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ABSTRACT
Urban time series data forecasting featuring significant contribu-
tions to sustainable development is widely studied as an essen-
tial task of the smart city. However, with the dramatic and rapid
changes in the world environment, the assumption that data obey
Independent Identically Distribution is undermined by the subse-
quent changes in data distribution, known as concept drift, leading
to weak replicability and transferability of the model over unseen
data. To address the issue, previous approaches typically retrain
the model, forcing it to fit the most recent observed data. However,
retraining is problematic in that it leads to model lag, consumption
of resources, and model re-invalidation, causing the drift problem
to be not well solved in realistic scenarios. In this study, we propose
a new urban time series prediction model for the concept drift prob-
lem, which encodes the drift by considering the periodicity in the
data and makes on-the-fly adjustments to the model based on the
drift using a meta-dynamic network. Experiments on real-world
datasets show that our design significantly outperforms state-of-
the-art methods and can be well generalized to existing prediction
backbones by reducing their sensitivity to distribution changes.
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1 INTRODUCTION
Accurate and reliable forecasting of urban multivariate time se-
ries data, such as traffic speed, travel demand, and electricity con-
sumption, has been intensively studied as an essential task since
it contributes to reducing traffic congestion, energy waste, and
greenhouse gas emissions [13, 15, 17, 27, 39]. The advancement
of machine learning, particularly deep learning [24, 32], has facili-
tated both research and practical applications in this field. However,
the underlying assumption that these algorithms rest on - inde-
pendent and identical distributions (i.i.d.) - may not always hold
true in the fast-paced, dynamic urban environment teeming with
implicit event-induced uncertainty. As an illustrative example, con-
sider the changes in daily traffic speeds in Beijing as shown in
Fig. 1. The grayscale ribbon plot in Fig. 1(a) demonstrates that the
road speed decreases over Mid-2022, indicating changes in the road
speed distribution. The evolution of this distribution, as captured
week-by-week in the ridgeline plots of Fig. 1(b), shows the shift
from a concentration around 75 km/h to a broader distribution
around 10-75 km/h. The drift distribution imposes vulnerability
on models trained from earlier data as they are not expected to
generalize well to the new coming data, known as the Concept
Drift problem [34]. As a result, Fig. 1(c) highlights an increase in
the error of a pre-trained model over time, with error distribution
spreading from low to medium and high. These changes reflect the
realities of a city in flux, where social, economic, and environmental
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Figure 1: Illustration of traffic speed concept drift in Beijing
from May 8 to July 25, 2022. (a) Grayscale ribbon of road
speeds, with highlighted data for three sampled roads. (b)
The ridgeline plot exhibits weekly changes in the road speed
distribution. (c) The ridgeline plot exhibits weekly changes
in the error distribution of the predictive model, and the
subplot shows the trend of the daily error.

factors can drastically affect urban patterns, leading to concept drift.
It is considered a primary reason for the declining effectiveness
of intelligent information systems, as the change in data distribu-
tion weakens the induced correlation patterns between new and
past data [26]. Addressing this challenge can enhance the equity,
safety, and sustainability of cities and communities, assisting urban
decision-makers and stakeholders in using data-driven approaches
to tackle urban problems amidst continuous social changes.

Learning from changing data has attracted considerable research
interest. For non-stationary time series with concept drift, studies
are conducted to: (1) detect the occurrence of concept drift by error
rate-based [4, 9] or data distribution-based [3, 20] detectors; (2)
train a new model, fine-tune the current model, or ensemble the
new and existing model [7, 23, 40] to fit the latest data. However,
such incremental learning approaches can only adjust the model
to narrow the gap among the drifting distributions. Awaiting the
accumulation of new data inevitably leads to lagging. The latest
adaptedmodel could fail again if the drift continues. And evenmany
scenarios do not qualify for frequent retraining as periodic updates
are costly. Considering that urban models are often associated with
substantial economic benefits and sustainable social development,
this prompts us to explore an evolving approach beyond retraining
that can be proactively adjusted on-the-fly based on inputs.

Nevertheless, developing a self-configuring learner is non-trivial.
A crucial consideration is the computational efficiency. Address-
ing concept drift implies the necessity for the model to process

extensive historical data, providing a comprehensive understand-
ing of past data distribution to accurately perceive ongoing drifts.
However, the assimilation and retention of large volumes of his-
torical data impose a significant computational burden. The model
must therefore exhibit the capacity to manage historical data in an
intelligent manner, maintaining long-term historical data whilst
picking the most valuable information. Second, the navigation of
the stability-plasticity dilemma cannot be overlooked. An adaptive
model with essential levels of responsiveness to new trends must
achieve an equilibrium between maintaining prior learned knowl-
edge (stability) and accommodating new data patterns (plasticity).
This poses high requirements in deep learning models as the pa-
rameter space of the model can be extremely large. Searching this
space for the optimal configuration involves considerable degrees
of freedom and can be practically infeasible for large models.

To confront the identified challenges, we propose a novel drift
adaptation network designed around two key components: a dual
memory module and a strategically adjustable meta-dynamic net-
work. Firstly, our model incorporates a dual memory module to
enhance computational efficiency while handling extensive his-
torical information. This module consists of a Replay Memory for
time-efficient drift embedding and a Pattern Memory for preserv-
ing significant patterns over extended periods. Then a novel drift-
adaptive meta-dynamic network is utilized to generate adjustable
parameters for bridging the encoder and decoder, allowing the
model to respond to changing data patterns with minimal degrees
of freedom. Our approach is both simple and general, as it only
requires tracking a few parameters to model the drift and can be
highly compatible with any modern urban deep learning models
as a plug-and-play module for handling concept drift. Compared
to existing models, the new network improves prediction under
non-stationary time series in a robust and self-generating manner.
Our contribution is summarized in the following sections.

