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ABSTRACT
In recent years, self-supervised learning has emerged as a promis-
ing approach in addressing the issues of label dependency and
poor generalization performance in traditional GNNs. However,
existing self-supervised methods have limited effectiveness on het-
erophilic graphs, due to the homophily assumption that results in
similar node representations for connected nodes. In this work, we
propose a multi-view contrastive learning model for heterophilic
graphs, namely, MUSE. Specifically, we construct two views to
capture the information of the ego node and its neighborhood
by GNNs enhanced with contrastive learning, respectively. Then
we integrate the information from these two views to fuse the
node representations. Fusion contrast is utilized to enhance the
effectiveness of fused node representations. Further, considering
that the influence of neighboring contextual information on in-
formation fusion may vary across different ego nodes, we employ
an information fusion controller to model the diversity of node-
neighborhood similarity at both the local and global levels. Finally,
an alternating training scheme is adopted to ensure that unsuper-
vised node representation learning and information fusion con-
troller can mutually reinforce each other. We conduct extensive
experiments to evaluate the performance of MUSE on 9 benchmark
datasets. Our results show the effectiveness of MUSE on both node
classification and clustering tasks. We provide our data and codes
at https://anonymous.4open.science/r/MUSE-BD4B.
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1 INTRODUCTION
Graph neural networks (GNNs) [8, 15, 33, 37] have shown remark-
able success in learning representations of graph-structured data. By
iteratively aggregating information from a node’s neighbors, GNNs
map high-dimensional node representations into low-dimensional
ones while preserving the useful information in the graph, which
can be further applied to a variety of downstream tasks, such as
node classification [8, 15, 39] and node clustering [35, 43].

Traditional GNNs mainly adopt a semi-supervised approach,
which still depends on labeled data and poses several problems, like
label sparsity and poor transferring capacity [2, 28]. Recent works
have shown that combining self-supervised learning with GNNs
can improve the robustness and generalization ability of the model
[12, 24, 25, 34], since graph self-supervised learning can capture
the underlying semantic and structure of the graph in an unsuper-
vised manner. However, existing graph self-supervised methods
are mainly based on the homophily assumption, leading to similar
node representations between ego node and its neighboring nodes.
In real-life scenarios, the assumption of homophily often does not
hold, and the performance of these methods will significantly dete-
riorate. We conduct similarity analysis between the ego nodes and
their neighborhoods on six heterophilic graphs, as shown in Figure
1. Evidently, there are a large number of extreme values at a low
similarity level in each graph. This suggests that numerous nodes
are dissimilar to their neighborhoods in real-world graphs.

Recently, most existing unsupervised learningmethods [5, 31, 38]
on heterophilic graphs distinguish the information of the ego node
and its neighborhood. However, some of them emphasize the infor-
mation from neighborhood at the expense of retaining ego node in-
formation, resulting in even worse performance on certain datasets
than MLP [31, 38]. Some methods heavily rely on features of ego
nodes to ensure their expressive power after multi-layer propa-
gation in GNNs and fail to utilize the contextual information of
neighboring nodes [5]. These methods also perform poorly on cer-
tain datasets. We attribute the poor generalization of these methods
to the fact that they overlook the difference and diversity among
nodes in a graph, which can also be observed from Figure 1. From
the perspective of an individual graph, there exists a large dis-
crepancy on the similarity between different ego nodes and their
neighborhoods, which reflects the local diversity among nodes in
the graph. We also observe that the global distribution of similar-
ity among different graphs varies greatly. To cope with these two
types of diversities, we first divide the sources of information for
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Figure 1: The distribution of similarity between ego node
and its neighborhood in real-world graphs.

nodes in a graph into two types: (1) features of ego node; (2) inter-
action between ego node and its neighborhood. Then a question
naturally arises: How to effectively fuse ego node information with
neighboring contextual information to generate node representations?
On the one hand, information fusion needs to take into account
the local difference of similarities between different ego nodes and
their neighborhoods. On the other hand, effective representation
fusion should reflect the global diversity across different graphs.

To address the aforementioned challenges, we propose a MUlti-
view contraStive learning method for hEterophilic graphs, namely,
MUSE. Our model consists of two major components: unsupervised
node representation learning and information fusion controller. For
the former, we construct two views, namely, semantic view and
contextual view, based on which we capture relevant information
with GNNs and employ contrastive learning to learn node represen-
tations in each view that are invariant to perturbations, respectively.
After that, we fuse the embeddings learned from the two views
to generate cross-view node representations with an information
fusion controller. This enables each node to adaptively integrate
useful information from its neighborhood. To enhance the effective-
ness of fused node representations, we further introduce contrasive
learning to drive them to be perturbation invariant. For the infor-
mation fusion controller, it determines the fusion weight by taking
into account the diversity of node-neighborhood similarity at both
the local and global levels, thereby leading to personalized infor-
mation fusion. On the one hand, we consider the local diversity by
measuring the similarity between embeddings generated from both
semantic and contextual views. On the other hand, we handle the
global diversity by constraining the distribution of similarity across
the entire graph. Considering that the two components mutually
reinforce each other, we adopt an alternating training scheme to
optimize them simultaneously. Finally, our main contributions can
be summarized as follows:

• We propose MUSE, a novel contrastive learning model for
heterophilic graphs. To our best knowledge, MUSE is the
first heterophilous graph contrastive learning method that
considers both local and global node similarity diversity.

• Wedesign an effective information fusion controller tomodel
the diversity of node-neighborhood similarity, leading to
personalized node representation fusion.

• We conduct extensive experiments on 9 benchmark datasets
to evaluate the performance of MUSE. Our results show its
superiority over other state-of-the-art competitors.

2 RELATEDWORK
2.1 GNNs with heterophily
Existing graph neural network methods on heterophilic graphs can
mainly be divided into two categories. One is to capture information
from distant nodes [1, 17, 18, 23, 29]. For example, MixHop [1]
concats information from multi-hop neighbours at each GNN layer.
Geom-GCN [23] discovers potential neighbors in a continuous
latent space. Both the neighbors in the original graph latent space
are aggregated during the message passing. WRGAT [29] captures
the information from distant nodes by defining the type and weight
of edges in the entire graph to reconstruct a computation graph.

