑡−𝜔 :𝑡 , and a condition x𝑡−𝜔 :𝑡−1. The conditional score network

𝑆𝜽 (x𝑙𝑡−𝜔 :𝑡 , x𝑡−𝜔 :𝑡−1, 𝑙) estimates the gradient of the conditional

log probability ∇
x
𝑙
𝑡−𝜔 :𝑡

log𝑝 (x𝑙𝑡−𝜔 :𝑡 |x𝑡−𝜔 :𝑡−1), called as conditional
score function.

In order to design our conditional score network, we modify the

reputed U-net architecture [22] to capture temporal dependencies

better. From the U-net architecture, we replace its 2-dimensional

convolutional layers with 1-dimensional ones and follow the mis-

cellaneous structures in [29, 30]. After concatenating the diffused

sample and the condition, we feed it into our conditional score

network. We refer the readers to Section 4.4 for the detailed archi-

tecture and its hyperparameters.

3.3 Training and Sampling Methods

We redesign the denoising score matching [17, 30, 35] for our sake,

and our proposed conditional score network learns the time-series

patterns from the training data. The parameters of score network

can be trained by minimizing

𝐿𝑠𝑐𝑜𝑟𝑒 (𝑡) = E𝑙Ex𝑡−𝜔 :𝑡
[𝜆(𝑙) (𝐿1 (𝑡) + 𝐿2 (𝑡))] , (3)

where

𝐿1 (𝑡 ) = E
x
𝑙
𝑡−𝜔 :𝑡

[


𝑆𝜽 (x𝑙𝑡−𝜔 :𝑡 , x
0

𝑡−𝜔 :𝑡−1
, 𝑙 ) − ∇

x
𝑙
𝑡−𝜔 :𝑡

log𝑝 (x𝑙𝑡−𝜔 :𝑡 |x0

𝑡−𝜔 :𝑡 )



2

2

]
,

𝐿2 (𝑡 ) = E
x̄
𝑙
𝑡−𝜔 :𝑡

[


𝑆𝜽 (x̄𝑙𝑡−𝜔 :𝑡 , 0, 𝑙 ) − ∇
x̄
𝑙
𝑡−𝜔 :𝑡

log𝑝 (x̄𝑙𝑡−𝜔 :𝑡 |x̄0

𝑡−𝜔 :𝑡 )



2

2

]
.

Here, 𝜆(𝑙) > 0 is a weighting function as in Song et al. [30]. Note

that our conditional score network is trained for both 𝐿1 (𝑡) and
𝐿2 (𝑡). As such, for 𝐿2 (𝑡), so to use x𝑡−𝜔 :𝑡−1 as the input of the

first part of the 𝑆𝜽 (·, ·, ·), we concatenate x𝑡−𝜔 :𝑡−1 and 0 to match

its dimension with x
𝑙
𝑡−𝜔 :𝑡 of 𝐿1 (𝑡). We denote the concatenated

data as x̄𝑡−𝜔 :𝑡 . Lim et al. [17] proved that the denoising conditional

score matching loss 𝐿1 (𝑡) is equivalent to the explicit conditional

score matching loss,

E
x
𝑙
𝑡−𝜔 :𝑡

[


𝑆𝜽 (x𝑙𝑡−𝜔 :𝑡 , x
0

𝑡−𝜔 :𝑡−1
, 𝑙 ) − ∇

x
𝑙
𝑡−𝜔 :𝑡

log𝑝 (x𝑙𝑡−𝜔 :𝑡 |x0

𝑡−𝜔 :𝑡−1
)



2

2

]
.

Therefore, the minimization of the loss function 𝐿1 (𝑡) leads to
𝑆𝜽 (x𝑙𝑡−𝜔 :𝑡 , x

0

𝑡−𝜔 :𝑡−1
, 𝑙) ≈ ∇

x
𝑙
𝑡−𝜔 :𝑡

log𝑝 (x𝑙𝑡−𝜔 :𝑡 |x0

𝑡−𝜔 :𝑡−1
).

In addition, because the score function in 𝐿2 (𝑡) takes zero vectors
as the condition, it can be regarded as a naïve score matching

which doesn’t require any condition values. Thus, we can think

𝑆𝜽 (x̄𝑙𝑡−𝜔 :𝑡 , 0, 𝑙) ≈ ∇
x̄
𝑙
𝑡−𝜔 :𝑡

log𝑝 (x̄𝑙𝑡−𝜔 :𝑡 ). We point out that 𝐿2 (𝑡)
is the naïve denoising score matching loss as in Song et al. [30],

whereas 𝐿1 (𝑡) is the conditional score matching loss devised by Lim

et al. [17]. The conditional score function learned by 𝐿1 (𝑡) and 𝐿2 (𝑡)
has different roles in anomaly detection. The conditional score

function from 𝐿1 (𝑡) is used to calculate the anomaly measurement

(Section 3.4) and that from 𝐿2 (𝑡) is for purification (Section 3.5)

which is to adjust the conditional values of the score network in

anomaly detection. The entire training process of our proposed

model is shown in Figure 1.