• We first propose to model the urban concept drift by finding
learnable components in non-stationarity, which facilitates
a more nuanced understanding of urban dynamics and intro-
duces new perspectives for prediction in such environments.

• We propose MemDA, an on-the-fly adaptation architecture
that implicitly perceives drift without retraining and dynam-
ically adjusts the corresponding model parameters.

• The proposed model is pluggable and backbone-agnostic.
Extensive experiments on four urban datasets demonstrate
the superior performance of our design1.

2 RELATEDWORK
2.1 Concept Drift and Model Adaptation
Time-varying patterns in the data render obsolete the knowledge
previously gained from old and static data, thereby reducing the
predictive capability of the model for new data [19, 26]. As the gap
between the latest and upcoming data distribution is more likely
narrow, the fresh training model can be utilized as a tool to address
the issue. There are three types of approaches based on trade-offs
for preserving historical information: the straightforward way is to
retrain a new model with the most recent data. An explicit sliding

1https://github.com/deepkashiwa20/Urban_Concept_Drift
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window drift detector is commonly employed to determine when
to retrain [4, 23]. Alternatively, in some cases, retaining and fine-
tuning the old model can save efforts in training the new model.
New base predictors can be added to existing collections of models,
or data-adaptive learning models be created. [40] designs multiple
predictors using a deep ensemble approach and trains a classifier
to predict which predictor to use. [44] proposes a weighted method
for reusing previous models, where each model is associated with
a metric that represents its reusability for the current observation.
[7] uses a segmentation algorithm to divide the time series and uses
a transfer learning approach to integrate knowledge under various
concepts. However, training-based approaches are just attempting
to catch up with the evolution of the concept. They can only build
models after drift and inevitably suffer from model aging.

Normalizing the input into a normalized distribution is also used
to deal with non-stationarity. RevIN[21] to remove and rebuild
the discrepancy in the mean and standard deviation of the input
sequences. The Non-stationary Transformer[25] mitigates the over-
stationarization problem by calculating the normalized attention.
Dish-TS[8] learns sample-level normalization parameters. However,
The normalization-based approaches simply attempt to align the
magnitudes of the samples, with a weak capacity for modeling
changes in data patterns and conditional probability distributions.

2.2 Urban Time Series Forecasting
Building time series models to forecast future traffic speed, taxi
demand, electricity consumption, crowd in/outflow, etc., are widely
studied as key technologies for smart city applications. [39] and [6]
employ an LSTM structure to connect hidden embeddings for urban
data forecasting. [22], [24], [1], and [43] use GRU for more efficient
modeling of traffic volume and speed. Meanwhile, convolution-
based modules, such as 1D CNN and TCN, are shown to be com-
petent with temporal data as well. [41], [28], [36], and [35] for pre-
dicting urban data demonstrate the efficiency and effectiveness of
such designs. Attention mechanisms in natural language processing
have also been adapted. [12, 38] design models with multiple inputs
based on the periodicity of the data (hours, days, or weeks) and
subsequently use attention to capture the dynamic temporal corre-
lation and assign greater weight to important moments. [45] and
[37] also propose similar attention modules for better global/long-
term temporal modeling. However, mainstream efforts in urban
data forecasting assume constant data patterns. The pre-trained
models are highly vulnerable to the drift in data.

Another line focuses on the prediction of urban data under events.
[30] predicts humanmovements during earthquakes using a Hidden
Markov Model. [15, 16] models the crowd dynamics during four
big events by mobility momentum; EAST-Net [33] enhances the
robustness of the deep model using heterogeneous information
networks and memory bank. However, prediction in the event case
is closer to emergency response, which is concerned with the effect
of the model on localized outliers, whereas the concept drift is
focused on persistent changes in the patterns underlying the data.

3 PRELIMINARIES
Concept Drift. Concept drift refers to the underlying distribution
of streaming data varies over time caused by changes in unobserved

hidden variables [26]. It will lead to model performance degrada-
tion as the statistical properties of the target domain do not match
the history. Formally, given a set of instances obtained at differ-
ent timesteps {(𝑥0, 𝑦0), ..., (𝑥𝑇 , 𝑦𝑇 )}, where 𝑥𝑡 is the feature and
𝑦𝑡 is the target, concept drift at timestamp 𝑡 can be described as
𝑝0:𝑡−1 (𝑥,𝑦) ≠ 𝑝𝑡 :𝑇 (𝑥,𝑦), where 𝑝 (·) denotes the joint probability
distribution. The source of concept drift can be decomposed into
two parts: changes in the marginal probability distribution 𝑝 (𝑥)
and changes in the conditional probability distribution 𝑝 (𝑦 |𝑥).
Adaptive Forecasting. Given a specified granularity of urban
time series data, the tensor 𝑥𝑡 ∈ R𝑁×𝐶 can be represented as the
observation at timestamp 𝑡 , where 𝑁 denotes the number of urban
sensors (or regions) and C denotes the feature channel (e.g., traffic
speed, crowd). Then given the historical observations {𝑥𝑖 |𝑖 ∈ [0, 𝑡]},
building adaptive model for the future 𝛼 steps of urban data 𝑌𝑡 =
{𝑥𝑖 |𝑖 ∈ [𝑡 + 1, 𝑡 + 𝛼]} is to obtain such parameters 𝜃𝑡 that can
minimize the objective function L(·) as follows:

𝜃𝑡 = arg𝑚𝑖𝑛
𝜃𝑡

L(𝑌𝑡 , {𝑥𝑖 |𝑖 ∈ [𝑡 + 1, 𝑡 + 𝛼]}) . (1)

where 𝑥𝑖 are drawn from a time-varying distribution. 𝜃𝑡 is learned
from the training data and will be continuously adapted to test data.

