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ABSTRACT
Customer lifetime value (LTV) prediction is essential for mobile
game publishers trying to optimize the advertising investment
for each user acquisition based on the estimated worth. In mo-
bile games, deploying microtransactions is a simple yet effective
monetization strategy, which attracts a tiny group of game whales
who splurge on in-game purchases. The presence of such game
whales may impede the practicality of existing LTV prediction mod-
els, since game whales’ purchase behaviours always exhibit varied
distribution from general users. Consequently, identifying game
whales can open up new opportunities to improve the accuracy
of LTV prediction models. However, little attention has been paid
to applying game whale detection in LTV prediction, and existing
works are mainly specialized for the long-term LTV prediction with
the assumption that the high-quality user features are available,
which is not applicable in the UA stage. In this paper, we propose
ExpLTV, a novel multi-task framework to perform LTV predic-
tion and game whale detection in a unified way. In ExpLTV, we
first innovatively design a deep neural network-based game whale
detector that can not only infer the intrinsic order in accordance
with monetary value, but also precisely identify high spenders (i.e.,
game whales) and low spenders. Then, by treating the game whale
detector as a gating network to decide the different mixture pat-
terns of LTV experts assembling, we can thoroughly leverage the
shared information and scenario-specific information (i.e., game
whales modelling and low spenders modelling). Finally, instead of
separately designing a purchase rate estimator for two tasks, we
design a shared estimator that can preserve the inner task relation-
ships. The superiority of ExpLTV in terms of its LTV prediction
and game whale detection effectiveness is further validated via
extensive experiments on three industrial datasets.
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1 INTRODUCTION
For top-grossing games, a well-rounded user acquisition (UA) [35]
strategy is privilege to grow their user base. Without an effective
strategy, the game publishers will miss out on swathes of opportu-
nities to convert more valuable users. The easiest way to get the
attention of new users on online services for promoting games
is paid advertising. Most of social media (e.g., Sina Weibo) with
massive active users own real-time bidding services for online ad-
vertising to deliver paid ads to their users, and thus it is an effective
way to connect with target consumers and promoting games.

Customer Lifetime Value (LTV) [4, 20, 21, 33] which refers to
the total worth that a company can attribute to a customer over a
specific period 𝑇 . It is not only essential to estimate the long-term
revenue from an established customer for personalized customer
relationship management (CRM) [2, 25], but also allowing to predict
the short-term worth of a new customer for adjusting the budget of
advertising investment. For each ad impression, the advertisers can
compute an early estimation of the customer’s LTV value in the
target games, and then the predicted values will be used to adjust
the final bidding price, so as to enhance the success of bidding
valuable users and optimize the marketing budget. In this context,
LTV prediction accuracy means that the predicted LTV values
should be sorted in a manner consistent with the true LTV values,
and inaccurate LTV predictions will lead to an extra market budget
and decreased success of UA. In this regard, many sorts of LTV
prediction models have been developed for various applications.
The early LTV prediction methods assume the purchase behaviors
as a probability distribution, and then employ the probabilistic
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Figure 1: The distribution of LTV values on GAME A.

generative models for predicting the future purchase values and
customer churn [15, 16, 19, 32]. Another line of research proposes
machine learning-based models to learn a mapping between hand-
crafted features andmonetary value of game players [12, 19, 37]. For
example, [37] is designed to predict future value on an individual
user basis with a random forest model in Groupon. Recently, the
prominent development of deep learning-based techniques brings
more opportunities to improve the performance of LTV prediction
models. [8] adopts a convolutional neural network to automatically
learn temporal representations for LTV prediction. To handle the
volatile and sparse data of monetary value, [43] adopts Temporal
Trend Encoder and Graph Attention Network [38] to learn the
temporal and structure representation respectively. [26] proposes
an industrial solution in KUAISHOU, which predicts users’ DAU via
multiple distribution models to deal with the complex distribution.

Despite the efficacy of existing LTV predictions in many real-
world applications, the majority of these methods are inapplicable
in our scenarios. Most of these methods are only focused on the
long-term LTV predictions with the assumption that the rich and
high-quality user features are available. For example, in [43], to
outright predict day 30 LTV, the proposed model requires access to
a large number of users with day 120 LTVs and user features avail-
able. Due to app updates, user interest changes and time sensitivity,
it is of great practical significance to construct a short-term LTV
prediction model for game promotion. Moreover, as the gaming
industry has progressed, microtransactions have been a regular
fixture in gaming to boost revenues and improve user life cycle,
especially for those free-to-play games. Gamers can purchase addi-
tional in-game items to decorate their character, upgrade weapons,
or gain extra perks. Provided suchmicrotransactions tends to attract
many Game Whales (i.e., high spenders) who splurge on in-game
purchases[5, 13]. In the presence of such unpredictable and extreme
purchase behaviours, these aforementioned LTV prediction models
are subject to different levels of performance drop in the mobile
game context, since the models are designed without the awareness
of game whales and are sensitive to large values.

In mobile games, the game whales (GW) represent the smallest
percentage of users who are responsible for up to 50% − 80% in
revenue sales. Thus, it is imperative to spot these game whales
in the UA stage. Winning these customers can create a positive
feedback loop, where they bring in more profit for game operations.
Despite the importance of detecting game whales, most existing
solutions [8] straightforwardly use predicted LTV values as the dom-
inant indicators to detect those high-value users. Since the game
whales are rare and corresponding LTV values are largely deviated
from general users, the pure LTV prediction models trained by

heavily imbalanced dataset cannot perform well on the extremely
minority labels, and thus lead to inferior performance in game
whale detection task. To provide a proof-of-concept, in Figure 1, we
show the LTV distribution of GAME A. Clearly, the game whales’
LTV values demonstrate a different long-tailed distribution from
that of low spenders. Moreover, directly using conventional deep-
learning based models in game whale detection task will suffer from
Sample Selection Bias (SSB) [45] and Data Sparsity (DS)![10]
problems. SSB problem exists due to a flaw in the training process
where a subset of the data is under-sampled, and thus significantly
bias the estimates in the inference space. Specifically, GW detection
models are trained on dataset composed of paying users, while are
utilized to make inference on all samples of convert users. Such
biased training will cause severe performance drop in online ser-
vices. In addition, the game whales with outstanding LTV values
are far less than general users, and thus a new paradigm is desired
to effectively counteract the long-standing problem of DS problem.