The other is to adaptively aggregate useful information from the
neighborhood by refining the GNN architecture [3, 6, 20, 40, 44].
For example, H2GCN [44] excludes the self-loop connection and
adopts an non-mixing operation in the GNN layer to emphasize the
features of ego node. GGCN [40] learns a weighted combination of
the prior layer node representations, with signed weight denoting
different neighbors at every layer of GNN. ACM [20] uses high-pass,
low-pass and identity filter to aggregate neighbor information by
different channels.

2.2 Unsupervised graph representation learning
Unsupervised graph representation learning methods can be di-
vided into two types: generation-based methods and contrast-based
methods.

Generation-based methods reconstruct the graph data from the
perspectives of feature and structure of the graph, and use the input
data as the supervision signal. Classic generation-based methods on
graph include GAE [16], VGAE [16], SIG-VAE [11] which focus on
reconstructing the structure information of the graph and MGAE
[36], GALA [22] which put emphasis on the recontruction of the
feature information of the graph.

Contrast-based methods construct representations under differ-
ent views and maximize their agreement. According to the scale of
contrast, existing methods come into three sub-categories: Node-to-
node contrast, graph-to-graph contrast, and node-to-graph contrast.
For example, GRACE [45] pulls the representations of the same
node closer under different augmentations and pushes away the
representations of other nodes. GraphCL [42] brings the graph-level
representations closer under different views to ensure perturba-
tion invariance. DGI [34] and MVGRL [12] maximize the mutual
information between node-level representations and graph-level
representations, aiming to capture both local and global informa-
tion.



MUSE: Multi-View Contrastive Learning for Heterophilic Graphs Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

However, most of these methods are based on the homophily as-
sumption. Recent works have moved the emphasis to unsupervised
scenarios on heterophilic graphs. Based on graph contrastive learn-
ing, HGRL [5] improves the node representations on heterophilic
graphs by preserving the node original features and capturing the
non-local neighbors. GREET [19] discriminates homophilic edges
from heterophilic edges and uses low-pass and high-pass filters
to capture the corresponding information. Based on generation
methods, DSSL [38] decouples the diverse patterns in local neigh-
borhood distribution to capture both homophilic and heterophilic
information. NWR-GAE [31] emphasizes the role of the topological
structure in the graphs and reconstructs the neighborhoods based
on the local structure and features.

3 PRELIMINARIES
In this section, we introduce the notations used in this paper and a
brief background of GNNs.

Notations Let G = (V, E) be an undirected, unweighted graph,
where V = {𝑣1, · · · , 𝑣𝑁 } is the set of nodes and E ⊆ V ×V is the
set of edges. X ∈ R𝑁×𝐹 is the feature matrix where the 𝑖-th row 𝑥𝑖

is the 𝐹 -dimensional feature vector of node 𝑣𝑖 . A ∈ R𝑁×𝑁 denotes
the binary adjacent matrix with Ai,j = 1 if 𝑒𝑖, 𝑗 ∈ E and Ai,j = 0
otherwise. The neighboring set of node 𝑣 is denoted as N(𝑣).

Graph Neural Networks GNNs adopt a message passing mech-
anism, where the representation of each node 𝑣 ∈ V is updated by
aggregating messages from its local neighboring nodes, and then
combining the aggregated messages with the node’s own represen-
tation. Generally, given a GNN model 𝑓 (·), message passing in the
𝑙-th layer can be divided into two operations: one is to aggregate
information from a node’s neighbors while the other is to update a
node’s representation. Given a node 𝑣𝑖 , these two operations are
formulated as:

𝑚
(𝑙 )
𝑖

= AGGREGATE(𝑙 ) {ℎ (𝑙−1)
𝑗

,∀𝑣 𝑗 ∈ N (𝑣𝑖 )}, (1)

ℎ
(𝑙 )
𝑖

= COMBINE(𝑙 ) {ℎ (𝑙−1)
𝑖

,𝑚
(𝑙 )
𝑖

}, (2)

where 𝑚 (𝑙 )
𝑖

and ℎ
(𝑙 )
𝑖

denote the message vector and representa-
tion of node 𝑣𝑖 in the 𝑙-th layer, respectively. AGGREGATE(𝑙 ) (·) and
COMBINE(𝑙 ) (·) are two functions in each GNN layer.

4 METHODOLOGIES
In this section, we introduce the model design of our proposed
MUSE method which is illustrated in Figure 2. Our approach con-
sists of two components: unsupervised node representation learn-
ing and information fusion controller. MUSE first constructs two
views to capture the semantic and contextual information of nodes
in a graph with GNN. Semantic and contextual contrast are served
as supervision signals to learn relevant node representations invari-
ant to perturbations. MUSE then sends the information captured
under two views into the information fusion controller to model
the diversity of similarity between two kinds of information and
generate the fused node representations in a node-specific way. Fu-
sion contrast is employed to enhance the effectiveness of the fused
node representations. Since the two components in MUSE have
a mutually reinforcing effect, an alternating training scheme is
adopted to optimize these two components simultaneously.

4.1 View Construction
In heterophilic graphs, ego node and its neighborhood often ex-
hibit high degree of heterophily due to differences in features and
structure. To address this issue, we adopt a node-specific approach
and construct two views: the semantic and the contextual view, for
ego node and its neighborhood, respectively. The semantic view
describes the nodes with their intrinsic properties, while the contex-
tual view characterizes nodes based on their local neighborhoods.