After training conditional score network, to generate samples

from a given noisy vector z ∼ 𝑁 (0, I) and previous data, we solve

the following reverse SDE or probability flow ODE by using the

predictor-corrector or well-known ODE solver [7], respectively:

𝑑x𝑙𝑡−𝜔 :𝑡 =

[
f(x𝑙𝑡−𝜔 :𝑡 , 𝑙 ) − 𝑔2 (𝑙 )∇

x
𝑙
𝑡−𝜔 :𝑡

log𝑝 (x𝑙𝑡−𝜔 :𝑡 |x0

𝑡−𝜔 :𝑡−1
)
]
𝑑𝑙 + 𝑔 (𝑙 )𝑑w̄,

𝑑x𝑙𝑡−𝜔 :𝑡 =

[
f(x𝑙𝑡−𝜔 :𝑡 , 𝑙 ) −

1

2

𝑔2 (𝑙 )∇
x
𝑙
𝑡−𝜔 :𝑡

log𝑝 (x𝑙𝑡−𝜔 :𝑡 |x0

𝑡−𝜔 :𝑡−1
)
]
𝑑𝑙 .

It is known that the probability flow ODE is faster but generates

poorer samples than that of the reverse SDE. Up to our works,

the probability flow ODE yields similar results with the reverse

SDE, but it is averaged 5 times faster (see Table 2), so we only use

the probability flow ODE for our entire experiments. Furthermore,

by the instantaneous change of variable theorem [7], we can also

exactly compute the conditional log-likelihood log𝑝 (x𝑡 |x𝑡−𝜔 :𝑡−1).

Table 2: Comparison of the average number of function eval-

uations (NFE) between the probability flow ODE and the

reverse SDE.

NFE

SWaT SMAP MSL PSM SMD

reverse SDE 2000

probability flow ODE 310.4 392.1 712.5 365.0 388.1

ratio(upper/lower) 6.44 5.10 2.81 5.48 5.15

3.4 Naïve Anomaly measurement Definitions

Anomalies are unusual observations that deviate from normal be-

haviors. We define SGM-based anomaly measurements using a con-

ditional score network that learns normal patterns from training

data. In particular, to detect tricky anomalies, we use the advantages

of SGM, which generates high-quality samples and provides an es-

timate of the gradient of log probability. We determine whether a

sample for time step 𝑡 > 𝑇 is normal or abnormal using the previous

observations. The proposed anomaly measurement consists of i)

reconstruction-based measurement, 𝐴𝑟𝑒𝑐𝑜𝑛 , ii) probability-based

measurement, 𝐴𝑝𝑟𝑜𝑏 , and iii) gradient-based measurement, 𝐴𝑔𝑟𝑎𝑑 ,

which are explained from following subsection.

3.4.1 Reconstruction-basedMeasurement. Wegenerate x̂𝑡−𝜔 :𝑡 with

trained SGMs and extract the expected value x̂𝑡 at time 𝑡 from the

normal temporal trend. We define the following reconstruction-

based anomalymeasurement as the difference between the observed

value x𝑡 and the reconstructed value x̂𝑡 :

𝐴𝑟𝑒𝑐𝑜𝑛 (𝑡) = ∥x̂𝑡 − x𝑡 ∥2

2
.
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Figure 2: Comparison between the anomaly measurement

without and with the purification process. The manifold rep-

resents a space where normal data distribution lies. (upper)

Given the abnormal condition x𝑡−𝜔 :𝑡−1, the reconstructed

observation x̂𝑡 will be close to the abnormal observation x𝑡 .

(lower) Given the purified condition, the reconstructed ob-

servation will be far from the abnormal observation.

3.4.2 Probability-based Measurement. In the sampling procedure

of SGMs, the probability flow ODE computes the log conditional

probability log𝑝 (x𝑡 |x𝑡−𝜔 :𝑡−1) with Eq. (2) that captures temporal

dependencies of normal points. Due to the sparsity of anomalous

samples, the probability of anomalies tends to be extremely low.

Therefore, we define a probability-based anomaly measurement as

a negative log conditional probability as follows:

𝐴𝑝𝑟𝑜𝑏 (𝑡) = −log𝑝 (x𝑡 |x𝑡−𝜔 :𝑡−1) .
The higher this measurement of x𝑡 is, the more likely it is to be

abnormal.