To this end, we aim to propose a novel multi-task framework
named ExpLTV, which makes full use of GW detection to boost LTV
prediction accuracy. Instead of directly using simple constraints to
divide users into game whales and general users, we innovatively
design a mapping function to calculate the user’s probability of
being game whales and transfer the binary classification task into
a regression task. In this way, the specifically designed detector
can not only capture the intrinsic order in accordance with the
monetary value, but also generate the probability of being low
spenders and high spenders to bucket users for customized game
marketing. In addition, to eliminate the aforementioned SSB and
DS problems simultaneously, we form a new sequential behavior
"𝑐𝑜𝑛𝑣𝑒𝑟𝑡 → 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒 → 𝑔𝑎𝑚𝑒𝑤ℎ𝑎𝑙𝑒𝑠" where the pre-actions are
more abundant, and then propose two auxiliary tasks of predict-
ing the purchase-through rate (PTR) and purchase-through&game
whale rate (GWPTR) trained via multi-task learning. As such, our
model can leverage extra supervisory signals from auxiliary tasks
and all samples over the entire space. To allow for accurate LTV
prediction, we put forward two novel LTV experts to model users’
monetary values instead of one LTV model to serve all users. In-
spired by [41], in each LTV expert, we model the distribution of
LTV as the zero-inflated lognormal (Ziln) distribution, which con-
sists of three elements, namely purchase rate, mean, and standard
deviation parameters. Correspondingly, our LTV prediction model
is optimized by zero-inflated lognormal loss, which can minimize
the model’s sensitivity of the large values from game whales. More-
over, we take GW detector as the gating network to route users
into the right expert. By this way, each expert focuses on a specific
type of users thus accommodating different scenarios (i.e., high
spenders and low spenders modelling) and maintaining discrimi-
native characteristics. Finally, the purchase rate estimator trained
in the LTV component is also used in GW detection, which can
capture task-relatedness. As a result, these two components are
closely hinged and make their complementary merits.

Overall, we summarize our contributions in the following:

• To the best of our knowledge, we are the first to introduce
the idea of investigating the mutually beneficial relation-
ship between the LTV prediction task and the game whale
detection task.
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• We propose ExpLTV, a novel multi-task framework that by-
passes the shortcomings of conventional LTV prediction
methods, allowing the game whale detector as a gating net-
work to allocate the users to be trained via the right pattern
of LTV experts assembling.

• To alleviate the SSB and DS problems in GW detection, we
form a new sequential behavior "𝑐𝑜𝑛𝑣𝑒𝑟𝑡 → 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒 →
𝑔𝑎𝑚𝑒𝑤ℎ𝑎𝑙𝑒𝑠", and then transfer GW detection into two aux-
iliary tasks (i.e., PTR and GWPTR). Furthermore, the PTR
estimator shares the same model parameters with the pur-
chase rate estimator in the LTV model, which can capture
the task relatedness, and thus boost the corresponding per-
formance.

• Extensive experiments are conducted on three industrial
datasets to evaluate the performance of ExpLTV, and the
experimental results show that ExpLTV achieves superior
performance in both LTV prediction and GW detection tasks.

2 PRELIMINARY
In this section, we first revisit key concepts and thenmathematically
formulate our research problems. Notably, vectors and matrices are
denoted by bold lowercase and bold uppercase letters respectively,
and sets are calligraphic uppercase letters.

Definition 1 (Customer Lifetime Value): 𝐿𝑇𝑉𝑇𝑢 is the total worth
to a mobile game of a customer over a specific period 𝑇 . In this
work, 𝑇 is a constant value and thus we let 𝐿𝑇𝑉𝑢 replace 𝐿𝑇𝑉𝑇𝑢 for
simplicity.

Definition 2 (Game Whale): In mobile games, the game whales
represent a group of users who are responsible for the majority of
in-app’s revenue. Formally, we use 𝑔𝑢 to denote the identity label
of user 𝑢. In our case, if user 𝑢’s 𝐿𝑇𝑉 ≥ 𝑅, then user 𝑢 is defined as
a game whale with 𝑔𝑢 = 1. As the purchase behavior of the game
whale should be observed, we let 𝑠𝑢 = 1 denote it.

Definition 3 (GameWhale and Purchase Probability): For user𝑢,
let 𝑝𝑔𝑤𝑝𝑡𝑟𝑢 denote user𝑢’s probability of purchase and being a game
whale. Specifically, we design a mapping function which calculates
𝑝
𝑔𝑤𝑝𝑡𝑟
𝑢 based on the available LTV values:

𝑝
𝑔𝑤𝑝𝑡𝑟
𝑢 = 𝑝 (𝑔𝑢 = 1, 𝑠𝑢 = 1|x𝑢 ) = 1 − 𝑒

−𝐿𝑇𝑉𝑢
𝑅 (1)

Note that 𝑝𝑔𝑤𝑝𝑡𝑟𝑢 = 0, if and only if 𝐿𝑇𝑉𝑢 = 0.
Definition 4 (Conditional Game Whale Probability): The aim

of GW detection is estimating 𝑝𝑔𝑤𝑢 , which denotes the conditional
probability of being detected as a game whale, given that 𝑢’s pur-
chase behavior is observed. Given a convert user 𝑢, the 𝑝𝑔𝑤𝑢 can be
represented as:

𝑝
𝑔𝑤
𝑢 = 𝑝 (𝑔𝑢 = 1|𝑠𝑢 = 1, x𝑢 ) (2)

Note that 𝑝𝑔𝑤𝑢 as the conditional probability which is usually ob-
tained via Bayes’ theorem.