4.1.1 Semantic View. Under semantic view, nodes that represent
similar features in the graph are considered similar. Semantic-level
contrast is employed as a form of supervision signal, aiming to en-
courage the learned representations of nodes with similar features
to be consistent. For the set of initial features of nodes in the graph,
we employ a perturbation 𝜏𝛼 to generate a new set of features as
positive samples:

{x̃1, x̃2 . . . , x̃𝑁 } ∼ 𝜏𝛼 ({x1, x2, . . . , x𝑁 }) , (3)

where x̃𝑖 is the augmented sample of x𝑖 .
We apply perturbations by altering only the features of the ego

nodes while keeping the structure of graph unchanged. Specifically,
we randomly mask the initial node features in different dimension-
ality with a probability of 𝑝𝑠 . We sample a binary vector m ∈ R1×𝐹
from the Bernoulli distribution with a probability of (1 − 𝑝𝑠 ), i.e.,
𝑚𝑖 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (1 − 𝑝𝑠 ), 𝑖 ∈ {1, · · · , 𝐹 }, and perform element-wise
multiplication with the features of each node:

x̃𝑖 = x𝑖 ◦m, (4)

The initial features are fed into the GNN encoder 𝑓 (·) : R𝑁×𝐹 →
R𝑁×𝐹 ′

to capture the semantic information of each node, where
𝐹 ′ is the embedding dimensionality. To independently encode each
node without taking into account the information from neighboring
nodes, we construct a unit matrix I ∈ R𝑁×𝑁 as the adjacency
matrix and feed it into 𝑓 (·) along with initial features. The semantic
representations obtained are denoted as H𝑠 ∈ R𝑁×𝐹 ′

:

H𝑠 = 𝑓𝜔 (X, I) , (5)

where 𝜔 denotes the parameters of GNN encoder.
Given a node 𝑣𝑖 , the semantic representation of 𝑥𝑖 , denoted by

h𝑠
𝑖
, is the anchor sample. The semantic representation of the corre-

sponding augmentation sample x̃𝑖 , denoted by h̃𝑠
𝑖
, is treated as a

positive sample of h𝑠
𝑖
. The node representations of other nodes in

the graph and their corresponding augmentations are considered
as the negative samples of h𝑠

𝑖
.

We construct the semantic-level contrastive loss based on the
normalized temperature-scaled cross entropy loss (NT-Xent) [7].
Firstly, a non-linear projection 𝑔(·) : R𝑁×𝐹 ′ → R𝑁×𝐹𝑝 is used to
map the node representations to a latent space where contrastive
loss is applied. 𝐹𝑝 is the dimensionality of projected representations.
The non-linear projection head 𝑔 is verified to be able to remove
the information related to the downstream tasks from the node
representations [7]. Then we measure the similarity between pairs
of samples in this latent space. Measuring metric between sample
pair

(
h𝑖 , h𝑗

)
is defined as 𝜃

(
h𝑖 , h𝑗

)
= 𝑠

(
𝑔
(
h𝑖 , h𝑗

) )
, where 𝑠 denotes

cosine similarity and 𝑔 is implemented with a two-layer MLP. Given
a positive node pair

(
h𝑠
𝑖
, h̃𝑠

𝑖

)
, the pairwise semantic contrastive loss
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Figure 2: The overall framework of the proposed MUSE method.

is formulated as:

ℓ𝑠

(
h𝑠𝑖 , h̃

𝑠
𝑖

)
= − log

𝑒
𝜃

(
h𝑠
𝑖
,h̃𝑠

𝑖

)
/𝜏∑

𝑣𝑗 ∈V\𝑣𝑖 𝑒
𝜃

(
h𝑠
𝑖
,h𝑠

𝑗

)
/𝜏 +∑

𝑣𝑗 ∈V 𝑒
𝜃

(
h𝑠
𝑖
,h̃𝑠

𝑗

)
/𝜏
, (6)

Similarly, take h̃𝑠
𝑖
as the anchor sample, h𝑠

𝑖
is the positive sample

of h̃𝑠
𝑖
, and the negative samples remain unchanged. Correspond-

ingly, pairwise contrastive loss between
(
h̃𝑠
𝑖
, h𝑠

𝑖

)
is ℓ

(
h̃𝑠
𝑖
, h𝑠

𝑖

)
, and

we can obtain the semantic contrastive loss L𝑠 as:

L𝑠 =
1
2𝑁

𝑁∑︁
𝑖=1

[
ℓ

(
h𝑠𝑖 , h̃

𝑠
𝑖

)
+ ℓ

(
h̃𝑠
𝑖
, h𝑠𝑖

)]
, (7)

4.1.2 Contextual View. Contextual view is constructed to capture
the information from the interaction between ego node and its
neighborhood. Different from the semantic view, here we focus on
the contextual information provided by neighboring nodes rather
than the features of the ego node.

Under the contextual view, nodes with similar local neighbor-
hoods are considered to be similar. Context-level contrast is further
employed to keep the representations of nodes with similar contexts
to be consistent. When constructing positive samples under the
contextual view, it should be ensured that the semantic information
of nodes remains unchanged. Therefore, we introduce perturba-
tions 𝜏𝛽 to the topology of the neighboring nodes while preserving
their semantic information:

Ã ∼ 𝜏𝛽 (A) , (8)

In practice, we randomly drop some edges in the graph with a
probability of 𝑝𝑐 . This is equivalent to removing a small portion of
nodes from the neighborhood of each ego node to alter the contex-
tual information. Specifically, we sample a binary masking matrix
E ∈ {0, 1}𝑁×𝑁 from the Bernoulli distribution with a probability
of (1 − 𝑝𝑐 ), i.e., 𝑒𝑖 𝑗 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (1 − 𝑝𝑐 ), 𝑖, 𝑗 ∈ {1, · · · , 𝑁 }, and
perform element-wise multiplication with the adjacent matrix:

Ã = A ◦ E, (9)

To capture the contextual information of each node, we use feature
matrix and adjacency matrix as the input of GNN encoder 𝑓 (·) and
obtain the contextual representations denoted as H𝑐 ∈ R𝑁×𝐹 ′

by:

H𝑐 = 𝑓𝜔 (X,A) .
Similar as the contrastive loss under the semantic view, we con-

struct the positive sample pair
(
h𝑐
𝑖
, h̃𝑐

𝑖

)
and the corresponding neg-

ative sample pairs. The contextual contrastive loss is defined as:

L𝑐 =
1
2𝑁

𝑁∑︁
𝑖=1

[
ℓ

(
h𝑐𝑖 , h̃

𝑐
𝑖

)
+ ℓ

(
h̃𝑐
𝑖
, h𝑐𝑖

)]
. (10)

4.2 Cross-view Node Representation Fusion
As previously discussed, we divide the source of information for a
node in the graph into two types: (1) the node’s own features, (2)
the information brought by the interaction between the ego node
and its neighborhood. To further enhance node representation
learning in a graph, we fuse node embeddings learned from both
the semantic view and the contextual view. We consider that the
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contextual information plays a complementary role for the semantic
information of the ego node. This fusion process not only captures
the intrinsic properties of an individual ego node, but also includes
the features and structural information of its neighborhood, thereby
providing a more holistic node representation.