3.4.3 Gradient-based Measurement. The score function gives the

direction of change in the log probability and the magnitude of

change in that direction. Even if the probability values of normal

and abnormal samples are similar, a significant difference in the

gradient allows us to distinguish an anomaly from normal behavior.

The gradient-based anomaly measurement defined by the norm of

the conditional score function is given as

𝐴𝑔𝑟𝑎𝑑 (𝑡) =


∇x𝑡−𝜔 :𝑡

log𝑝 (x𝑡−𝜔 :𝑡 |x𝑡−𝜔 :𝑡−1)


 ,

where both l1-norm and l2-norm can be used as the norm, ∥ · ∥.
Although both cases can be used in experiments, we observe that

using l1-norm outperforms l2-norm, so we only adopt l1-norm in

our experiments. The conditional score function can be replaced

with conditional score network 𝑆𝜽 (x0

𝑡−𝜔 :𝑡 , x
0

𝑡−𝜔 :𝑡−1
, 0). We also

describe the relationship between score function and log probability.

By using the Taylor expansion and the Cauchy-Schwarz inequality,

we can derive the following inequality: for any 𝝐 > 0,

∥∇log𝑝 (x)∥
2
≥ |log𝑝 (x + 𝝐) − log𝑝 (x) |

∥𝝐 ∥
2

+𝑂 (𝝐).

On a minimum point of the log-likelihood plane, the left term will

be small, which means the log probability doesn’t change in the

neighborhood of x. To be more specific, the lower this measurement

of x𝑡 is, the more likely it is to be normal. So we can consider the

score function as the milestone of local minimum. Unlike other

works which deal with only the probability, we focus on the local

optimum, not on the point only, therefore we get a better strat-

egy than other baselines. We demonstrate its performance in the

experiments section.

3.5 Calibrated Anomaly measurement

Definitions with Purification

However, the above three anomaly measurement definitions can

be unstable when x𝑡−𝜔 :𝑡−1 includes anomalous observations. For

instance,𝐴𝑟𝑒𝑐𝑜𝑛 (𝑡) should be high (resp. low) when x𝑡 is an anoma-

lous (e.g., legitimate) observation, which is not always guaranteed

in such a case (cf. the upper figure of Figure 2). This phenomenon

occurs for other two anomaly measurement definitions as well.

To alleviate this problem, we propose to purify, to get rid of

anomalous observations if any, the condition part of the anomaly

measurement definitions, i.e., x𝑡−𝜔 :𝑡−1. We resort to the adversar-

ial purification method (cf. Sec. 2.3), i.e., adding slight noises to a

sample via the forward process of SGM and denoising it via the re-

serve process. Throughout the denoising process, all non-legitimate

signals can be removed from the sample. Detailed purification and

anomaly detection procedure is provided in Algorithm 1. Our pu-

rification step adopts the forward and reverse processes of SGMs

to purify x𝑡−𝜔 :𝑡−1 with the following steps (cf. Figure 3):

(1) This step is to blur the anomalies by adding noises to the

conditional data. We first consider the concatenation of the

conditional data x𝑡−𝜔 :𝑡−1 and 0, denoted by x̄𝑡−𝜔 :𝑡 , to match

its size with that of the input of 𝑆𝜽 (·, ·, ·). We perturb x̄𝑡−𝜔 :𝑡

from diffusion step 𝑙 = 0 to 𝑙 = 𝜏 with forward SDE, where

𝜏 ∈ [0, 1] is a hyperparameter to control the extent of noise

added. x̄
𝜏
𝑡−𝜔 :𝑡 denotes the perturbed conditional data. (cf.

Line 1-2 of Algorithm 1)

(2) In this step, we produce a purified conditional data by grad-

ually removing the noises (and potential anomalous values

if any). We generate a sample x̄
0

𝑡−𝜔 :𝑡 from x̄
𝜏
𝑡−𝜔 :𝑡 by solv-

ing the reverse SDE based on the trained conditional score

network. We take the purified condition x̃𝑡−𝜔 :𝑡−1 of length

𝜔 from the generated sample x̄
0

𝑡−𝜔 :𝑡 . (cf. Line 3-5 of Algo-

rithm 1).

Since the model learns a distribution of the training data, which

consist mostly of normal observations, we can restore to the most

appropriate purified sample from the potentially abnormal con-

dition. Note that the difference will be larger (resp. small) if the

condition contains anomalies (resp. normal observations) after the

purification (cf. the lower figure of Figure 2). By appropriately set-

ting the hyperparameter 𝜏 , we can control how aggressively the

conditional data is purified.



CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Lim et al.