Task 1. Game Whale Detection: For each user 𝑢 ∈ U, we
construct a feature vector x𝑢 ∈ R𝑚 where x𝑢 consists of dense
features (e.g., purchase frequency), categorical features (e.g., gender)
and sequence features (e.g., purchase behaviours). Given a set of
samples D = {(x𝑢 , 𝑝𝑔𝑤𝑝𝑡𝑟𝑢 ) ∈ X × [0, 1] : 𝑢 ∈ U}, game whale
detector is trained to estimate users’ probability 𝑝𝑔𝑤𝑢 ∈ [0, 1] in
terms of the definition. With the sortable probability computed, the

GW detection task aims to recommend a set of game whales by
selecting 𝐾 top-ranked users w.r.t. 𝑝𝑔𝑤𝑢 : It can be formulated as:

𝐺𝑊𝐷 (D,Θ1) = {𝑢𝑖 |𝑝𝑔𝑤𝑢𝑖 is top-K in {𝑝𝑔𝑤𝑢𝑖 }𝑢𝑖 ∈U } (3)

where Θ1 represents the parameters of the GW Detector. Note that
Section 3.3 will introduce the reasons why we use 𝑝𝑔𝑤𝑝𝑡𝑟𝑢 as the
label in this task rather than 𝑔𝑢 .

Task 2. Customer Lifetime Value (LTV) Prediction: Given a
set of samples D = {(x𝑢 , 𝐿𝑇𝑉𝑢 ) ∈ X × 𝑁 + ∪ {0} : 𝑢 ∈ U}, we aim
to predict 𝐿𝑇𝑉𝑢 for user 𝑢 who is a new register or new returning
user, which can be represented as:

𝐿𝑇𝑉𝑢 = 𝑓 (x𝑢 |D,Θ2), (4)

where Θ2 denotes the parameters of the LTV predictor.

3 METHODOLOGY
3.1 Overview of ExpLTV
Our proposed ExpLTV consists of two key components to perform
game whale detection and LTV prediction respectively. In the game
whale detection task, we carefully design two auxiliary tasks with
sufficient supervisory signals to eliminate the impact of SSB and DS
problems. To achieve satisfactory performance of LTV prediction,
we adopt [41] as the main building block of each LTV expert model,
in which the distribution of LTV is modelled as the zero-inflated
lognormal (ZILN) distribution, since it is capable of handling the
extreme large LTV labels i.e., game whales’ LTV values. Note that
these two components are mutually enhanced with each other.
Specifically, the probability of a user being classified as game whale
and low spender via GW detector is taken as a weight to route each
user into the right LTV expert, while the purchase rate estimator
learned in both two tasks can learn the task relationships, and thus
boost the performance of GW detector. In what follows, we will
introduce each component in details.

3.2 Embedding Layer
As illustrated in Figure 2, we first utilize a fully connected embed-
ding layer to convert the feature vector x𝑢 into low-dimensional
dense representation denoted as lower-level embeddings:

e𝑢 = Mx𝑢 ,∀𝑢 ∈ U, (5)

where M ∈ R𝑚×𝑑 is the feature transformation matrix and 𝑑 is the
dimension of e𝑢 . In each forward iteration, to obtain the upper-
level embeddings denoted as e∗𝑢 , the interaction layer 𝐼𝑛𝑡𝐿𝑎𝑦𝑒𝑟 (·)
is designed to preserve the feature interaction information from the
lower-level embeddings e𝑢 . Notably, the embedding of sequence
features is transformed via sequential 𝐼𝑛𝑡𝐿𝑎𝑦𝑒𝑟 (·) such as BST [9],
while non-sequence features will be learned via general encoding
methods (i.e., deepFM [18] or WDL [11]). The upper-level embed-
dings can be represented as:

e∗𝑢 = 𝐼𝑛𝑡𝐿𝑎𝑦𝑒𝑟 (e𝑢 ),∀𝑢 ∈ U, (6)

where 𝑑1 is the dimension of e∗𝑢 .

3.3 Game Whale Detection
The most straightforward way to detect game whale is to train a
supervised classifier that can find the meaningful mapping between
the user’s upper-level embedding e∗𝑢 and identity label 𝑔𝑢 . However,
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Figure 2: The overview of ExpLTV.

such solution that simply divides the users into two subgroups (i.e.,
general users and game whales) based on the threshold value, is
infeasible to correctly reflect the order of users by their monetary
value. Though the classifier is well-trained, it is not only unable
to distinguish non-computation users and low spenders, but also
unable to assist the advertising platforms to spot the most valuable
users under the limited advertising budget. Therefore, we consider
the GW detection as a regression task trained by ground truth
𝑝
𝑔𝑤𝑝𝑡𝑟
𝑢 (defined in Section 2). Based on the data analysis of our real-
world logs, only about 0.7% of users are labeled as game whales,
which inherently causes data sparsity problem. Intuitively, we found
that the data volume of purchase behavior (i.e., about 11% of total
users) that is pre-required behavior of being a game whale is much
larger. As such, a practical solution to eliminate the data sparsity
problem in GWdetection is to bind the purchase behaviormodelling
as an auxiliary task into the GW detection task. Specifically, given
the training dataset D = {(x𝑢 , 𝐿𝑇𝑉𝑢 , 𝑝𝑔𝑤𝑝𝑡𝑟𝑢 ) : 𝑢 ∈ U}, we first
model the purchase probability estimator 𝑓𝑝𝑡𝑟 (·) as a deep neural
network (DNN) that inputs a learned upper-level embedding e∗,
and computes predicted purchase probability 𝑝𝑝𝑡𝑟 , which can be
represented as:

𝑝
𝑝𝑡𝑟
𝑢 = 𝑝 (𝑠𝑢 = 1|x𝑢 ), (7)

Then, user 𝑢’s game whale and purchase probability 𝑝𝑔𝑤𝑝𝑡𝑟𝑢 can be
computed following the Bayes’ theorem:

𝑝
𝑔𝑤𝑝𝑡𝑟
𝑢 = 𝑝 (𝑔𝑢 = 1, 𝑠𝑢 = 1|x𝑢 )

= 𝑝 (𝑠𝑢 = 1|x𝑢 ) × 𝑝 (𝑔𝑢 = 1|𝑠𝑢 = 1, x𝑢 )

= 𝑝
𝑝𝑡𝑟
𝑢 × 𝑝𝑔𝑤𝑢 ,

(8)

Note that Eq (8) holds due to the fact that purchase behavior must
be occurred for the game whales.