However, in practice, the amount of contextual information that
each ego node needs varies, so we need to perform node-specific
cross-view embedding fusion. Specifically, given a node 𝑣𝑖 , we rep-
resent its fused representation as follows :

ℎ
𝑓

𝑖
= ℎ𝑠𝑖 + 𝜆𝑖ℎ

𝑐
𝑖 , (11)

where 𝜆𝑖 is a personalized weight which we will introduce in the
next section.

Considering that the fused node representations should still
remain invariant to perturbations, we introduce the fusion contrast
to the unsupervised node representation learning. Given h𝑓

𝑖
=

h𝑠
𝑖
+ 𝜆𝑖h𝑐𝑖 as an anchor sample, we consider h̃𝑓

𝑖
= h̃𝑠

𝑖
+ 𝜆𝑖 h̃𝑐𝑖 as

the positive sample. We minimize the distance between the fused
node representations before and after perturbations to ensure the
invariance to perturbations. The cross-view fusion contrastive loss
is defined as:

L𝑓 =
1
2𝑁

𝑁∑︁
𝑖=1

[
ℓ

(
h𝑓
𝑖
, h̃𝑓

𝑖

)
+ ℓ

(
h̃𝑓
𝑖
.h𝑓
𝑖

)]
, (12)

To sum up, the unsupervised node representation loss can be ob-
tained as:

L𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = L𝑠 + 𝛽1L𝑐 + 𝛽2L𝑓 , (13)
where 𝛽1 and 𝛽2 are weight factors for adjusting the importance of
different components.

4.3 Information Fusion Controller
Considering the diversity across different nodes, we propose an
information fusion controller𝜓 to model the diversity of similarity
between the information deprived from two views and allow each
node to adaptively integrate two kinds of information. Since node
embeddings learned from the two views have a direct impact on
the information fusion, we first filter the noisy features in ℎ𝑠 and
ℎ𝑐 . Specifically, for node 𝑣𝑖 , we have:

𝑤𝑠
𝑖 = 𝜑 (ℎ𝑠𝑖 ;𝜙1),𝑤

𝑐
𝑖 = 𝜑 (ℎ𝑐𝑖 ;𝜙2), (14)

where we implement the filter 𝜑 with a one-layer MLP and the
output of filter is𝑤𝑠 ∈ 𝑅𝑁×𝐹𝑔 ,𝑤𝑐 ∈ 𝑅𝑁×𝐹𝑔 .

Given a node 𝑣𝑖 , except the node’s semantic properties and the
contextual characteristics of its neighbors, the information fusion
controller further takes into account the degree centrality. This
measures the position of a node within the structure of the graph,
which has been evidenced to benefit the performance of GNN on
heterophilic graphs [21]. The degree centrality is formulated as:

𝑑𝑖 =

𝑁∑︁
𝑗=1

A𝑖 𝑗 , (15)

We calculate the personalized weight factor 𝜆𝑖 for each node 𝑣𝑖 with
a two-layer MLP by:

𝜆𝑖 = 𝜓
(
𝑤𝑠
𝑖 ,𝑤

𝑐
𝑖 , d𝑖 ;𝜙3

)
, (16)

As shown in Figure 1, from the node level, there typically exists
difference in the similarity between different ego nodes and their
neighborhoods. When a node’s semantic representation and con-
textual representation share high similarity, we consider that the
contextual information provided by its neighboring nodes heavily
overlaps with the node’s own information. Therefore, this node
needs less contextual information from neighborhood. From the
graph level, the distribution of similarity between ego nodes and
their neighborhoods in the whole graph varies across different
graphs. Therefore, we impose some constraints on the overall distri-
bution of 𝜆 with two regularization terms. Specifically, we constrain
the average 𝜆 value for each individual graph to be a pre-set hyper-
parameter. Additionally, considering that the overall distribution of
all nodes in each individual graph may vary significantly, we use
𝐿2 norm to restrict the magnitude of this diversity. Therefore, we
have the following objective function:

L𝜙 =

𝑁∑︁
𝑖=1

𝜆𝑖𝑠
(
ℎ𝑠𝑖 , ℎ

𝑐
𝑖

)
+ 𝛼1 | |𝜆 | |2 + 𝛼2

����� 1𝑁 𝑁∑︁
𝑖=1

𝜆𝑖 − 𝜖

����� , (17)

where 𝑠 (·) denotes cosine similarity, coefficients𝛼1 and𝛼2 represent
the weight factors in the objective, 𝜖 is a hyper-parameter that
controls the average 𝜆 in the graph, 𝜙 denotes all the parameters in
information fusion controller.

4.4 Overall Framework
4.4.1 Model Training. From the discussion above, we can obtain
the overall optimization objective of MUSE as:

L𝑡𝑜𝑡𝑎𝑙 = L𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 + L𝜙 . (18)

MUSE can be divided into two parts: unsupervised node represen-
tation learning and information fusion controller.

In the first part, we apply attribute-level perturbation to the
initial input under the semantic view, and feed it into GNN to
obtain corresponding node representations H𝑠 and H̃s. Similarly,
topology-level perturbation is applied to the structure of the graph
and we can obtain the contextual node representations, denoted
as H𝑐 and H̃c. Furthermore, we fuse the node representations as
H𝑓 = H𝑠 + 𝜆H𝑐 to integrate information from two views.

In the second part, the semantic node representations H𝑠 and
contextual node representations H𝑐 obtained in the first part is sent
into an information fusion controller 𝜓 to model the diversity of
two kinds of information. The personalized weight factor 𝜆 learned
by the information fusion controller fuses the node representations
in a node-specific way.