Forward step

Purification

Sampling

Reverse step

Reverse step

: Condition with Noise

: Original Condition : Purified Condition

Figure 3: Detailed process of the purification and sampling process in Figure 2

Algorithm 1 Anomaly Detection Algorithm

Input: x𝑡−𝜔 :𝑡−1

Parameter: 𝜏 = A real parameter in [0, 1] to assign how much

noise will be added to condition during purification.

Output: 𝐴̃𝑟𝑒𝑐𝑜𝑛 , 𝐴̃𝑝𝑟𝑜𝑏 , 𝐴̃𝑔𝑟𝑎𝑑

1: x̄𝑡−𝜔 :𝑡 denotes concatenation of x𝑡−𝜔 :𝑡−1 with zero vector.

2: Diffuse x̄𝑡−𝜔 :𝑡 until step 𝜏 with the forward SDE and thereby

take x̄
𝜏
𝑡−𝜔 :𝑡 .

3: for 𝑙 ∈ [0, 𝜏] do
4: Run the sampling procedures to obtain x̃𝑡−𝜔 :𝑡−1 from x̄

𝜏
𝑡−𝜔 :𝑡

with 𝑆𝜽 (x̄𝑙𝑡−𝜔 :𝑡 , 0, 𝑙).
5: end for

6: Get z ∼ 𝑁 (0, I)
7: for 𝑙 ∈ [0, 1] do
8: Run the sampling procedures to obtain x̂𝑡−𝜔 :𝑡 from z and

get −log𝑝 (x𝑡 |x̃𝑡−𝜔 :𝑡−1) &


∇x𝑡−𝜔 :𝑡

log𝑝 (x𝑡−𝜔 :𝑡 |x̃𝑡−𝜔 :𝑡−1)




with 𝑆𝜽 (x𝑙𝑡−𝜔 :𝑡 , x̃𝑡−𝜔 :𝑡−1, 𝑙)
9: end for

10: return 𝐴̃𝑟𝑒𝑐𝑜𝑛 , 𝐴̃𝑝𝑟𝑜𝑏 , 𝐴̃𝑔𝑟𝑎𝑑

After purifying the condition, we achieve a calibrated condition,

denoted x̃𝑡−𝜔 :𝑡−1. By replacing the original condition with the

purified one, we can get the following calibrated conditional score

network, 𝑆𝜽 (x𝑙𝑡−𝜔 :𝑡 , x̃𝑡−𝜔 :𝑡−1, 𝑙) ≈ ∇
x
𝑙
𝑡−𝜔 :𝑡

log𝑝 (x𝑙𝑡−𝜔 :𝑡 |x̃𝑡−𝜔 :𝑡−1).
We then generate a calibrated sample, x̃𝑡 . Therefore we attain the

following calibrated anomaly measurement definitions:

𝐴̃𝑟𝑒𝑐𝑜𝑛 (𝑡) = ∥x̃𝑡 − x𝑡 ∥2

2
,

𝐴̃𝑝𝑟𝑜𝑏 (𝑡) = −log𝑝 (x𝑡 |x̃𝑡−𝜔 :𝑡−1),
𝐴̃𝑔𝑟𝑎𝑑 (𝑡) =



∇x𝑡−𝜔 :𝑡
log𝑝 (x𝑡−𝜔 :𝑡 |x̃𝑡−𝜔 :𝑡−1)



 .
In order to achieve stable detection performance, the overall

anomalous measurement 𝐴𝑎𝑛𝑜𝑚𝑎𝑙𝑦 is calculated as the following

seven cases by combining them: 𝐴̃𝑟𝑒𝑐𝑜𝑛 , 𝐴̃𝑝𝑟𝑜𝑏 , 𝐴̃𝑔𝑟𝑎𝑑 , 𝐴̃𝑟𝑒𝑐𝑜𝑛 ∗
𝐴̃𝑝𝑟𝑜𝑏 , 𝐴̃𝑟𝑒𝑐𝑜𝑛 ∗ 𝐴̃𝑔𝑟𝑎𝑑 , 𝐴̃𝑝𝑟𝑜𝑏 ∗ 𝐴̃𝑔𝑟𝑎𝑑 , and 𝐴̃𝑟𝑒𝑐𝑜𝑛 ∗ 𝐴̃𝑝𝑟𝑜𝑏 ∗ 𝐴̃𝑔𝑟𝑎𝑑 . It
is worth mentioning that the above three measurements typically

have different scales and their arithmetic mean is not appropriate.

