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ABSTRACT
Temporal Graph Networks (TGNs) have shown remarkable per-
formance in learning representation for continuous-time dynamic
graphs. However, real-world dynamic graphs typically contain di-
verse and intricate noise. Noise can significantly degrade the quality
of representation generation, impeding the effectiveness of TGNs in
downstream tasks. Though structure learning is widely applied to
mitigate noise in static graphs, its adaptation to dynamic graph set-
tings poses two significant challenges. i)Noise dynamics. Existing
structure learning methods are ill-equipped to address the temporal
aspect of noise, hampering their effectiveness in such dynamic and
ever-changing noise patterns. ii)More severe noise. Noise may
be introduced along with multiple interactions between two nodes,
leading to the re-pollution of these nodes and consequently causing
more severe noise compared to static graphs.

In this paper, we present RDGSL, a representation learning
method in continuous-time dynamic graphs. Meanwhile, we pro-
pose dynamic graph structure learning, a novel supervisory signal
that empowers RDGSL with the ability to effectively combat noise
in dynamic graphs. To address the noise dynamics issue, we intro-
duce the Dynamic Graph Filter, where we innovatively propose
a dynamic noise function that dynamically captures both current
and historical noise, enabling us to assess the temporal aspect of
noise and generate a denoised graph. We further propose the Tem-
poral Embedding Learner to tackle the challenge of more severe
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noise, which utilizes an attention mechanism to selectively turn a
blind eye to noisy edges and hence focus on normal edges, enhanc-
ing the expressiveness for representation generation that remains
resilient to noise. Our method demonstrates robustness towards
downstream tasks, resulting in up to 5.1% absolute AUC improve-
ment in evolving classification versus the second-best baseline.
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1 INTRODUCTION
In recent years, the exploration of graph representation learning
has emerged as a pivotal research area [3, 13, 23, 28, 30, 34]. In
particular, some graphs exhibit dynamic changes in their structure
over continuous time points such as social networks [11] and on-
line shopping networks [32], and this type of graph is commonly
referred to as continuous-time dynamic (or temporal) graph 1 [29].
To address the problem of representation learning in such graphs,
Temporal Graph Networks (TGNs) [12, 17, 18, 22, 27] have been
introduced. These networks employ a memory module to capture
the historical behaviors of nodes, enabling us to leverage their past
information to make predictions about future activities [18].
1For simplicity, we use “dynamic graph” in the following of our paper.
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Figure 1: Noise degrades TGNs’ performance. We simulate
the noise used in [25] on the Reddit dataset [1] and conduct
link prediction task using TGNs [12, 17, 18, 22, 27]. Note that
the red lines represent the performance of our method. For
more implementation details, please refer to Section 5.1.

TGNs have demonstrated good performance, but real-world dy-
namic graphs inevitably contain diverse and complex noise. We
conduct a preliminary experiment on the Reddit dataset [12] to test
how noise impacts the link prediction results of TGNs in Figure 1.
We observe a noticeable reduction in the performance of various
existing TGNs due to the presence of noise. Noise has a negative
impact on the representation generation process of TGNs, thereby
limiting their effectiveness in downstream tasks. Specifically, as
depicted in Figure 2a, when TGNs utilize the message passing mech-
anism [18] to aggregate the information of temporal neighbors, the
presence of noise will be incorporated and aggregated into the
representation, leading to suboptimal outcomes of TGNs [31].

Graph Structure Learning (GSL) has attracted considerable at-
tention as an effective strategy for handling noise in static graphs
[9, 14, 16, 19, 21, 24]. GSL methods generally consist of two com-
ponents: a graph generation module and a Graph Neural Network
(GNN) embedding module. The graph generation module aims to
denoise through a static noise function [4] that evaluates the noise
in static graphs and generates a denoised graph, allowing the GNN
module to be optimized in downstream tasks. This naturally raises
an intuitive thought: whether we can explore a structure learning
method that effectively handles noise in the representation learning
of dynamic graphs.