Furthermore, as users’ LTV values often demonstrate skewed
distributions with a long tail, low spenders are always account for
the majority of all spenders, which illustrates the importance of
low spenders in LTV prediction. Thus, a critical innovation in our
approach is that our proposed GW detector is able to refine the
low spenders from the non-consumption users. Specifically, we
propose a novel DNN-based GW detector 𝑓𝑔𝑤𝑑 (·) that computes a
2-dimensional probability distribution vector ŷ via the final softmax
layer. In ŷ, we let the first element ˆy[0] represent the conditional
probability 𝑝𝑔𝑤𝑢 , then ˆy[1] denoted as 𝑝𝑛𝑔𝑤𝑢 is the conditional prob-
ability of being identified as a low spender, given that 𝑢’s purchase
behavior is observed. Based on Bayes’ theorem, the user 𝑢’s proba-
bility of being general users (i.e., low spenders or non-consumption
users) 𝑝𝑛𝑔𝑤𝑝𝑡𝑟𝑢 can be formulated as:

𝑝
𝑛𝑔𝑤𝑝𝑡𝑟
𝑢

=𝑝 (𝑔𝑢 = 1, 𝑠𝑢 = 0|x𝑢 ) + 𝑝 (𝑔𝑢 = 0, 𝑠𝑢 = 1|x𝑢 )
+ 𝑝 (𝑔𝑢 = 0, 𝑠𝑢 = 0|x𝑢 )

=𝑝 (𝑠𝑢 = 0|x𝑢 ) + 𝑝 (𝑠𝑢 = 1|x𝑢 )𝑝 (𝑔𝑢 = 0|𝑠𝑢 = 1, x𝑢 )

=(1 − 𝑝𝑝𝑡𝑟𝑢 ) + 𝑝𝑝𝑡𝑟𝑢 × 𝑝𝑛𝑔𝑤𝑢 ,

(9)

where 𝑝𝑛𝑔𝑤𝑢 can be treated as the main indicator for identifying low
spenders.

With the aforementioned operations, we can obtain that 𝑝𝑔𝑤𝑢
(𝑝𝑛𝑔𝑤𝑢 ) is the intermediate variable of computing 𝑝𝑔𝑤𝑝𝑡𝑟𝑢 (𝑝𝑛𝑔𝑤𝑝𝑡𝑟𝑢 )
that is derived over the entire input space X. To avoid the sample
selection bias [28] problem, an intuitive way is to simultaneously
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model related factor 𝑝𝑔𝑤𝑝𝑡𝑟𝑢 (𝑝𝑛𝑔𝑤𝑝𝑡𝑟𝑢 ) instead of 𝑝𝑔𝑤𝑢 (𝑝𝑛𝑔𝑤𝑢 ) by
employing a multi-task learning framework. To achieve this, the
GW detection loss is formulated as:

L𝐺𝑊𝐷 =
∑︁
𝑢∈D

𝑙1 (𝑠𝑢 , 𝑓𝑝𝑡𝑟 (x𝑢 ;Θ𝑝𝑡𝑟 )) + 𝐷𝐾𝐿 (y| |ŷ), (10)

where Θ𝑝𝑡𝑟 is the parameter set of estimator 𝑓𝑝𝑡𝑟 (·), 𝑙1 (·) is cross-
entropy loss function and y is the concatenation of 𝑝𝑔𝑤𝑝𝑡𝑟𝑢 and
𝑝
𝑛𝑔𝑤𝑝𝑡𝑟
𝑢 . Note that 𝑝𝑛𝑔𝑤𝑝𝑡𝑟𝑢 = 1 − 𝑝𝑔𝑤𝑝𝑡𝑟𝑢 based on the definition.
𝐷𝐾𝐿 is KL-Divergence loss function that works as a strict constraint
to narrow down the distance of ground truth distributions and
resulted distributions generated by the GW detector.

3.4 LTV Prediction
Predicting user-level LTV is challenging but undeniably necessary
for most user-centered platforms. Especially in online advertising,
an LTV forecasting system built upon solid methodology plays a
pivotal role in generating reasonable bidding price for each ad space
on streaming media. However, users’ LTV values often demonstrate
long-tail distributions. Trained by those heavily imbalanced data,
a conventional regressor optimized by mse loss cannot avoid to
be biased towards the majority labels, while the more important
minority labels (i.e., game whales’ LTV values) will be underper-
formed. Motivated by [41], we transform the regression task into
the task of predicting three elements, namely purchase probability
𝑝 , mean parameter 𝜇 and standard deviation parameter 𝜎 . Each
element estimator 𝑓𝐿𝑇𝑉𝑖 (·) is designed with the same deep neural
network structure that inputs a learned hidden embedding e∗𝑢 .

𝑒▷𝑖 = 𝑓𝐿𝑇𝑉𝑒▷
𝑖

(e𝑢∗), 𝑒▷𝑖 ∈ {𝑝, 𝜇, 𝜎}, (11)

where the activation logits units of the last layer of the DNN are
sigmoid (𝑝), identity (𝜇) and softplus (𝜎) respectively. Moreover,
most of mobile games yield significant revenue from a small per-
centage of game whales, which exhibit different distribution from
general users. The training data with significantly large range can
impede a model’s capability of learning an accurate mapping from
users’ feature vectors to LTV values inevitably. These limitations
motivate us to propose a novel LTV prediction system that can au-
tomatically allocate the right LTV expert to model users’ monetary
values based on users’ type (i.e., high or low spenders). Since the
estimator 𝑓𝐿𝑇𝑉𝜇 (·) and 𝑓𝐿𝑇𝑉𝜎 (·) describe the LTV distribution, each
LTV expert that contains those two components is designed by the
same model structure.

Then, to automatically learn the optimal LTV experts assembling,
we innovatively take ŷ𝑢 , i.e., the indicative probability of being
high and low spenders as weight to compute the final distribution
parameters (i.e., 𝜇 and 𝜎):

𝜇 = ŷ𝑢 · 𝜇𝑒 = 𝑝𝑔𝑤𝑢 𝜇𝑒 [0] + 𝑝𝑛𝑔𝑤𝑢 𝜇𝑒 [1]
𝜎 = ŷ𝑢 · 𝜎𝑒 = 𝑝𝑔𝑤𝑢 𝜎𝑒 [0] + 𝑝𝑛𝑔𝑤𝑢 𝜎𝑒 [1],

(12)

where 𝜇𝑒 and 𝜎𝑒 is the aggregation of the expert outputs, namely
𝜇𝑒 = 𝜇1⊕𝜇2 and 𝜎𝑒 = 𝜎1⊕𝜎2. With the aforementioned operations,
we can correspondingly compute 𝐿𝑇𝑉𝑢 as:

𝐿𝑇𝑉𝑢 = 𝑝 · 𝑒𝜇+
𝜎2
2 , (13)

Finally, we adopt the zero-inflated lognormal (Ziln) loss [41] that
is designed to handle the zero and extremely large LTV labels to
optimize our LTV prediction task:

L𝐿𝑇𝑉 = 𝑙1 (I𝑠𝑢>0;𝑝) + [I𝑠𝑢>0 log(𝑠𝑢𝜎
√
2𝜋) + (log 𝑠𝑢 − 𝜇)2

2𝜎2
], (14)

where the first term is the cross entropy loss used to optimize
estimator 𝑓𝐿𝑇𝑉𝑝 (·), and the second term ( known as L𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙 )
is a regression loss to quantify the prediction loss.