Therefore, we multiply them as in the term frequency-inverse doc-

ument frequency (TF-IDF [21]) widely used in natural language

processing — one can also consider that our definition is the geo-

metric mean of the three measurements without the cube root. We

also point out that multiplying two measurements has been used

Table 3: Detailed characteristics of the benchmark datasets

we use for our experiments

Dataset # of train set # of test set Dim. Ratio (%)

SWaT 496,800 449,919 51 12.14

SMAP 135,183 427,617 25 12.8

MSL 58,317 73,729 55 10.5

PSM 129,784 87,841 25 27.76

SMD 109,577 109,578 38 4.2

Table 4: The best hyperparameters of MadSGM in each

dataset

Dataset Length SDE type 𝑛𝑙𝑎𝑦𝑒𝑟 𝑛𝑟𝑒𝑠𝑛𝑒𝑡 tol 𝑛𝑖𝑡𝑒𝑟

SWaT

10 VP

4 4 1𝑒−3
210,000

SMAP 3 2 1𝑒−3
40,000

MSL 3 3 1𝑒−3
100,000

PSM 3 2 1𝑒−2
55,000

SMD 4 4 1𝑒−3
45,000

in previous anomaly detection work, TadGAN [10], which mainly

focuses on univariate time-series. We set the anomaly threshold as a

hyperparameter and consider samples with anomaly measurements

above the threshold to be anomalies.

4 EXPERIMENTS

In this section, we conduct experiments to illustrate the perfor-

mance of the MadSGM on five real-world datasets from various

fields with nine benchmark baselines. In particular, our collection

of baselines covers various types of time-series anomaly detection

methods, ranging from transformer-based models to VAEs and

GANs. For the baselines, we reuse their released source codes in

their official repositories and rely on their designed training proce-

dures. Details of the software and hardware environment used in

our experiments are as follow: Ubuntu 18.04 LTS, Python 3.9.12,

CUDA 9.1, NVIDIA Driver 470.141, i9 CPU, and GeForce RTX 2080

Ti.

4.1 Datasets

We used five benchmark datasets for time-series anomaly detection

in our experiments. The characteristics of datasets, including their

data dimensions, the numbers of train and test samples, and anom-

aly ratios are summarized in Table 3. We briefly introduce them in

the following:

• Secure Water Treatment (SWaT) [18]: The SWaT dataset was

recorded over 11 days from a water treatment testbed, which

has 26 sensor values and 25 actuator operations.
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Table 5: Experimental results in terms of F1PA and the area under the curve (AUC) of F1PA%K with varying 𝐾 . The best results

are in boldface and the second ones are underlined. Avg.Rank denotes the average rank of each model.

Method

SWaT SMAP MSL PSM SMD Avg. Rank

AUC F1PA AUC F1PA AUC F1PA AUC F1PA AUC F1PA AUC F1PA

OCSVM 0.2454 0.7926 0.3834 0.8126 0.286 0.6804 0.4711 0.6704 0.1199 0.2821 7.8 8.2

DeepSVDD 0.7948 0.8802 0.3897 0.8235 0.3311 0.8218 0.6157 0.9133 0.1833 0.6981 4.4 5.4

DAGMM 0.8021 0.8852 0.3491 0.8403 0.3266 0.7801 0.6244 0.9089 0.3317 0.8539 4.2 5.0

LSTM-VAE 0.4412 0.6997 0.3989 0.9635 0.3465 0.8813 0.4557 0.5986 0.1264 0.4173 5.6 6.6

OmniAnomaly 0.2314 0.3398 0.3928 0.8461 0.2878 0.6797 0.4462 0.6161 0.1186 0.2667 8.2 8.4

MAD-GAN 0.7782 0.8988 0.3672 0.8184 0.3349 0.8627 0.5754 0.9387 0.1647 0.6166 5.6 4.8

TAnoGAN 0.8014 0.8486 0.3532 0.7862 0.3475 0.8371 0.6117 0.9643 0.2436 0.7493 4.0 5.6

USAD 0.8197 0.868 0.3135 0.6958 0.3226 0.6254 0.5851 0.817 0.1972 0.4968 5.4 8.0

AT 0.2328 0.9593 0.124 0.9667 0.2715 0.9533 0.4799 0.9776 0.1204 0.9163 8.8 1.8

Ours 0.8273 0.9651 0.4075 0.9690 0.3609 0.9215 0.6388 0.9800 0.3786 0.9298 1.0 1.2

• Mars Science Laboratory rover (MSL) and Soil Moisture Active
Passive satellite (SMAP) [13]: Both MSL and SMAP are col-

lected from spacecraft monitoring systems of NASA, which

have 55 and 25 dimensions, respectively. Specifically, we

used 53 out of 55 channels in the SMAP dataset excluding

two P-2 channels.

• Pooled Server Metrics (PSM) [1]: The PSM dataset is provided

by eBay and consists of 25 features of sever machine metrics

such as CPU utilization and memory collected internally

from multiple application server nodes.