Table 1: Notations

Symbol Description
𝑥𝑡 Urban data observation tensor at timestamp 𝑡
𝑁 ,𝐶 Dimension of 𝑥𝑡
𝑇 Total number of training samples
𝑝 (𝑥,𝑦) Joint probability distribution of variables 𝑥 and 𝑦
𝛼 Prediction leading time
X𝑡 Observations of urban data over time [𝑡 − 𝛼, 𝑡]
X𝑡 A collection of observations constructed by periodicity
𝑝 Data sampling volume in one day
𝑘 the k-th look-back day for drift embedding
𝑃𝑘 Look-back timestamp for drift embedding, 𝑃𝑘 = 𝑝 × 𝑘
𝐾 Total look-back days
F Neural network functions
Z𝑡 Embedding result of X𝑡 by Encoder
𝐶𝑒 Dimension of embedding generated by encoder
E𝑡 Embedding result of X𝑡 by Encoder and Replay Memory
M Pattern Memory
𝐿, 𝐷 Dimension of Pattern Memory
V𝑡 The query result of E𝑡 returned by Pattern Memory
𝐻𝑡 Drift Embedding result of X𝑡 by Dual-Memory
𝑊𝑡 Drift adaptation parameters
𝑁𝑠 Dimension of similarity generated by NTN
𝐼 (𝑋 ;𝑌 ) Mutual information between variables 𝑋 and 𝑌

4 METHODOLOGY
4.1 Rationale
Although the distribution of urban data may change due to a variety
of factors, the inherent periodicity of urban dynamics follows a
consistent temporal regularity[11]. This persistent feature enables
the model to maintain its predictive capabilities, as the accumula-
tion and integration of fresh patterns facilitate adaptive learning
even when distribution undergoes significant transformations. It
serves as an anchor for our model, guiding the model toward the
interpretation and management of concept drift. Moreover, we ac-
knowledge the sustained features to be encoded in the pre- and
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Figure 2: The framework of the memory-based drift adaptation model.

post-drift data retain significant commonalities. These sustained
features can be efficiently captured by the stable component of the
model, which means modifications to some key model parameters
should be prioritized instead of updating all parameters. This strat-
egy strikes a balance between stability and plasticity, ensuring the
resilience of the model to varying data patterns and distributions.

Motivated by these, we design aMemory-basedDriftAdaptation
(MemDA) network illustrated in Fig. 2, where we first propose to
use a Dual-Memory to encode periodicity implied in the long se-
quential inputs to counteract the drift, and later use meta dynamic
networks to generate adaptation parameters governing the integra-
tion of input information. The notations are listed in Table 1.

4.2 Dual-Memory for Drift Embedding
Periodic inputs are essential for coping with urban data dynamics,
while long sequential inputs are the informational foundation for
perception to drift. Therefore, as shown in Fig. 3(a), we accordingly
construct Drift-Aware Inputs X𝑡 along the time axis. Assuming
that the data are sampled at a frequency of 𝑝 per day, the inputs
are constructed by fetching up to 𝐾 days of data as follows:

X𝑡 = {X𝑡 } ∪ {X𝑡−𝑃𝑘 ,X𝑡+𝛼−𝑃𝑘 |𝑘 ∈ [1, 𝐾]},

where 𝑃𝑘 = 𝑝 × 𝑘 and X𝑡 , X𝑡−𝑃𝑘 , X𝑡+𝛼−𝑃𝑘 are:

X𝑡 = {𝑥𝑡−𝛼 , 𝑥𝑡−𝛼+1, ..., 𝑥𝑡 },
X𝑡−𝑃𝑘 = {𝑥𝑡−𝛼−𝑃𝑘 , 𝑥𝑡−𝛼+1−𝑃𝑘 , ..., 𝑥𝑡−𝑃𝑘 },

X𝑡+𝛼−𝑃𝑘 = {𝑥𝑡+1−𝑃𝑘 , 𝑥𝑡+2−𝑃𝑘 , ..., 𝑥𝑡+𝛼−𝑃𝑘 }. (2)

The segment X𝑡 consists of the closest 𝛼 observations up to time
𝑡 . The segments X𝑡−𝑃𝑘 and X𝑡+𝛼−𝑃𝑘 consist of the same number
of observations as X𝑡 but from before and after the same clock
𝑡 prior to 𝑘 days. Here, 𝑃𝑘 represents the time gap between the
backtrack and the present. Thus, X𝑡 contains 2𝐾 + 1 segments and
each segment has 𝛼 observations.