3.5 Model Training
In this section, we define the loss function of ExpLTV for model
training. It is worth mentioning that estimator 𝑓𝐿𝑇𝑉𝑝 and 𝑓𝑝𝑡𝑟 de-
signed for two tasks share the same model parameters in our model.
The reason is that shared-model design can not only reduce the
computation resource, but also boost performance for both GW
detection and LTV prediction tasks by capturing the mutual knowl-
edge from different perspectives. As such, we remove the first
cross-entropy loss from Eq (10). As all components of our model
are end-to-end differentiable, we combine their losses and use joint
learning to optimize the following objective function:

L = L𝐺𝑊𝐷 + 𝜆L𝐿𝑇𝑉 (15)

4 EXPERIMENTS
In this section, we first outline the evaluation protocols for our
model and then conduct experiments on three industry datasets
to evaluate the performance of our model. Particularly, we aim to
answer the following research questions (RQs) via experiments:

• RQ1: Is our model the new state-of-the-art in the LTV pre-
diction task?

• RQ2: How does our model perform when detecting game
whales compared with baseline methods?

• RQ3: Can we verify our contribution via the visualization
method?

• RQ4: How does our model benefit from each key compo-
nent?

• RQ5: How do the hyper-parameters affect the performance
of our model in different tasks?

4.1 Experimental Datasets
To validate the performance of our proposed model in two tasks,
we conducted experiments on three industrial datasets that are
collected from Tencent Mobile Games. The user attributes in each
dataset contain numerical features (e.g., age), categorical features
(e.g., gender) and sequential behaviours features (e.g., purchase
records). Then, we process each dataset by taking users’ 𝑇 -day
cumulative consumption records as labelled LTV values (i.e., 𝐿𝑇𝑉𝑢 ).
Note that an accurate model requires access to a large number of
users with 𝐿𝑇𝑉𝑢 available, i.e., model starts using online service
at least 𝑇 days ago. Due to the frequent changes in app updates,
market and user base, a time-sensitive (i.e., a smaller 𝑇 day LTV)
strategy is the best practice in game advertising. Thus, we set𝑇 = 7
in our case. As the gathered datasets are time-dependent, we take
the first 40-day dataset to train the model, 3-day dataset to validate
and 3-day dataset to evaluate the performance. The main statistics
of our datasets are shown in Table1.
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Table 1: Dataset Statistics.

Dataset #Users %Game Whales Purchase Rate
GAME A 292864 0.459% 11.8%
GAME B 135168 0.675% 7.5%
GAME C 221184 1.21% 14.4%

4.2 Evaluation Protocols
To evaluate the effectiveness of our LTV prediction model, we adopt
two popular metrics, i.e., AUC and normalized GINI (GINI). Larger
values indicate better accuracy. AUC measures the performance of
estimator 𝑓𝑝𝑡𝑟 (·) that is designed to classify the consumption users
and non-consumption users. Similarly, the GINI is purely based on
the ranks of the predictions. In our case, the predicted LTV values
are used as an essential factor in ad bidding, thus we follow [41] to
quantify the ranking accuracy of our model in terms of GINI.

For GW detection, we leverage widely-used ranking metric Re-
call@K (R@K). Suppose we select top-K users as the most possible
game whales based on the predicted probability of being identified
as game whale (i.e., 𝑝𝑔𝑤 ), R@K is the fraction of selected game
whales (i.e., {𝑢 |𝑢 ∈ 𝐺𝑊𝐷 (D,Θ1), 𝑔𝑢 = 1}) out of all the game
whales (i.e., {𝑢 |𝑢 ∈ U, 𝑔𝑢 = 1}). Correspondingly, larger R@K
represents stronger GW detection effectiveness.

4.3 Baselines
We compare our model with the following baselines on two tasks,
where only the first two are trained with MSE loss and others are
trained with Ziln loss. Notably, for those baselines that are only
designed for LTV prediction task, top-K possible game whales are
selected based on the predicted LTV values (i.e., 𝐿𝑇𝑉 ) to evaluate
the performance in GW detection. Moreover, since TSUR [43] and
Marfnet [44] are specifically designed to have a better study of user
representation that is applicable in our framework, they are not
selected as comparable methods in this paper.

• Kuaishou (KS) [26]: This work aims to deal with the com-
plex and imbalanced distribution of LTV values by proposing
a novel MDME model.

• WhalesDetector (WD) [8]: It uses a three-layer CNN to
predict the LTV values, and then detect the valuable users
based on the results.

• WDL [11]: It is proposed to model both low- and high-order
feature interactions.

• DeepFM [18]: The deep FM combines the FM [31] and the
deep neural network to model pair-wise feature interactions.

• DCN [40]: A novel cross network is proposed to explicitly
model feature interaction.

• Ziln Loss (ZL) [41]: In this work, a novel zero-inflated log-
normal loss is designed to handle the imbalanced regression
problem.

• DNN-based regressor (SimGW): It is an upgrade version
of ZL by adding a DNN-based regressor to detect GW users.

• DNN-based classifier (SimGW2): It is an upgrade version
of ZL by combining a DNN-based binary classifier to detect
GW users.
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Figure 3: LTV prediction Performance on three datasets.

4.4 Parameters Settings
In our model, we set the latent dimension 𝑑 , learning rate and batch
size to 8, 0.0001 and 128 respectively. Model parameters are ran-
domly initialized using Gaussian distribution. All estimator 𝑓𝑥 (·)
is formulated as a 2-layer deep neural network with 8 hidden di-
mensions for the hidden layer. For the coefficients in loss function
L, we set 𝜆 = 15 on GAME A, and 𝜆 = 10 on both GAME B and
GAME C.