4.4.2 Optimization Strategy. The two components in our model
are coupled with each other. On the one hand, unsupervised node
representation learning relies on the information fusion controller
to control the integration of information from semantic and con-
textual views, and further generate node representations. On the
other hand, the information fusion controller models the diversity
of node-neighborhood similarity with node representations derived
from different views. Therefore, we adopt an alternating training
strategy to ensure the effectiveness of both components simulta-
neously. Specifically, during training, we first fix the information
fusion controller𝜓𝜙 (·) and train the encoder 𝑓𝜔 (·) and projector
𝑔𝜇 (·) by back-propagating L𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 to learn node representations.
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Then, encoder 𝑓𝜔 (·) and projector 𝑔𝜇 (·) are fixed. Semantic and
contextual node representations generated by the encoder 𝑓𝜔 (·)
are sent into the information fusion controller𝜓𝜙 (·). We compute
the controller loss L𝜙 to optimize the information fusion controller
𝜓𝜙 (·). Here, 𝜔 represents the parameters of encoder 𝑓 (·), 𝜇 repre-
sents the parameters of projector 𝑔 (·), 𝜙 denotes the parameters
of information fusion controller𝜓 (·). It is worth noting that at the
first epoch, 𝜆 used to update the GNN parameters via L𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 is
obtained from the information fusion controller that is randomly
initialized.

4.4.3 Time Complexity Analysis. We next analyze the time com-
plexity of the two main components in our model. In unsupervised
node representation learning, the time complexities of GNN en-
coder and projection head are O(𝐹 |E |𝐿+𝑁𝐹𝐹 ′𝐿) and O(𝑁𝐹 ′𝐹𝑝𝐿𝑝 ),
where |E | is the number of edges, 𝐿 and 𝐿𝑝 are the layers of GNN
and projection head, respectively, 𝐹 is the dimensionality of initial
features, 𝐹 ′ is the dimensionality of final node representations, 𝐹𝑝
is the dimensionality of projected representations in projection
head and 𝑁 is the number of nodes in a graph. Further, for the
information fusion controller, the time complexities of the noise
filter and computing 𝜆 in Equation 16 are O(𝑁𝐹 ′𝐹𝑔) and O(𝑁𝐹𝑔),
respectively, where 𝐹𝑔 is the output dimensionality of the filter and
𝐹𝑔, 𝐹

′ ≪ 𝑁 .

5 EXPERIMENTS
5.1 Experimental Settings
5.1.1 Datasets. We evaluate our model on nine real-world datasets,
including three homophilic datasets (Cora, CiteSeer, PubMed [27])
and six heterophilic datasets (Cornell, Texas,Wisconsin, Chameleon,
Squirrel, Actor [23]). Among them, Cora, Citeseer, Pubmed are ci-
tation networks. Cornell, Texas, and Wisconsin are school depart-
ment webpage networks. Chameleon and Squirrel are Wikipedia
networks. Actor is an actor co-occurrence network in Wiki pages.
Details of these datasets are summarized in the Table 1.

Table 1: Datasets statistics.

Datasets Node Edges Features Classes

Cornell 183 295 1,703 5
Texas 183 309 1,703 5

Wisconsin 251 499 1,703 5
Chameleon 2,277 36,051 2325 5
Squirrel 5,201 216,933 2089 5
Actor 7,600 29,926 932 5

Cora 2708 10,556 1,433 7
CiteSeer 3,327 9,104 3,703 6
PubMed 19,717 88,648 500 3

5.1.2 Baselines. (1) For node classification as the downstream task,
we compare our model with four groups of baseline methods: su-
pervised learning methods (i.e., GCN [15], GAT [33], and MLP),
supervised methods specially designed for heterophilic graphs (i.e.,
WRGAT [29], H2GCN [44]), contrast-based unsupervised learning
methods designed for homophilic graphs (i.e., DGI [34], GMI [24],

MVGRL [12], BGRL [32], GRACE [45]) and unsupervised learning
methods designed for heterophilic graphs (i.e., DSSL [38], NWR-
GAE [31], HGRL [5], GREET [19]).

(2) For node clustering as the downstream task, we compare our
model with four groups of baseline methods: traditional unsuper-
vised clustering methods (i.e., AE [13], node2vec [9], struc2vec [26],
LINE [30]), attributed graph clustering methods (i.e., GAE(VGAE)
[16], GraphSAGE [10], SDCN [4]), contrast-based unsupervised
methods designed for homophilic graphs (i.e., MVGRL [12], GRACE
[45], BGRL [32]) and unsupervisedmethods designed for heterophilic
graphs (i.e., DSSL [38], HGRL [5]).

5.1.3 Implementation Details. We implement our model by Py-
Torch and optimize the model by Adam optimizer [14]. We utilize
a two-layer GCN [15] as the GNN encoder, and conduct all the
experiments following the standard linear evaluation scheme that
is widely adopted [19, 34, 45]. In the training step, we train the
model in an unsupervised learning manner to learn the node repre-
sentations. In the evaluating step, the learned node representations
are sent into the downstream tasks. We run the experiments with
10 random splits, and report mean classification accuracy with stan-
dard deviation. We set 𝛼2 in Equation 17 to 1 and the embedding
dimensionality of filter 𝐹𝑔 to 30. We fine-tune the following hyper-
parameters: 𝑙𝑟 ∈ {0.0001, 0.0005, 0.001, 0.005, 0.01}, 𝑙𝑟𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 ∈
{0.0001, 0.0005, 0.001, 0.005, 0.01}, 𝛽1 ∈ {0.001, 0.01, 0.1, 1, 10, 100},
𝛽2 ∈ {0.001, 0.01, 0.1, 1, 10, 100}, 𝑝𝑠 ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, 𝑝𝑐 ∈
{0.1, 0.2, 0.3, 0.4, 0.5}, 𝜖 ∈ {0, 0.1, 0.2, . . . , 1}, 𝛼1 ∈ {102, 104, 106},
𝑑𝑟𝑜𝑝𝑜𝑢𝑡 ∈ {0.1, 0.2, 0.3, 0.4}.