However, for such plain long time series (i.e., (2𝐾 + 1) ×𝛼 steps),
traditional approaches [12, 14, 42] that utilize multi-branch to en-
code the sequence will be no longer applicable as the computational
complexity exponentially increases as the input grows. Therefore,

(b)

(a)

𝑋𝑋 𝑋𝑋 𝑋 𝑌

…

…
Encoder

Adaptor
𝑹𝒆𝒑𝒍𝒂𝒚
𝑴𝒆𝒎𝒐𝒓𝒚

𝑍𝑍𝑍𝑍𝑍

…

En/De-coder

𝑝 𝛼

Figure 3: Design of model inputs switches from Plain Blocks
(a) to Replay Memory enhanced (b) inputs.

we propose to use aReplayMemory (RM) for efficient drift embed-
ding. RM is essentially a queue that stores all the hidden embedding
of X𝑡 computed by the encoder, forming Z ∈ R𝑇×𝑁×𝐶𝑒 , where 𝑇
is the number of training samples and 𝐶𝑒 is the output dimension
of the encoder. During training, the RM fetches the embeddings
Z𝑡−𝑃𝑘 and Z𝑡+𝛼−𝑃𝑘 of the past segments X𝑡−𝑃𝑘 and X𝑡+𝛼−𝑃𝑘 to
avoid duplicate computing. Without loss of generality, we use F𝑒
to denote the encoder network with parameter 𝜃𝑒 . As shown in Fig.
3(b), the embedding result E𝑡 for Drift-Aware InputsX𝑡 is converted
to the X𝑡 encoding and RM replaying as:

E𝑡 = {F𝑒 (X𝑡 , 𝜃𝑒 )}︸         ︷︷         ︸
Encoding

∪ {Z𝑡−𝑃𝑘 , Z𝑡+𝛼−𝑃𝑘 |𝑘 ∈ [1, 𝐾]}︸                               ︷︷                               ︸
Replaying

. (3)

The embedding of X𝑡 is subsequently updated to RM by Z𝑡 =

F𝑒 (X𝑡 , 𝜃𝑒 ). Note that replayed memories are collected from the
previous epoch while Z𝑡 is obtained at the current epoch (i.e., one
epoch lag) when training. However, as the epoch proceeds, they
will gradually converge to the same embedding space.

While periodic long inputs ensure the possibility of tracking data
drift, the model cannot extend segments indefinitely, and distribu-
tion information may not be limited to periodicity. Therefore, we
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further augment the drift embedding 𝐸𝑡 with a Pattern Memory
(PM). The PM explicitly records the prototype of normal patterns
during training and serves to perceive out-of-distribution during
inference. Specifically, the Pattern Memory𝑀 ∈ R𝐿×𝐷 is a param-
eter matrix with 𝐿 real-valued 𝐷 dimensional prototypes. For the
𝑖-th embedding in E𝑡 , 𝑀 is queried to find similar prototypes by
attention. Formally, we have:

𝑄𝑖 = 𝐸
𝑖
𝑡W𝑄 + 𝑏𝑄

𝜑 𝑗 =
𝑒𝑄𝑖∗𝑀𝑗∑𝐿
𝑗=1 𝑒

𝑄𝑖∗𝑀𝑗

V 𝑖𝑡 = (
𝐿∑︁
𝑗=1

𝜑 𝑗 ·𝑀𝑗 )W𝑉 + 𝑏𝑉 ,

(4)

where 𝜑 𝑗 is the attention score corresponding to 𝑗-th prototype;
WQ , 𝑏𝑄 , WV , 𝑏𝑉 are linear transformation parameters; V 𝑖𝑡 denotes
the query result of E𝑖𝑡 .

Then, E𝑡 and V𝑡 are concatenated to form the final drift embed-
ding H𝑡 = [E𝑡 ,V𝑡 ], which encodes the changes in data distribution
and implies the essential information for prediction. In general, the
weighted fusion of embedding can integrate all the information and
can be fed to the decoder for future predictions. One mainstream
approach [1, 38, 42] is to use the trainable parameter to estimate
the influence weights of each segment as:

𝑌𝑡 = F𝑝𝑟𝑜 𝑗 . (
4𝐾+2∑︁
𝑖=1

𝑊 𝑖 ⊙ H𝑖𝑡 ) (5)

where ⊙ is Hadamard product;𝑊 ∈ R4𝐾+2 are learnable parameters,
and F𝑝𝑟𝑜 𝑗 . projects the result to the prediction. Next, we introduce a
dynamic network to make the key parameters𝑊 self-configurable.

4.3 Meta-Dynamic for Drift Adaptation
We characterize model adaptation in terms of Information Bottle-
necks (IB). The IB problemwas introduced in [31] as an information-
theoretic framework for learning. It considers quantifying the amount
of information of hidden representation 𝐻 extracted from the ob-
servation 𝑋 contains about another relevant target signal 𝑌 by
using Mutual Information (MI). The goal is to find a 𝐻 that mini-
mizes the mutual information 𝐼 (𝑋 ;𝐻 ) while keeping 𝐼 (𝐻 ;𝑌 ) above
the threshold. IB theory suggests that deep neural networks con-
struct Markov chains of the hidden layer representations about
the input 𝑋 , and DNNs trained using SGD are essentially solving
the compression-prediction trade-off problem [10], which means
deeper layers correspond to smaller 𝐼 (𝑋 ;𝐻 ) but larger 𝐼 (𝐻 ;𝑌 ).