• Server Machine Dataset (SMD) [31]: The SMD is server status

log dataset collected from 28 different machines of a large

internet company during 5 weeks. In this dataset, we use

only four entities named as machine-1-1, 2-1, 3-2 and 3-7,

respectively.

4.2 Baselines

We compare the MadSGM with several types of unsupervised

anomaly detection methods: density-based, boundary-based, and

reconstruction-based methods. At first, DAGMM [42] is used as

the density-based method. Next, the boundary-based method con-

tains OCSVM [33] with RBF kernel and DeepSVDD [23]. Both

density-based and boundary-based models can’t use a sliding win-

dow input since they are not designed to deal with the temporal

dependency. Finally, we consider six reconstruction-based mod-

els for time-series anomaly detection, including VAE-based meth-

ods: LSTM-VAE [20] and OmniAnomaly [31]; GAN-based methods:

MAD-GAN [16], TAnoGAN [3], and USAD [2]; a Transformer-

based method: AT [38].

4.3 Evaluation Metrics

Most works for the time-series domain have adopted the widely-

used point adjustment approach, introduced by [37]: if any time

point in a successive anomaly segment is detected, all observations

in this segment are regarded to be correctly detected as anomalies.

The F1-score with the point-adjust way denoted as F1PA is more

suitable for range-based anomalies than the naive F1-score (F1).

The F1PA will be higher than the F1.

However, Kim et al. [15] argued some limitations in which F1PA

has a high possibility to be overestimated. They provided empiri-

cal evidence that a random anomaly measurement outperformed

state-of-the-art methods on almost all benchmark datasets. For

this reason, they proposed an alternative evaluation metric named

by PA%K which can remedy both the overestimation of F1PA and

underestimation of F1.

Let us define 𝑆𝑚 =: {𝑡𝑚𝑠 , . . . , 𝑡𝑚𝑒 } as an anomaly segment for

𝑚 = 1, . . . , 𝑀 and 𝑡𝑚𝑠 and 𝑡𝑚𝑒 are the start and end times of 𝑆𝑚 ,

respectively. The PA%K protocol is defined as follows:

𝑦𝑡 =


1 if 𝐴(x𝑡−𝜔 :𝑡 ) > 𝛿 or

𝑡 ∈ 𝑆𝑚 and

|{𝑡 ′ | 𝑡 ′ ∈ 𝑆𝑚, 𝐴(x𝑡 ′−𝜔 :𝑡
′ ) > 𝛿}|

|𝑆𝑚 | > 𝐾

0 otherwise

,

where 𝑦𝑡 is a predicted label and 𝛿 is a certain threshold, 𝐴(·) is the
anomaly measurement of input, | · | is the cardinality of a set, and

𝐾 ∈ [0, 1] is a ratio. We denote F1PA%K as F1-score with the PA%K

strategy.

In this paper, we used the area under the curve (AUC) of F1PA%K

as the main evaluation metric obtained by increasing 𝐾 from 0 to

1 by 0.1. Here, F1PA%K with 𝐾 = 0 and 𝐾 = 1 is identical with the

F1PA and F1, respectively. Figure 4 shows that F1PA%K values with

different 𝐾 and AUCs of the proposed model and some baselines

on benchmark datasets.

4.4 Hyperparameters

We describe the best hyperparameters of our proposed model for

reproducibility. Table 4 provides our best hyperparameters. We set

the length (window size) of time-series sequences to 10 and use

VP as the type of SDE for all datasets. In the architecture of the

conditional score network, 𝑛𝑙𝑎𝑦𝑒𝑟 and 𝑛𝑟𝑒𝑠𝑛𝑒𝑡 mean the depth of U-

net and the number of residual blocks in each layer, respectively. We

search 𝑛𝑙𝑎𝑦𝑒𝑟 in {3, 4} and 𝑛𝑟𝑒𝑠𝑛𝑒𝑡 in {2, 3, 4}. When we calculate

the exact likelihood, we consider {1𝑒−2, 1𝑒−3} as the tolerance level
of probability flow ODE. For training iterations 𝑛𝑖𝑡𝑒𝑟 , the optimal

setting depends on the dataset and we check it every 5000 iterations.

For other hyperparameter settings in SGMs, we follow that of VP

SDE in Song et al. [30].
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Figure 4: The curve of F1PA%K for SWaT, PSM, and SMD datasets by varying K from 0 to 1. AUC denotes the area under the

curve. The higher the AUC value, the better the detection performance.
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Figure 5: Examples of anomalies that are not detectable by

one or two of the three anomaly measurements but by an-

other. Red and green indicate true anomalies and estimated

anomalies based on anomaly measurements, respectively.

Blue dashed lines represent thresholds of anomaly measure-

ments to detect anomalous observations.