Two downstream tasks are employed to evaluate the effective-
ness and generalizability of the learned node representations. (1)
Node classification: For homophilic graphs, we adopt the public
splits with 20 nodes per class for training, 500 nodes for valida-
tion and 1,000 nodes for testing [15, 41]. For heterophilic graphs,
we adopt the commonly used training/validation/test split ratio of
48/32/20 as previous works [19, 23]. A linear model is trained on top
of the frozen node representations, and test accuracy is adopted as
the evaluation metric. Results for GCN, GAT, MLP, DGI, GMI, MV-
GRL, BGRL, GRACE are reported from [19]. For WRGAT, H2GCN,
DSSL, NWR-GAE and GREET, results are derived from the original
papers. For HGRL and results not reported in the original papers,
we run their public code on standard splits while keeping other
settings the same. (2) Node clustering: Frozen node representation
is fed into a K-means clustering model and the number of clusters
is set as the number of classes. We adopt three evaluation metrics:
accuracy (ACC), normalized mutual information (NMI) and average
rand index (ARI). We run the public code of DSSL and fine-tune
its hyper-parameters to report the best results. Results for other
baselines are directly derived from [5].

5.2 Experimental Results
5.2.1 Node Classification Performance. Table 2 summarizes the
performance results of node classification on three homophilic
datasets and six heterophilic datasets. From the table, we make the
following observations:

(1) MLP achieves good results on four of six heterophilic graphs
(Cornell, Texas, Wisconsin, Actor), indicating that node features
only can play a vital role in node representation learning. On the
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Table 2: Results of node classification (in percent ± standard deviation). ∗ indicates the results are derived from the original
papers. The best and runner-up results are highlighted with bold and underline, respectively.

Methods Heterophilic Homophilic Average Performance
Cornell Texas Wisconsin Chameleon Squirrel Actor Cora CiteSeer PubMed All Hete. Homo.

GCN 57.03±3.30 60.00±4.80 56.47±6.55 59.63±2.32 36.28±1.52 30.83±0.77 81.5∗ 70.3∗ 79.0∗ 59.00 50.04 76.93
GAT 59.46±3.63 61.62±3.78 54.71±6.87 56.38±2.19 32.09±3.27 28.06±1.48 83.0∗ 72.5∗ 79.0∗ 58.54 48.72 78.17
MLP 81.08±7.93 81.62±5.51 84.31±3.40 46.91±2.15 29.28±1.33 35.66±0.94 56.11±0.34 56.91±0.42 71.35±0.05 60.36 59.81 61.46

WRGAT∗ 81.62±3.90 83.62±5.50 86.98±3.78 65.24±0.87 48.85±0.78 36.53±0.77 88.20±2.26 76.81±1.89 88.52±0.92 72.93 67.14 84.51
H2GCN∗ 82.16±4.80 84.86±6.77 86.67±4.69 59.39±1.98 37.90±2.02 35.86±1.03 87.81±1.35 77.07±1.64 89.59±0.33 71.26 64.47 84.82

DGI 63.35±4.61 60.59±7.56 55.41±5.96 39.95±1.75 31.80±0.77 29.82±0.69 82.29±0.56 71.49±0.14 77.43±0.84 56.90 46.82 77.07
GMI 54.76±5.06 50.49±2.21 45.98±2.76 46.97±3.43 30.11±1.92 30.11±1.92 82.51±1.47 71.56±0.56 79.83±0.90 54.45 42.69 77.97
MVGRL 64.30±5.43 62.38±5.61 62.37±4.32 51.07±2.68 35.47±1.29 30.02±0.70 83.03±0.27 72.75±0.46 79.63±0.38 60.11 50.94 78.47
BGRL 57.30±5.51 59.19±5.85 52.35±4.12 47.46±2.74 32.64±0.78 29.86±0.75 81.08±0.17 71.59±0.42 79.97±0.36 56.83 46.47 77.55
GRACE 54.86±6.95 57.57±5.68 50.00±5.83 48.05±1.81 31.33±1.22 29.01±0.78 80.08±0.53 71.41±0.38 80.15±0.34 55.83 45.14 77.21

DSSL 53.15±1.28 62.11±1.53 56.29±4.42 48.74±1.53 40.51±0.38 28.36±0.65 83.06±0.53 73.51±0.64 82.98±0.49 58.75 48.19 79.85
NWR-GAE 58.64±5.61 69.62±6.66 68.23±6.11 72.04±2.59 64.81±1.83 30.17±0.17 83.62±1.61 71.45±2.41 83.44±0.92 66.89 60.59 79.50
HGRL 79.46±4.45 82.16±6.00 86.28±3.58 48.29±1.64 35.79±0.89 36.97±0.98 80.66±0.43 68.56±1.10 80.35±0.58 66.50 61.49 76.52
GREET 85.14±4.87 87.03±2.36 84.90±4.48 63.64±1.26 42.29±1.43 36.55±1.01 83.81±0.87 73.08±0.84 80.29±1.00 70.75 66.59 79.06

MUSE 82.16±3.42 89.73±2.79 88.24±3.20 72.37±2.21 54.19±3.04 38.55±1.34 82.24±0.41 71.14±0.40 82.90±0.59 73.39 70.87 78.76

Table 3: Results of node clustering (in percent ± standard deviation). The best and runner-up results are highlighted with bold
and underline, respectively.

Methods Texas Actor Cornell CiteSeer
ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