When it comes to the concept drift problem, in the encoder-
decoder network, the encoder essentially acts as an information
bottleneck that filters the noise from the data and forces the network
to extract the typical patterns of high-dimensional data, of which
outputs are then transmitted to the decoder. This makes 𝐼 (𝑋 ;𝐻 )
and 𝐼 (𝐻 ;𝑌 ) a function of the en/decoder parameters. When drift
occurs, the encoder is more resistant to drift as it is more focused
on information compression. This leads us to fix the encoder pa-
rameters 𝜃𝑒 to reduce the degrees of freedom while preserving the
ability to extract features over different target domains. For the

adaptor, since we want to boost the MI between the hidden em-
bedding H𝑡 and 𝑌𝑡 , the fusion parameter𝑊 should be actively and
dynamically adjusted to different magnitudes under different con-
cepts, i.e., varying with time 𝑡 . For example, the weight of historical
information is evenly distributed when the data is stable, while the
influence of history is reduced when the data is out of distribution.
To generate the appropriate𝑊𝑡 , it is necessary to decide how much
each segment embedding contributes to the future, which means it
should be proportional to the MI of H𝑡 and 𝑌𝑡 , i.e.,

𝑊𝑡 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐼 (H1
𝑡 ;𝑌𝑡 ), ..., 𝐼 (H4𝐾+2

𝑡 ;𝑌𝑡 ))
= 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (E𝑌𝑡 {𝐷𝐾𝐿 (𝑝 (H

1
𝑡 )∥𝑝 (H1

𝑡 |𝑌𝑡 )), ...,

𝐷𝐾𝐿 (𝑝 (H4𝐾+2
𝑡 )∥𝑝 (H4𝐾+2

𝑡 |𝑌𝑡 ))}).

(6)

However, since the computation of MI requires knowledge of the
joint and marginal distributions of two random variables, the distri-
butions that can be depicted for high-dimensional urban datasets
are stretched compared to the true continuous distribution, espe-
cially when the joint distribution changes in drift scenarios. This
makes it tough to compute MI directly. Nevertheless, it is possible
to approximate the MI between high-dimensional variables using a
neural network with gradient descent optimization[2]. Therefore,
we propose to use a meta-dynamic network to approximate the
contribution of each segment by dynamically generating the corre-
sponding𝑊 𝑖

𝑡 conditional on the input. Specifically, to perceive the
drift, we construct three lists of temporal alignment tuples,

𝑃𝑎𝑖𝑟𝑥 = {(Z𝑡 , Z𝑡−𝑃1 )} ∪ {(Z𝑡−𝑃𝑘 , Z𝑡−𝑃𝑘+1 )},
𝑃𝑎𝑖𝑟𝑦 = {(Z𝑡+𝛼−𝑃𝑘 , Z𝑡+𝛼−𝑃𝑘+1 )},
𝑃𝑎𝑖𝑟𝑥𝑦 = {([Z𝑡−𝑃𝑘 , Z𝑡+𝛼−𝑃𝑘 ], [Z𝑡−𝑃𝑘+1 , Z𝑡+𝛼−𝑃𝑘+1 ])}.

(7)

The constructed embedding pairs are used to measure the evolu-
tion of the distribution over the marginal probability 𝑝 (𝑥) and the
conditional probability 𝑝 (𝑦 |𝑥). Each pair serves as an anchor to
facilitate determining the contribution of each segment embedding
to the prediction. Each (Z𝑖 , Z𝑗 ) ∈ 𝑃𝑎𝑖𝑟 is fed into a Neural Tensor
Network (NTN) [29] to model the relation:

𝑠𝑖𝑚𝑘 = 𝜎 (Z𝑇𝑖 𝑊𝑆Z𝑗 +𝑉 [Z𝑖 , Z𝑗 ]𝑇 + 𝑏𝑆 ),
𝑊𝑡 = F𝑚𝑒𝑡𝑎 ( [𝑠𝑖𝑚1, 𝑠𝑖𝑚2, ...]),

(8)

where𝑊𝑆 ∈ R𝐶𝑒×𝐶𝑒×𝑁𝑠 , 𝑉 ∈ R𝑁𝑠×2𝐶𝑒 , and 𝑏𝑆 ∈ R𝑁𝑠 are weight
tensor. 𝑁𝑠 is a hyperparameter that controls the drift scores gen-
erated by the model for each pair from different perspectives. 𝜎
is an activation function. F𝑚𝑒𝑡𝑎 denotes a meta layer that can be
implemented in various ways, which generates fusion parameters
based on the similarity matrix to adjust to the drift on-the-fly. The
generated𝑊𝑡 are loaded into the fusion layer replacing the static𝑊
in Eq. 5, and a multilayer CNN is employed as a decoder to project
the result to the prediction. The groundtruth values are taken to
calculate the loss with prediction to optimize the model.

4.4 Training Details
During the training phase, we train the model by random sampling
batch, and the RM is updated between epochs. During the testing
phase, we feed the samples into the model in chronological order,
and the RM is updated sequentially. Note that in the training phase,
we maintain a full number of embeddings in RM as many as 𝑇 ,
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while in the testing phase and online environment, we only retain
the most recent 𝑝 × 𝐾 embeddings to prevent unlimited growth.
The PM is updated as the gradient descends and is fixed in the test.

5 EXPERIMENTS

Table 2: Summary of Experimental Datasets

Dataset Period #𝑁 Temporal Drift
PeMS 2020/01/01∼2020/07/31 325 5 minutes Sudden
Beijing 2022/05/12∼2022/07/25 3126 5 minutes Sudden
Electricity 2012/01/01∼2012/06/30 370 1 hour Incremental
COVID-CHI 2019/07/01∼2020/12/31 112 2 hour Incremental

5.1 Datasets
We collected data from four cities covering different data sources
and concept drift types, which are presented in Table 2. The PeMS
and Beijing datasets are collected from the traffic speeds of major
roads in California and Beijing. The Electricity dataset contains the
electricity consumption. And the COVID-CHI [33] dataset is the
demand for shared bicycles collected from Chicago. To better under-
stand how the data distribution has changed, we show sampled data
in Fig. 4, where each dataset exhibits different types of concept drift.
These drifts are caused by known events (i.e., COVID, Seasonality)
and result in significant variations in the data distribution.