4.5 Experimental Results

We compare our proposed methods with several popular anomaly

detection models on five real-world datasets. We calculate evalua-

tion metrics after a certain time point since time-series anomaly de-

tectors use different sizes of the sliding window. Note that MadSGM

generates definite sample since it uses probability flow ODE, which

follows fixed path (see Section 3.3). Therefore we achieve constant

results on various seeds, like other non-generative models.

Table 5 provides that the MadSGM performs well in all datasets

with the highest or the second-best results. Especially, for all datasets,

the MadSGM shows overwhelming performance in terms of the

AUC of F1PA%K. For F1PA, the MadSGM outperforms all the base-

lines on all datasets except MSL. Figure 4 demonstrates that for all

𝐾 , the proposed methods has higher values of F1PA%K than LSTM-

VAE, DeepSVDD, and TAnoGAN. By the average rank of the last

column in Table 5, it generally has a more reliable performance

than the current state-of-the-art irrespective of evaluation metrics,

which shows its robust detection performance. In other words, the

proposed method can cope with all datasets using the broadest ever

set of anomaly measurements, while most existing methods work

well only with specific datasets. For instance, whereas DAGMM

earns the second-best results on the PSM and SMD datasets, for

the SWaT and SMAP datasets with long-time sequences, it doesn’t

achieve reasonable performance.

Furthermore, when simultaneously considering both metrics,

F1PA and AUC, the excellence of our proposed method is also

demonstrated. When checking only one metric, either F1PA or

AUC, baselines sometimes show good performance. However, when

checking both the metrics, it is observed that although the result

of one metric is reasonable, that of the other is poor. For example,

DeepSVDD and DAGMM have decent performance for the AUC

of F1PA%K, but not for F1PA. In addition, AT and MAD-GAN of

time-series anomaly detectors are somewhat overestimated from

the PA%K protocol’s perspective, because there are discrepancies

in rankings between the F1PA and AUC of F1PA%K. However, in all

cases, the performance of MadSGM is the best or the second-best for

both metrics. Therefore, the effectiveness of our proposed method

is demonstrated by the fact that MadSGM has an overwhelming

performance in Table 5, regardless of datasets and metrics.

5 ABLATION STUDY

5.1 Ablation study on Anomaly measurements

In this section, we conduct anomaly detection tasks by varying the

type of anomaly measurements. As in Section 3.4, our method eval-

uates 3 types of anomaly measurements: i) reconstruction-based

measurement, 𝐴𝑟𝑒𝑐𝑜𝑛 , ii) probability-based measurement, 𝐴𝑝𝑟𝑜𝑏 ,

and iii) gradient-based measurement, 𝐴𝑔𝑟𝑎𝑑 . When we consider all

combinations of 3 types, by multiplying each other, there are 7 types

of anomaly measurements in total. Table 6 shows that the best type

of anomaly measurement differs depending on datasets and evalu-

ation metrics. In other words, one type of anomaly measurement

doesn’t always give the best performance. We also give represen-

tative visualizations to support our claims in Figure 5. Therefore,

this subsection demonstrates the importance of considering vari-

ous types of anomaly measurements simultaneously to achieve the

best performance in anomaly detection — note that our proposed

method considers a broader set of anomaly measurements than any

other baseline methods (see Table 1).

5.2 Ablation study on Purification

We summarize the experimental results by changing the hyperpa-

rameter 𝜏 , which refers to the diffusion step of the forward SDE in

the purification process (cf. Section 3.5). We consider the scale of
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Table 6: Experimental results according to various anomaly measurement settings in the proposed method.

Anomaly measurement

SWaT SMAP MSL PSM SMD Avg. Rank

AUC F1PA AUC F1PA AUC F1PA AUC F1PA AUC F1PA AUC F1PA

𝐴𝑟𝑒𝑐𝑜𝑛 0.8130 0.9327 0.3643 0.9639 0.3335 0.7633 0.6074 0.9795 0.2609 0.8763 5.0 4.0

𝐴𝑝𝑟𝑜𝑏 0.7927 0.9651 0.3314 0.8461 0.3609 0.9215 0.6337 0.9660 0.3786 0.9298 3.4 3.2

𝐴𝑔𝑟𝑎𝑑 0.4358 0.9010 0.4075 0.9650 0.3511 0.8647 0.6351 0.9800 0.2505 0.8843 4.0 3.4

𝐴𝑟𝑒𝑐𝑜𝑛 ∗𝐴𝑝𝑟𝑜𝑏 0.8257 0.9336 0.3932 0.9665 0.3333 0.7450 0.6162 0.9724 0.2638 0.8679 4.2 4.8

𝐴𝑟𝑒𝑐𝑜𝑛 ∗𝐴𝑔𝑟𝑎𝑑 0.8123 0.9358 0.3642 0.9648 0.3360 0.7756 0.6093 0.9799 0.2544 0.8701 5.2 3.8