AE 50.49±0.01 16.63±0.01 14.60±0.01 24.19±0.11 0.97±0.03 0.50±0.04 52.19±0.01 17.08±0.01 17.41±0.01 58.79±0.19 30.91±0.21 30.29±0.23
node2vec 48.80±1.93 2.58±0.70 -1.62±0.65 25.02±0.04 0.09±0.01 0.06±0.02 50.98±0.01 5.84±0.01 0.18±0.01 20.76±0.27 0.35±0.03 -0.01±0.04
struc2vec 49.73±0.01 18.61±0.01 20.97±0.01 22.49±0.34 0.04±0.01 -0.05±0.05 32.68±0.01 1.54±0.01 -2.20±0.01 21.22±0.45 1.18±0.08 0.17±0.06
LINE 49.40±2.08 16.90±1.57 18.08±1.06 22.70±0.08 0.09±0.01 0.11±0.01 34.10±0.77 2.85±0.21 -1.54±0.25 28.42±0.88 8.49±0.74 3.54±0.56
GAE 42.02±1.22 8.49±1.31 10.83±1.92 23.45±0.04 0.18 ±0.01 -0.04±0.01 43.72±1.25 5.11±0.38 6.51±1.74 48.37±0.37 24.59±0.22 19.50±0.31
VGAE 50.27±1.87 11.73±0.95 21.51±1.81 23.30±0.22 0.21±0.03 0.34±0.05 43.39±0.99 5.46±0.46 3.97±0.49 55.67±0.13 32.45±0.10 28.34±0.13
GraphSAGE 56.83±0.56 16.97±1.93 23.50±2.98 23.08±0.29 0.58±0.14 0.22±0.07 44.70±2.00 4.33±0.93 5.64±1.33 49.28±1.18 22.97±0.80 19.21±1.33
SDCN 44.04±0.56 14.24±1.93 10.65±2.98 23.67±0.29 0.08±0.14 -0.01±0.07 36.94±2.00 6.6±0.93 3.38±1.33 59.86±1.18 30.37± 0.80 29.70±1.33
MVGRL 62.79±2.33 25.66±1.81 33.54±4.59 28.58±1.03 2.42±0.51 2.80±0.57 43.77±3.03 8.38±2.82 7.09±2.95 45.67±9.08 23.41±7.73 19.92±7.92
GRACE 56.99±2.23 20.65±1.02 29.54±4.22 25.87±0.45 0.56±0.28 0.93±0.38 43.55±4.60 8.23±1.16 6.43±1.97 54.66±5.41 31.70±3.78 27.40±5.60
BGRL 58.68±1.80 21.95±2.40 23.74±2.29 28.20±0.27 1.84±0.19 2.35±0.12 55.08±1.68 7.98±0.53 3.92±1.03 64.27±1.68 36.63±1.71 36.71±1.85
DSSL 57.43±3.51 18.60±2.25 25.68±3.73 26.15±0.46 0.76±0.10 1.27±0.17 44.70±2.44 7.14±1.81 7.11±2.86 54.32±3.69 28.67±2.73 26.59±3.54,
HGRL 61.97±3.10 44.58±2.14 37.05±4.78 29.79±1.11 3.80 ±0.83 4.09±1.16 60.56±3.72 44.61±3.32 35.65±5.24 61.14±1.49 34.06±1.71 33.65±2.10
MUSE 74.86±2.79 45.53±4.22 49.80±5.71 32.43±0.60 8.57±0.60 6.31±0.23 71.59±1.82 46.49±2.36 49.53±2.43 69.11±1.19 43.50±0.84 44.05±1.17

other hand, the basic GCN model performs relatively well on the
other two heterophilic graphs (Chameleon and Squirrel), suggesting
that nodes in these two graphs require more contextual information
from neighboring nodes. This further shows the presence of global
diversity among different graphs.

(2) MUSE outperforms traditional supervised models (like GCN,
GAT and MLP) and traditional self-supervised GNN models (like
DGI, GMI, MVGRL, BGRL and GRACE). This is because these meth-
ods are designed for homophilic graphs without considering the
heterophily in the graphs.

(3) Existing unsupervised methods designed for heterophilic
graphs exhibit a significant difference in performance across differ-
ent datasets. DSSL and NWR-GAE perform even worse than MLP
on four of the six heterophilic datasets (Cornell, Texas, Wisconsin
and Actor), although performing well on the other two heterophilic

datasets. HGRL is the runner-up on Actor, but the accuracy on
Chameleon is only 0.4829 ,while the best result is 0.7237 (MUSE).
GREET ranks first on Cornell, but the accuracy score on Chameleon
is 0.6364. We ascribe this instability in performance to the neglect
of node diversity in these methods, which adopt a uniform pro-
cessing strategy for all nodes and thus compromise the expressive
power of the learned node representation. MUSE determines the
amount of contextual information that each ego node needs in a
node-specific way and shows superiority consistently on all six het-
erophilic datasets, ranking first on four of the datasets, and second
on the other two.

(4) MUSE outperforms all the baselines in terms of average per-
formance over all the datasets. On heterophilic graphs, the average
performance of MUSE was higher than the runner-up which is a
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(a) Texas (b) Cornell (c) Squirrel (d) Cora

Figure 3: Ablation study

supervised method designed for heterophilic graphs, while there is
a slight tradeoff in performance on homophilic graphs.

5.2.2 Node Clustering Performance. The node clustering results on
three heterophilic datasets and one homophilic dataset are reported
in Table 3. From Table 3, we have the following observation:

It is notable that our model outperforms all the competitors
on both heterophilic and homophilic datasets. We achieve relative
improvement up to 19.22% (ACC) on Texas than MVGRL. The im-
provement of ACC indicates that the node representation learned
by our model can be correctly assigned to their respective clus-
ters in the K-means clustering model. Relative improvement up
to 125.53% (NMI) on Actor than HGRL reflects a high degree of
similarity between the clustering results of the node representation
and true labels. Moreover, the 54.28% (ARI) relative improvement
on Actor than HGRL demonstrates excellent performance of our
model in the clustering task even when considering the penalty for
random clustering.

5.3 Ablation Study
In order to examine the effectiveness of each component of MUSE,
we conduct ablation experiments on various variants of the model.
We primarily validated the effectiveness of our model from two
perspectives: (1) Effectiveness of the components in the node repre-
sentation learning module, and (2) Effectiveness of the information
fusion controller.

5.3.1 Effectiveness of the Components in the Node Representation
LearningModule. Themajor components in the node representation
learning module include: semantic contrast, contextual contrast,
and fusion contrast. To show the importance of each component,
we design model variants by removing different contrasts from our
model. Specifically, we remove L𝑠 from Eq. 13 and call the variant
MUSE_ns (no semantic contrast); we remove L𝑐 and call the vari-
ant MUSE_nc (no context contrast); we call the variant removing
L𝑟 as MUSE_nf(no fusion contrast). We conduct experiments on
three heterophilic graphs (e.g., Texas, Cornell and Squirrel) and one
homophilic graph (e.g., Cora), the results of node classification task
are shown in Figure 3. From the figure, we can see that:

(1) MUSE outperforms MUSE_ns and MUSE_nc on these four
datasets. This shows that both semantic contrast and contextual

contrast in the node representation learning module play a vital
role. Further, the advantage of MUSE over MUSE_nf shows that
cross-view fusion contrast is also a necessity in enhancing the
effectiveness of node representation learning.