4.5 LTV Prediction Effectiveness (RQ1)
Customer Lifetime value prediction is an essential part in the suc-
cess of ads bidding platforms, since the advertisers can use the
predicted results to intelligently adjust the bidding price for each
ads space. We summarize all models’ performance on LTV pre-
diction w.r.t. AUC and GINI with Figure 3. Note that WD and KS
methods are optimized by MSE loss reported by original paper and
thus the AUC results are not available. Based on the experimental
results, we discuss our key findings below.

Obviously, our proposed model constantly outperforms all base-
lines in terms of GINI by a large margin in all three datasets, demon-
strating that our model is successful at promising the advertisers to
offer the reasonable bidding price for each ad space with the limited
marketing budget. Specifically, compared with the best baseline,
our model has brought 1.5%, 3.8% and 6.2% relative improvements
on GAME A, GAME B and GAME C respectively. Additionally, the
compared LTV prediction models exhibit significant performance
disparity in terms of the GINI. Models optimized by Ziln loss gen-
erally perform better than models optimized by MSE loss on all
datasets, indicating the superiority of Ziln loss since it is able to
handle the heavy-tailedness nature of LTV values and is insensi-
tive to the extremely large values. Though KS model is proved to
deal with the complex and imbalanced distribution of 𝑇 -day LTV
values (i.e., DAU) in KUAISHOU when the range of training data is
limited to a small value 𝑇 , it is not applicable in our scenario. One
possible reason is that a small number of distribution experts can
KS’ expressiveness in modelling the extreme behaviours of game
whales, while a large number may cause overfitting problem and
excessive computation resources. Finally, our model, which is the
most powerful for user ranking, still achieves competitive AUC
results, compared with pure LTV prediction methods. It is proved
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Table 2: Performance of GW detection on three datasets.

Dataset GAME A GAME B GAME C
Method R@500 R@1000 R@2000 R@5000 R@500 R@1000 R@2000 R@5000 R@500 R@1000 R@2000 R@5000
WD 0.207 0.356 0.540 0.759 0.283 0.434 0.698 0.925 0.155 0.267 0.422 0.694
KS 0.069 0.264 0.448 0.701 0.151 0.226 0.321 0.679 0.087 0.175 0.291 0.607

WDL 0.253 0.390 0.598 0.759 0.264 0.472 0.717 0.981 0.126 0.243 0.417 0.704
DeepFM 0.276 0.437 0.575 0.782 0.302 0.528 0.698 0.981 0.117 0.257 0.451 0.699
DCN 0.299 0.460 0.610 0.793 0.208 0.453 0.736 0.962 0.160 0.301 0.413 0.699
ZL 0.253 0.368 0.552 0.770 0.283 0.453 0.736 0.943 0.136 0.272 0.422 0.650

SimGW 0.287 0.425 0.586 0.782 0.283 0.434 0.698 0.943 0.145 0.229 0.372 0.670
SimGW2 0.126 0.264 0.483 0.724 0.245 0.415 0.679 0.981 0.092 0.194 0.359 0.665
OURS 0.333 0.471 0.632 0.793 0.340 0.547 0.736 0.981 0.175 0.301 0.524 0.713
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(a) Search space 𝐾 = 500 (b)Search space 𝐾 = 1000

Figure 4: GW detection results on three datasets. Point (𝑥,𝑦)
means that 𝑦 GWs ranking above level 𝑥 are detected.

that the specific design of shared model structure can enhance
the performance of estimator 𝑓𝑝𝑡𝑟 (·), since it can learn the mutual
knowledge from two inner-related tasks.

4.6 Whale Users Detection (RQ2)
Game whale is a tiny group of users that brings the most revenue
for mobile games. Hence, it is imperative for advertisers to spot
this type of users among massive new users for game publishers,
especially for top-grossing games. To quantitatively evaluate the ef-
fectiveness of ExpLTV in GW detection, we provide comprehensive
analysis from different perspectives.

We first report the overall detection performance of all tested
methods in Table 2. Note that by increasing the searching space
(i.e., the value of K), it becomes easier for detectors to retrieve
game whales. The first observation we can draw is that our model
is successful at detecting the game whales. In particular, when
𝐾 = 5000, the GW detector becomes highly confident in its de-
tected results and over 70% of game whales can be spotted accu-
rately in all datasets. Second, our model outperforms all baseline
methods consistently. The improvements of ExpLTV significantly
increases, with the reduced search space. On GAME A, the 11.4%
relative improvement of our model with 𝐾 = 500 demonstrates that
ExpLTV can capture the most valuable game whales even under
the extremely limited searching budget. Furthermore, the models
that achieve better results in the LTV prediction task may not still
perform well in GW detection. For example, WLD and DeepFM out-
perform DCN in terms of GINI, while the R@K values are slightly

(a) Pure LTV model i.e., ZL (b) ExpLTV

Figure 5: Visualization of latent embeddings before and after
removing game whale detection component. The visualiza-
tion corresponds to the GAME A dataset. For better clarity,
the number of general users is downsampled to 100.

lower. Without the awareness of game whales in the design of pure
LTV models, the well-trained models are limited to perform well
only on the majority of labels (i.e., low spenders’ LTV values), and
thus they are unable to always rank game whales at the top of the
non-game whales. To prove it, we further calculate the GINI for all
spenders (𝐺𝐼𝑁𝐼1) and high spenders (𝐺𝐼𝑁𝐼𝑅 ). Compared with the
best baseline (i.e., DCN on GAME A and GAME C, and DeepFM
on GAME B), the improvements achieve 0.074 (𝐺𝐼𝑁𝐼1) and 0.303
(𝐺𝐼𝑁𝐼𝑅 ) on GAME A, 0.04 (𝐺𝐼𝑁𝐼1) and 0.082 (𝐺𝐼𝑁𝐼𝑅 ) on GAME
B, and 0.054 (𝐺𝐼𝑁𝐼1) and 0.122 (𝐺𝐼𝑁𝐼𝑅 ) on GAME C. The results
further validate that the pure LTV models are impractical in the
GW detection task. Moreover, SimGW that makes use of a regressor
to detector game whales outperforms SimGW2 that designs the de-
tector as a simple binary classifier, which verifies the effectiveness
of our core idea.