PeMS

Beijing

Electricity

COVID‐CHI

Figure 4: Two nodes from each of the four datasets are drawn
for time series plots. The black vertical lines indicate the
cut-off positions of the training and testing datasets.

5.2 Settings
We annotate the time of events causing drift on each dataset. Based
on this we divide the data before the drift into the training set and

the rest as the test set, and further selected 20% of the training set as
the validation set. The cut-off positions for training and testing are
shown in Fig. 4. As for the model, the predicted leading time 𝛼 is set
to 12. The hyperparameters are chosen based on the performance
of the validation set. The look-back days 𝐾 for drift embedding is
set to 2, with the encoding dimension 𝐶𝑒 being 256, the number
of prototypes 𝐿 of Pattern Memory being 20, and the dimension 𝐷
being 32. The GW-Net [36] is chosen as the encoder backbone for
the model as its proven superior performance [18]. We set the 𝑁𝑠 in
the drift adaptation module as 5, and the meta-layer is implemented
by a linear layer. As for the training,MAE is chosen to be optimized
using Adam, with a batch size set to 64 and a learning rate of 0.001.
The best model is selected by early stop with a maximum of 200
epochs. The experiments were performed on a GPU server with four
GeForce RTX 3090 graphic cards. Root Mean Square Error (RMSE),
Mean Absolute Error (MAE), and Mean Absolute Percentage Error
(MAPE) are selected to evaluate the results.

5.3 Baselines
5.3.1 Non-adaptiveModels. We implemented state-of-the-artmeth-
ods on urban data prediction for comparison, including:

• CopyLastDay (CLD): Observations from the same moment
of the previous day are used as predicted values.

• ARIMA: AutoRegressive Integrated Moving Average is a
widely used statistical model for time series prediction by
identifying patterns in data.

• AGCRN [1]: A node parameter learning and graph gener-
ation model for traffic forecasting tasks. It automatically
captures the spatial and temporal correlation of covariates
in time series data by adaptive modules.

• DCRNN [24]: Amodel for modeling multivariate time-series
prediction tasks using bidimensional graph diffusion and
recurrent neural networks.

• MTGNN [35]: An advanced multivariate time-series pre-
diction model using active graph learning and multi-kernel
TCN modules.

• STGCN [41]: A spatio-temporal network that combines
graph convolution with 1D convolution.

• ASTGCN [12]: A novel attention-based spatial-temporal
graph convolution model. It features three temporally sepa-
rate components to model periodic dependencies.

• GMAN [45]: A model using multi-attentive networks with
gated fusion to fit nonlinear temporal correlations and adap-
tively fuse information.

• StemGNN [5]: A predictive model for modeling the spatial
and temporal dependence of multivariate time series in the
spectral domain.

• GW-Net [36]: A state-of-the-artmultivariatemodelingmodel
using parametric graph inputs and a WaveNet-like temporal
dilated structure.

• STTN [37]: Amodel inwhich various relationships related to
different factors in covariates are modeled jointly by spatial
and temporal transformers.

• EAST-Net [33]: A novel model for modeling event-induced
non-stationary prediction problems in multimodal data via
heterogeneous mobility information networks.
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Table 3: Performance Comparisons with state-of-the-art Urban Time Series Prediction Models

Model PeMS Beijing Electricity COVID-CHI
RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

CLD 4.022 1.784 3.140% 11.028 5.225 15.029% 81.325 41.088 15.422% 15.879 6.789 86.680%
ARIMA 3.135 1.215 2.301% 9.184 4.640 16.400% 94.334 64.808 18.222% 16.721 6.903 80.334%
AGCRN 2.572 1.191 2.094% 8.715 4.238 14.376% 95.242 50.422 15.451% 16.279 7.087 85.224%
DCRNN 2.500 1.158 2.030% 8.280 3.811 13.838% 125.335 125.335 25.754% 17.453 7.175 87.617%
MTGNN 2.426 1.148 2.007% 10.976 5.120 19.928% 96.475 51.562 15.410% 18.721 7.434 89.097%
STGCN 2.556 1.212 2.114% 10.284 5.000 15.284% 132.209 72.802 22.580% 22.462 8.687 85.064%
ASTGCN 2.402 1.157 2.078% 9.156 4.250 17.130% 74.074 39.388 13.584% 15.242 6.830 77.223%
GMAN 2.849 1.298 2.308% 11.555 6.448 21.941% 138.436 81.285 26.263% 22.462 8.687 85.064%

StemGNN 2.414 1.144 2.030% 8.575 4.294 15.605% 103.375 56.803 19.366% 17.231 7.132 85.32%
GW-Net 2.385 1.125 1.976% 7.754 3.564 11.916% 97.087 51.684 16.120% 16.210 6.857 80.038%
STTN 2.441 1.168 2.040% 9.886 4.748 17.150% 93.125 50.671 15.776% 14.853 6.934 79.155%

EAST-Net 2.399 1.118 1.988% 11.671 5.970 21.119% 100.789 55.158 18.714% 17.543 7.832 82.321%
MemDA 2.297 1.053 1.861% 6.720 3.192 9.913% 67.413 34.814 12.186% 14.003 6.115 72.088%

Δ% 3.70% 5.82% 5.78% 13.34% 10.43% 16.81% 8.99% 11.61% 10.29% 5.73% 9.93% 9.93%

Table 4: Performance Comparisons with state-of-the-art Adaptive Models

Model PeMS Beijing Electricity COVID-CHI
RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