(2) Compared with MUSE_nc and MUSE_nf, MUSE leads to a
much larger performance gap than MUSE_ns, especially on Squirrel
and Cora. This highlights the importance of ego node’s features for
node representations in both homophilic and heterophilic graphs.

5.3.2 Effectiveness of the Information Fusion Controller. The infor-
mation fusion controller takes into account the difference in the
local diversity of node-neighborhood similarity across different
nodes and the global distribution of similarity in the whole graph.
With the information fusion controller, we can combine the seman-
tic and contextual information at the node level to leverage the
diversity of nodes. To validate its effectiveness, we set the value of 𝜆
to 1 for each node andwe call this variant asMUSE_con(controller).
This variant takes the same amount of contextual information from
the neighborhood for all nodes without considering the diversity
among nodes. Figure 3 clearly indicates a decrease in performance
of MUSE_con compared with MUSE, especially on Texas and Cor-
nell, suggesting the existence of diversity among nodes and the
necessity of effectively combining semantic information and con-
textual information at the node level. Therefore, the information
fusion controller has demonstrated a highly significant impact.

5.4 Parameter Analysis
In this section, we conduct experiments to investigate the impact
of parameters in our model, including the pre-set hyper-parameter
𝜖 and the weight factors of contrastive loss 𝛽1, 𝛽2.

5.4.1 Analysis of Weight Factor 𝛽1 and 𝛽2. We study the sensitiv-
ity of our model with respect to the weight factors 𝛽1 and 𝛽2 in
Equation 13 by varying the values from 10−3 to 102 (in Figure 4a
and 4b). A common phenomenon is that a too large 𝛽1 or 𝛽2 leads
to an obvious performance degradation, which indicates that ex-
cessive information from neighbors may have an opposite effect.
Specifically, the best choice of 𝛽1 and 𝛽2 for Texas and Cornell is
0.01 and 0.1, as the features of ego node plays a more important
role in this two datasets. The best choice of 𝛽1 and 𝛽2 for Squirrel
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is 1, indicating the importance of contextual information and fused
information.

(a) Sensitivity of 𝛽1 (b) Sensitivity of 𝛽2

Figure 4: Sensitivity analysis on weight factor 𝛽1, 𝛽2

5.4.2 Analysis of hyper-parameter 𝜖 . To study the impact of hyper-
parameter 𝜖 on our model, we set 𝜖 from 0 to 1 and show the node
classification accuracy in Figure 5. We observe that the node classi-
fication accuracy is highly sensitive to the pre-set hyper-parameter
on Squirrel and Chameleon. This suggests that our restriction on
the global diversity of nodes in the graph is necessary. Specifically,
performance on this two datasets is better with larger 𝜖 , indicat-
ing that nodes in the graphs require more contextual information
provided by neighboring nodes.

Figure 5: Sensitivity analysis on hyper-parameter 𝜖

5.5 Generalizability
As previously discussed, labeled data is usually scarce in real-life
scenarios. Therefore, we propose a self-supervised model on het-
erophilic graphs to alleviate the dependency on labels. By pre-
training, we can obtain task-agnostic node representations and
evaluate them on downstream tasks with a small quantity of labels,
aiming to achieve superior performance. In this section, we further
investigate the effectiveness of the frozen representations obtained
by pre-training with fewer downstream labels for fine-tuning.

Except the commonly used training/validation/test partition of
48/32/20 adopted by most baselines on heterophilic graphs as in
Section 5.2, we further follow the experimental settings in HGRL [5]
and alter the data partition to 10/10/80. The performance on node
classification task is given in Table 4, and the results of baselines

are derived from [5]. From the table, we can observe that, MUSE
outperforms other competitors on Squirrel and Chameleon, and
is the runner-up on Cora. This shows that MUSE still achieves
impressive results on the downstream task despite the decrease in
labeled data, particularly on heterophilic graphs, outperforming
other unsupervised learning methods significantly. This further
verifies that MUSE has strong generalization ability.

Table 4: Results of node classification task with few labels

Data Methods Squirrel Chameleon Cora

X,A,Y GCN 39.50±1.54 54.65±2.17 82.26±1.20
X,A,Y H2GCN 41.18±0.81 54.02±1.56 81.38±1.16
X, A MVGRL 33.49±0.84 42.34±2.11 84.53±1.05
X, A GRACE 34.47±1.11 45.89±3.10 83.69±0.73
X, A BGRL 31.50±0.57 45.54±1.94 83.01±0.71
X, A HGRL 35.42±0.91 45.04±1.91 82.08±0.84
X, A MUSE 41.67±0.90 57.89±1.27 84.11±0.73

5.6 Efficiency
In terms of efficiency, we evaluate the performance of our model
against four state-of-the-art self-supervised learning baselines. Specif-
ically, we focus on the training time during the representation pre-
training stage and conduct experiment on Squirrel dataset to report
the time cost for each epoch. The experimental results are shown
in Table 5. It can be observed that MUSE requires significantly less
training time per epoch compared to other three methods DSSL,
NWR-GAE and GREET that also use GNN as the encoder. While
HGRL is more efficient, it uses MLP as the encoder and performs
worse than MUSE in all the node classification/clustering compar-
isons as shown in Tables 2 and 3. All these results show that our
model is both effective and efficient.

Table 5: Comparison of efficiency on Squirrel

Methods DSSL NWR-GAE HGRL GREET MUSE

Time 1.848s 1.104s 0.11s 1.136s 0.255s

6 CONCLUSION
In this paper, we propose a novel model named MUSE for unsu-
pervised node representation learning on heterophilic graphs. We
employ GNNs enhanced with contrastive learning to capture the
information from semantic and contextual views and fuse the node
representations with an information fusion controller. Fusion con-
trast is utilized to enhance the effectiveness of the fused node rep-
resentations. The information fusion controller considers both the
local diversity of similarity across different ego nodes and the global
distribution of similarity in the whole graph. We train the two com-
ponents with an alternating strategy to boost each other. Extensive
experiments reveal the effectiveness and generalizability of our
method.
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