Since the main use of GW detector is to spot the most valuable
users with the limited search budget, we further test the detected
results’ quality of all baselines from a fine-grained view. Specifically,
we partition labelled game whales into ten levels based on the LTV
values, and then calculate the number of detected game whales
ranking above each level. Figure 4 reports the results with 𝐾 = 500
and 𝐾 = 1000. Clearly, ExpLTV constantly achieves the best per-
formance, verifying that our model can not only detect more game
whales, but also can accurately catch those most valuable game
whales who have more significantly impact on games’ revenue.
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Table 3: Ablation test results.

Dataset Variant Ltv Prediction Task GW Detection task
AUC GINi R@500 R@1000

GAME A
ExpLTV-ne 0.673 0.577 0.333 0.425
ExpLTV-nssb 0.680 0.739 0.276 0.459
ExpLTV-sp 0.671 0.690 0.287 0.460
ExpLTV 0.682 0.739 0.333 0.471

GAME B
ExpLTV-ne 0.835 0.624 0.320 0.528
ExpLTV-nssb 0.842 0.658 0.302 0.434
ExpLTV-sp 0.844 0.646 0.302 0.528
ExpLTV 0.844 0.662 0.340 0.547

GAME C
ExpLTV-ne 0.677 0.488 0.170 0.291
ExpLTV-nssb 0.676 0.513 0.155 0.296
ExpLTV-sp 0.677 0.515 0.160 0.300
ExpLTV 0.682 0.517 0.175 0.301

4.7 Visualization Results (RQ3)
We are the first to bind GW detection as an auxiliary task to boost
the LTV prediction performance especially for game whales, since
the extremely large and imbalanced labels of them exhibit dra-
matically varied distribution from general spenders. To verify the
necessity of the GW detection in ExpLTV, we visualize the upper
latent embeddings e∗𝑢 in ExpLTV and pure LTV prediction model
i.e., ZL via t-SNE in Figure 5. As can be told from Figure 5, the latent
embeddings forms several distinct clusters based on the type of
users in ExpLTV. Specifically, two large red game whale clusters,
one small and one large blue general user clusters. Though several
small clusters can be observed, most of the latent embeddings are
mixed together in ZL. Furthermore, only several game whales are
forced to fit into the wrong clusters in ExpLTV. Hence, the discrim-
inative embeddings encoded by useful information in our model
can prove that the application of GW detection has a significant
benefit in the LTV prediction.

4.8 Ablation Study (RQ4)
To better understand the performance gain from different major
components proposed in ourmodel, we implement several degraded
versions of ExpLTV for ablation analysis. Table 3 summarizes the
outcomes in two tasks in terms of AUC, GINI and R@K. In what
follows, we describe all variants and analyse the effectiveness of
corresponding model components.

Removing LTV Experts (ExpLTV-ne). In our model, the pre-
dicted LTV values are generated by aggregating the outputs of
each LTV expert via Eq.(12). To testify the usefulness of LTV ex-
perts, we only retain one LTV expert and the result is treated as
the final output of the LTV prediction, then we use joint learning
to optimize the final objective function. As can be inferred from
Table 3, compared with other methods that are designed with mul-
tiple LTV experts (i.e., ExpLTV-nssb and ExpLTVs-sp), ExpLTV-ne
has the worst performance in LTV prediction, which validates the
importance of making full use of LTV experts to capture the dis-
tribution differences between high and low spenders. Additionally,
a slight performance drop can be observed in the GW detection
task. One possible reason is that the user-specific LTV expert by de-
sign can boost the LTV prediction accuracy of game whales, which
correspondingly enhances the GW detection effectiveness.

Removing Sequential behaviours learning (ExpLTV-nssb).
This variant disables the sequential behaviour "𝑐𝑜𝑛𝑣𝑒𝑟𝑡 → 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒

→ 𝑔𝑎𝑚𝑒𝑤ℎ𝑎𝑙𝑒𝑠" learning by first removing estimator 𝑓𝑝𝑡𝑟 (·), and
then rewriting ŷ = [𝑝𝑔𝑤 , 𝑝𝑛𝑔𝑤], i.e., 𝑝𝑔𝑤𝑢 (𝑝𝑛𝑔𝑤 ) is the approxi-
mation of 𝑝𝑔𝑤𝑝𝑡𝑟𝑢 (𝑝𝑛𝑔𝑤𝑝𝑡𝑟 ). As ExpLTV-nssb no longer takes the
purchase rate prediction as an auxiliary task into the GW detection
to counteract the data sparsity and sample selection bias problem,
it suffers from inferior performance in GW detection. For R@500,
the significant performance drop reaches 20.7% on GAME A, 12.6%
on GAME B and 12.9% on GAME C respectively. In addition, the
slight performance drop of GINI validates that the shared purchase
rate estimator performing for two tasks by design can contribute
to the expressiveness of LTV experts. Thus, the novel Sequential
behaviours learning showcases its strong contribution to the per-
formance gain in our model.

Using Individual Purchase Probability Estimator for Each
Task (ExpLTV-sp). A crucial difference between ExpLTV and
ExpLTV-sp is the design of the purchase probability estimator
𝑓𝑝𝑡𝑟 (·). Since the LTV prediction and GW detection are two closely
related tasks, the shared estimator by design can capture the inner
task relationships. As a core part in ExpLTV, we further testify
the efficacy of shared estimator 𝑓𝑝𝑡𝑟 (·). ExpLTV constantly outper-
forms ExpLTV-sp in both two tasks across all datasets. On GAME A,
the performance decrease reaches 1.64% in AUC, 7.1% in GINI, 16%
in R@500 and 2.4% in R@1000. The results further validate that the
estimator trained from two views can learn the mutual knowledge,
and thus it can boost the performance of both two tasks.

4.9 Hyper-Parameter Sensitivity (RQ5)
To answer RQ4, we further investigate the performance fluctuations
of ExpLTV with two varied hyperparameters on GAME A, namely
trade-off 𝜆 between LTV prediction loss and GW detection loss
in Eq (15), and latent dimension 𝑑 . Based on the standard setting
{𝑑 = 8, 𝜆 = 15} of ExpLTV, we tune the value of one hyperparame-
ter while keeping the other unchanged, and report the new results
of two tasks achieved in Figure 6. Specifically, We record the per-
formance differences by plotting AUC and GINI for LTV prediction,
while demonstrating R@500 and R@1000 for GW detection.