Backbone 2.385 1.125 1.976% 7.754 3.564 11.916% 97.087 51.684 16.120% 16.210 6.857 80.038%
RevIN 2.541 1.129 1.956% 8.116 3.707 11.200% 85.352 45.434 15.847% 15.472 6.789 80.049%
Δ% No Improvement No Improvement 12.1% 12.1% 1.7% 4.6% 1.0% -

Dish-TS 2.519 1.144 1.973% 7.738 3.586 10.499% 73.509 41.465 13.726% 14.807 6.435 74.182%
Δ% No Improvement No Improvement 24.3% 19.8% 14.8% 14.8% 12.7% 14.0%

MemDA 2.297 1.053 1.861% 6.720 3.192 9.913% 67.413 34.814 12.186% 14.003 6.115 72.088%
Δ% 3.7% 6.4% 5.8% 13.3% 10.4% 16.8% 30.6% 32.6% 24.4% 19.4% 17.1% 16.4%

Table 5: Variants Performance Evaluation

Variant PeMS Beijing Electricity COVID-CHI
RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

Backbone 2.385 1.125 1.976% 7.754 3.564 11.916% 97.087 51.684 16.120% 16.210 6.857 80.038%
RM 2.359 1.114 1.975% 7.747 3.607 12.422% 69.945 36.093 12.411% 17.578 7.362 84.249%

RM+PM 2.319 1.060 1.856% 8.748 4.048 14.627% 71.184 36.652 12.875% 14.470 6.296 74.447%
MemDA 2.297 1.053 1.861% 6.720 3.192 9.913% 67.413 34.814 12.186% 14.003 6.115 72.088%

5.3.2 Adaptive Models. The latest advanced adaptive models for
non-stationary time series are also chosen to compare the effect on
the concept drift problem, including:

• RevIN [21]: An instance normalization method for against
distribution shift that suppresses non-stationary information
in one input layer and restores it in the output layer.

• Dish-TS [8]: An advanced version of RevIN, which designs
a coefficient net that maps input sequences into learnable
distribution to relieve distribution change.

For a fair comparison, we select adaptive models that can also
function pluggable for comparison. The Backbone model is chosen
as GW-Net based on its optimal performance on the four datasets.

5.4 Performance Evaluation
5.4.1 Overall Performance Comparison. Table 3 shows the results
of MemDA and baselines under three evaluation metrics. The pro-
posed MemDA consistently outperforms the best baseline model
on all four datasets, achieving a reduction inMAE of approximately

6% to 12%. These results demonstrate the effectiveness of the adap-
tive model under drift scenarios. Furthermore, we observed that
the model performance on test data varied. Among the two speed
datasets, the Beijing dataset presented a greater challenge due to
the impact of lifting lockdowns, which caused traffic speeds to
drift from uniformly smooth to fluctuating. The proposed model
exhibited a greater advantage over the baselines when dealing with
such new patterns, resulting in an average improvement of 13% for
the three evaluation metrics. The PeMS dataset, on the other hand,
drifted from congested to uncongested, which can be interpreted
as an oversampling from the original distribution. Therefore, the
concept drift problem may not cause significant issues, but our ap-
proach still achieved a 6% improvement in the MAE metric. For the
Electricity datasets, ASTGCN, which also utilized periodically con-
structed inputs, achieved the best results among the baselinemodels.
However, our proposed framework still achieves an additional 11%
improvement, demonstrating the potential of self-configuration
capabilities in fully exploiting long-term historical information. Fi-
nally, all baseline models showed poor results on the COVID-CHI
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dataset, failing to match the simplest rule-based model CopyLast-
Day in terms of MAE. Nevertheless, MemDA still stands out and
shows strong robustness in the drift.

Table 4 shows the results of MemDA and SOTA adaptive models.
The experimental results presented clearly demonstrate that our
proposed MemDA model outperforms the other existing adaptive
models. Moving onto the analysis of these results, RevIN and Dish-
TS dynamically normalize the input data during neural network
computation, which can only alleviate issues caused by changes in
the marginal probability distribution 𝑝 (𝑥). However, they overlook
changes in the conditional probability distribution, which makes
them disadvantaged in comparison. In addition, the Beijing and
PeMS datasets exhibit significant variations in data scale (refer
to Fig. 4). Both RevIN and Dish-TS fail to show improvement in
these scenarios, indicating a potential inability to handle drastic
distribution drift effectively. In contrast, MemDA shows improved
performance, demonstrating its robust prediction logic that can be
particularly effective for prediction in challenging environments
characterized by substantial concept drift.

Timestamp

𝑊

(c) MemDA

(b) Plain Meta

(a) Linear

Figure 5: Visualization of the variation of the adaptation
parameter𝑊𝑡 on PeMS dataset.Where (a) is from the RM+PM,
(b) is from the Meta, and (c) is from the proposed model.

5.4.2 Ablation Test. A series of variant experiments are conducted
to verify the effectiveness of each module. The variant with only the
original encoder network (GW-Net) is referred to as the Backbone,
to which we add RM and PM modules. The Meta variant removes
the meta-dynamic layer and directly generates𝑊𝑡 through a lin-
ear network connected to 𝐸𝑡 . Results are shown in Table 5, where
we can observe that (1) Simply augmenting the long-term input
via memory modules does not always improve performance, with
negative effects for Beijing and COVID-CHI datasets. (2) Simply
generating𝑊𝑡 through the embedding of input, as is done in the
Meta variant, does not lead to satisfactory results. In contrast, the
MemDA evaluates drift by embedding pairs and generates𝑊𝑡 ac-
cordingly, demonstrating a proven adaptation capability and the
effectiveness of the meta-dynamic layer.