𝐴𝑝𝑟𝑜𝑏 ∗𝐴𝑔𝑟𝑎𝑑 0.7918 0.9510 0.3337 0.9022 0.3542 0.8979 0.6388 0.9660 0.3648 0.9169 3.4 3.8

𝐴𝑟𝑒𝑐𝑜𝑛 ∗𝐴𝑝𝑟𝑜𝑏 ∗𝐴𝑔𝑟𝑎𝑑 0.8273 0.9318 0.3945 0.9690 0.3412 0.7645 0.6181 0.9722 0.2640 0.8707 2.8 4.4

Table 7: Experimental results by changing 𝜏 , a hyperparameter for the diffusion step of the forward SDE in the purification

process.

𝜏
SWaT SMAP MSL PSM SMD Avg. Rank

AUC F1PA AUC F1PA AUC F1PA AUC F1PA AUC F1PA AUC F1PA

0.0 0.8040 0.9651 0.3377 0.9399 0.3441 0.8979 0.6388 0.9799 0.3786 0.9298 4.0 2.4

0.05 0.8145 0.9358 0.3945 0.9650 0.3476 0.8780 0.6092 0.9616 0.1954 0.8115 4.4 4.2

0.1 0.8217 0.9091 0.4075 0.9665 0.3487 0.9215 0.6033 0.9686 0.2609 0.8843 3.8 2.8

0.15 0.8175 0.9081 0.3904 0.9686 0.3609 0.8740 0.6076 0.9726 0.2638 0.8548 3.4 3.6

0.2 0.8232 0.8994 0.3730 0.9690 0.3542 0.8711 0.6226 0.9691 0.3362 0.8575 2.6 4.2

0.25 0.8273 0.9014 0.3711 0.9648 0.3495 0.8734 0.6304 0.9800 0.3210 0.8822 2.8 3.8

Table 8: Experimental results by changing a solver method

for the probability flow ODE.

Solver

MSL PSM

AUC F1PA AUC F1PA

RK45 0.3609 0.9215 0.6388 0.9800

RK23 0.3610 0.9075 0.6252 0.9804

DOP853 0.3598 0.9010 0.6256 0.9803

𝜏 in {0, 0.05, 0.1, 0.15, 0.2, 0.25}. Especially, 𝜏 = 0 means to perform

anomaly detection without purification. In this section, the reason

why the purification process is needed is confirmed. In Table 7,

conducting anomaly detection without the purification (i.e., 𝜏 = 0)

achieves reasonable results. However, for some datasets and eval-

uation metrics, the purification process (i.e., 𝜏 > 0) is helpful for

improving performance. In particular, the performance of SMAP

and MSL was significantly improved by using the purification strat-

egy. These meaningful results come from the effect of blurring and

purifying anomalies in the conditional data which makes a signifi-

cant difference between the observed and reconstructed (generated)

values (see Figure 2). In this regard, Table 7 shows the efficacy of

our purification process.

5.3 Ablation study on a solver method for the

probability flow ODE

By changing a solver method for the probability flow ODE in Sec-

tion 3.3, we observe the effect of the solver on the anomaly detection

task. We test a total of 3 solvers: explicit Runge-Kutta methods with

order 5(4) (RK45, default) [9, 26], order 3(2) (RK23) [4], and order

8 (DOP853) [12]. Table 8 shows the result of this ablation study

in MSL and PSM. In almost all cases, there are only negligible dif-

ferences in detection results among the three solvers. However,

RK23 and DOP853 often have a large drop in their performance,

compared to RK45. For example, for AUC in PSM, the results of

RK23 and DOP853 are quite lower than that of RK45. Therefore, we

choose RK45 as the main solver for the probability flow in other

experiments.

6 CONCLUSION

Time-series anomaly detection is a long-standing research topic in

the field of machine learning. In this work, we proposed MadSGM,

a novel framework based on SGMs for anomaly detection by design-

ing a conditional score network and its denoising score matching

loss. Especially, our method is distinguished from other existing

methods for anomaly detection in that i) it can employ the most

comprehensive set of anomaly measurements and ii) there exists

the purification process to eradicate potentially misleading (condi-

tional) inputs. The first strategy enables capturing diverse anomaly

patterns from time series data with complicated characteristics, and

the other helps enlarge the difference between the observed and

reconstructed observation and thereby, it becomes easier to detect

anomalies with our method even when the input has noises. Our

extensive experiments with five benchmark datasets and nine base-

lines successfully demonstrate that these two strategies make the

performance of anomaly detection improve severely, showing that

MadSGM provided outstanding performance compared to other

anomaly detection methods.
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