Impact of 𝜆 We study our model’s sensitivity to the value of 𝜆
in {4, 6, 8, 10, 12, 15} that controls the trade-off between LTV predic-
tion and GW detection. Within our expectation, as 𝜆 increases from
4 to 15, there is a slight performance drop in LTV prediction, while
an upward trend can be observed in GW detection. Luckily, altering
this coefficient has less impact on the LTV prediction. Thus, setting
𝜆 = 15 is sufficient for improving the accuracy of GW detection,
while ensuring the satisfactory performance of LTV prediction of
ExpLTV.

Impact of 𝑑 . We vary dimension 𝑑 in {4, 6, 8, 10, 12}. Generally,
the value of dimension 𝑑 directly controls our models’ expressive-
ness. As 𝑑 increases from 4 to 10, a fluctuating growth can be
observed in ExpLTV performance. However, when 𝑑 exceeds 10,
the performance improvement tends to stop. As can be inferred
from Figure 6 (c) and (d), our model with 𝑑 = 8 can achieve the best
or second best results in both LTV prediction and GW detection,
and thus we set 𝑑 = 8 to achieve a balance between the accuracy of
both two tasks.
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Figure 6: Parameter sensitivity results w.r.t. 𝜆 and dimension 𝑑 on GAME A.

5 RELATEDWORK
LTV Prediction. Understanding the total revenue that the busi-
ness can expect from a customer is important in user acquisi-
tion [24, 30, 39, 44]. In the literature, many LTV prediction models
have been proposed, which can be categorised as probability-based,
machine learning- based and deep learning-based methods. The
probability-based methods assume the purchase behaviors as a
probability distribution, and then propose the probabilistic gen-
erative models for predicting the LTV values [15, 16, 19, 32]. [15]
proposes a stochastic model that links the RFM paradigm [29] with
LTV values. The machine learning-based methods are proposed to
learn a mapping between hand-crafted features and monetary value
of game players via machine learning techniques [7, 12, 19, 37]. For
example, [12] adopts a random forest model to predict user-level
LTV value in Groupon. Recent years have witnessed the successful
development of deep learning-based techniques in LTV predic-
tion. [8] designs a convolutional neural network in LTV predic-
tion to perform a better modelling of temporal representations.
ZL [41] models the distribution of LTV values as Ziln distribu-
tion to capture the long-tail nature of training data. Meanwhile,
the Ziln loss can be used in deep learning-based neural networks.
TSUR [43] is designed to learn a more stable user representation by
utilizing wavelet transform and Graph Attention Network, which
can alleviate the volatility and sparsity problems of monetary val-
ues. In [44], a feature missing-aware routing-and-fusion network
(MarfNet) is proposed to reduce the effect of the missing features
while training. Recently, [26] is developed to predict users’ DAU
in KUAISHOU. In [26], the LTV distribution is divided into multi-
ple sub-distributions trained via distribution experts. Inherented
the limitations of mse loss, [26] can be proved to success when
the range of monetary values is limited to a small value, and thus
our scenario impedes its model expressiveness. Most of existing
research efforts mainly focus on improving the performance of
LTV prediction by enhancing the feature representation, while the
potential of integrating GW detection and LTV prediction into a
unified framework to make most of their beneficial relationship is
always ignored. These limitations motivate us to propose ExpLTV
that is able to achieve superior performance in both LTV prediction
and GW detection.

Multi-Task Learning.Multi-Task learning (MTL) is a widely
used training paradigm in machine learning [34, 47–49]. It aims to

capture the inner relationships among multiple tasks to improve
the performance of each task. The supervised MTL can be classified
into five main categories: feature learning-based [6, 27], low rank-
based [1, 46], task clustering-based [3, 36], task relation learning-
based [14, 23] and decomposition-based [17, 22] approaches. In
recent years, many sort of works are successful in solving sample
selection bias (SSB) and data sparsity (DS) problems by utilization
of MTL in conversation rate prediction (CVR). Specifically, SSB
is a bias caused by the varied distribution of training space and
inference space. [28] is the first to propose an entire space multi-
task model (ESMM) to eliminate SSB and DS problems in CVR task.
In ESMM, instead of directly optimizing CVR task, two auxiliary
tasks of predicting the post-view click-through rate (CTR) and post-
view click-chrough& conversion rate (CTCVR) are introduced. In-
spired by ESMM, ESM2 [42] decomposes "𝑖𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 → 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒"
into several intermediate behaviours as"𝑖𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 → 𝑐𝑙𝑖𝑐𝑘 →
𝐷 (𝑂)𝐴𝑐𝑡𝑖𝑜𝑛 → 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒". Based on the novel sequential behavior
decomposition, CVR prediction is optimized by modelling multiple
auxiliary tasks instead. Similarly, the SSB and DS problems exist
in game whale detection. In our work, we form a new sequential
behaviour "𝑐𝑜𝑛𝑣𝑒𝑟𝑡 → 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒 → 𝑔𝑎𝑚𝑒𝑤ℎ𝑎𝑙𝑒𝑠", and then trains
two decomposition tasks i.e., purchase rate prediction and game
whale & purchase rate prediction via multi-task learning. Conse-
quently, investigating by the entire samples and abundant auxiliary
supervisory signals, ExpLTV can efficiently address the SSB and
DS issues.

6 CONCLUSION
In this paper, we propose a novel multi-task framework named
ExpLTV to perform LTV prediction and game whale detection. By
investigating the beneficial relationship of LTV prediction and game
whale detection, these two tasks can exert mutually. In game whale
detection, the carefully designed DNN-based detector is expected
to precisely refine game whales and low spenders, which can be
treated as a gating network to decide the optimized patterns of LTV
experts assembling. Meanwhile, the purchase rate estimator trained
by the LTV predictor is used in the GW detector as an auxiliary
task to eliminate SSB and DS problems. The extensive experiments
conducted on three industrial datasets confirm the effectiveness of
ExpLTV over the state-of-the-art baselines on both LTV prediction
and GW detection tasks.
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