To interpret how MemDA copes with drift, we visualize the fu-
sion parameter𝑊𝑡 in Fig. 5. Specifically, we show the solidified𝑊
(the variant of RM+PM) in (a),𝑊𝑡 generated by the Simple Meta
module (the variant of RM+PM+Meta) in (b), and𝑊𝑡 of MemDA in
(c). The visualization results demonstrate that the MemDA module
enables the adaptation model to be aware of changes in data distri-
bution and to make proactive adjustments to the model parameters
in response to different concepts at different times. In contrast, the
solidified model can only maintain the prediction logic that fits the
training set, and the Simple Meta variant, although making some
adjustments in response to different concepts, demonstrates a weak
adaptation capability that cannot effectively track drift.

(a) (b)

(c) (d)

Figure 6: Sensitivity Analysis

5.4.3 Sensitivity Analysis. We experimented the effects of Pattern
Memory size 𝐿 and dimension 𝐷 of MemDA on the PeMS dataset.
The results are presented in Fig. 6(a,b). The model achieves opti-
mal performance with a memory size of 32. This optimal point
represents a balance between storing enough prototype patterns
to accurately detect out-of-distribution instances and the ability to
generalize by discarding noise. Similarly, optimal performance can
also only be achieved with a suitable memory dimension.

We further tested the effect of look-back days 𝐾 . As a compari-
son, we constructed a Plain model, in which naive uses multiple
branches with a linear fusion layer to process the input segments
from different days (same as Fig. 3 (a)). The results are shown in
Fig. 6(c). MemDA demonstrates a continuous improvement of the
effect with increasing look-back days, while the Plain model fluctu-
ates and does not show significant trends. This demonstrates that
dealing with concept drift is not a simple matter of adding inputs.
And even sometimes the increase in look-back days isn’t beneficial
(Plain model 1 to 2). As the distribution of data changes over time, a
model that heavily relies on past data could be misled by outdated
information that no longer applies to the current. This is a risk
when increasing input without an adaptive mechanism.

A comparison of the running speed of the Plain and MemDA is
shown in Fig. 6(d). It demonstrates that the computational pressure
of the Plain model shows an exponential increase as the number
of backtracking days increases, and it takes more than 10 times
more time to look back at a week. While MemDA enhanced by
Replay Memory presents an efficient ability of slow linear increase
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Figure 7: Case Study. (a) Average speed change of Beijing test set. (b) The daily error of Backbone and MemDA model. (c,d)
Density error gray ribbon of Backbone/MemDA. (e,f) The model prediction results of two roads at different time periods in the
test set.

in computation time, which is crucial for enhancing model effects
in many real-time scenarios.

5.5 Generalizability Evaluation
The properties of MemDA enable it to be easily integrated with
existing urban data forecasting models. We utilize the backbone of
three widely used models, MTGNN, GMAN, and GW-Net as the
encoder to test the encoder-agnostic performance of the proposed
model. The results are presented in Table 6, which demonstrates the
generalizability and applicability of MemDA across various models.

Table 6: Encoder-agnostic Performance Evaluation

Backbone Beijing Electricity
RMSE MAE MAPE RMSE MAE MAPE

MTGNN 10.976 5.120 19.928% 96.475 51.562 15.410%
+MemDA 9.411 4.379 16.923% 69.381 35.416 11.517%
Δ% 14.26% 14.48% 15.08% 28.08% 31.31% 25.26%
GMAN 11.555 6.448 21.941% 138.436 81.285 26.263%
+MemDA 10.005 6.011 19.041% 91.030 49.400 15.072%
Δ% 13.41% 6.78% 13.22% 34.24% 39.23% 42.61%
GW-Net 7.754 3.564 11.916% 97.087 51.684 16.120%
+MemDA 6.720 3.192 9.913% 67.413 34.814 12.186%
Δ% 13.37% 10.43% 16.81% 30.56% 32.64% 24.40%

6 CASE STUDY
We do case studies from both macro and micro perspectives. Fig.
7 (a,b,c,d) shows the city-wide average speed of the Beijing test
dataset, the daily error time series of the Backbone (GW-Net) and
MemDA model, the daily error density gray ribbon distribution of
the Backbone and MemDAmodel, respectively. As the average road
speed in Beijing dwindles, traffic conditions progressively worsen.
This downturn significantly disrupts the predictability of traffic
patterns, triggering a substantial decline in the performance of the

Backbone model. This is reflected in the model’s increasing mean
prediction error, with a considerable spread ranging from low to
high errors. In stark contrast, the incorporation of MemDA into the
Backbone manages to keep the error distribution tightly controlled
and centered on the lower values.

A microscopic analysis of the performance was focused on two
representative sample roads selected from the initial, intermediate,
and final phases of the test set. The zoomed-in views are shown
in Fig. 7(e,f). As can be seen, both roads with different speed pat-
terns undergo significant pattern shifts over time (marked with
yellow boxes), and the Backbone model just barely works near
the training periods. However, as the concept drifts, Backbone’s
predictions stray further from the actual values. In essence, the
Backbone model appears to be memorizing speed patterns rather
than predicting them. The introduction of MemDA to it, however,
imparts a remarkable transformation to the Backbone, enabling it to
track the changes in data patterns and always maintain robustness
after drift.

7 CONCLUSION
In this study, we target the problem of concept drift in urban time
series data prediction. A general adaptive urban model leverages a
dual-memory module, and a meta-dynamic network is designed to
enable self-configuration. Extensive experiments demonstrate the
effectiveness of the proposed framework. In the future, we aim to
explore online approaches for constructing robust models as well
as additional strategies for addressing spatial drift.
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