Despite the effectiveness of GSL methods for denoising in static
graphs, their adaptation to dynamic graph settings presents two sig-
nificant challenges. i) Noise dynamics. In dynamic graphs, noise
demonstrates remarkable dynamics, characterized by chronolog-
ically evolving structure and uncertain variation. GSL methods,
which predominantly focus on static graphs, are ill-equipped to
address the temporal aspect of noise dynamically. The failure to
fully capture and model noise dynamics hampers their effective-
ness in handling the noise of dynamic graphs. ii) More severe
noise. In dynamic graphs, two nodes can interact at different times.
Noise in edges may be introduced along with these multiple inter-
actions, leading to the re-pollution of these nodes [25]. This phe-
nomenon will cause more severe noise compared to static graphs,

There can be multiple edges between two nodes in dynamic graphs. For clarity and
simplicity, we only depict one edge in all the figures of this paper.
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(a) Existing TGNs ignore the noise during representation generation.
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(b) RDGSL can purify noise with structure learning. [This paper]

Figure 2: Comparison of the models ignoring and consider-
ing the noise in dynamic graphs. (a) Noise will be incorpo-
rated and aggregated into representation, reducing TGNs’
performance in downstream tasks. (b) With dynamic graph
structure learning, our proposed RDGSL can purify noise
during the representation generation in dynamic graphs.

and consequently, noise reduction task in dynamic graphs becomes
increasingly laborious for GSL methods. Therefore, a more effective
denoising method tailored to dynamic graphs is imperative.

In this paper, we present RDGSL (Representation Based on
Dynamic Graph Structure Learning), a concrete representation
learningmethod designed to effectively combat noise in continuous-
time dynamic graphs. As illustrated in Figure 2b, we propose dy-
namic graph structure learning, a novel learning method tailored
specifically for dynamic graphs. It is a distinctive supervisory sig-
nal that aims to weaken the adverse effects of noisy edges while
concurrently strengthening the positive impact of normal ones,
empowering RDGSL with denoising capabilities in dynamic graphs.
RDGSL comprises two main components: i) Dynamic Graph Fil-
ter. To tackle the noise dynamics issue, we introduce a dynamic
noise function, a dual-function module proficient in evaluating tem-
poral noise dynamically. Specifically, the dynamic noise function
utilizes a base function to encode and evaluate the current noise
for the incoming edge, and a temporal function to dynamically
capture and model the noise originating from historical interac-
tions. As a result, a noise-reduced dynamic graph is generated. ii)
Temporal Embedding Learner. To address the challenge of more
severe noise, we leverage an attention mechanism that combines
the evaluated temporal noise on the noise-reduced dynamic graph
to obtain representation. Specifically, we leverage the attention
mechanism to selectively turn a blind eye to noisy edges and hence
focus on normal edges, which further increases the expressiveness
for generating an informative representation that remains resilient
to noise.
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In summary, our main contributions are:
• Our approach constitutes the first attempt to investigate structure
learning in continuous-time dynamic graphs, which equips our
method to resist the noise in dynamic graphs.

• We present RDGSL, a concrete method for dynamic graph repre-
sentation learning. Different from existing TGNs, RDGSL focuses
on effectively resisting noise in dynamic graphs.

• We introduce the dynamic noise function, a dual-functionmodule
that dynamically captures the temporal noise in dynamic graphs.
Additionally, we combine an attention mechanism with the eval-
uated temporal noise, further increasing the expressiveness of
our method in noisy dynamic graphs.

• We conduct extensive experiments on real-world datasets to
verify the robustness of RDGSL in noisy dynamic graphs.

2 RELATEDWORK
2.1 Dynamic Graph Representation Learning
Representation learning on static graphs has gained significant
attention recently, but the potential for learning on dynamic graphs
remains largely untapped [18, 25, 33]. Early works such as CTDNE
[17] focus on generating static node representation by constructing
temporal random walks. However, these methods are difficult to
apply to new nodes and edges, failing to depict the ever-changing
nature of dynamic graphs. Therefore, JODIE [12] employs a couple
of recurrent networks and the projection operation to generate
dynamic representation. DyRep [22] and TGAT [27] utilize the at-
tention layers to generate dynamic representation by aggregating
the information from historical neighbors. TGN [18] unifies the ex-
isting methods by generalizing the model into the memory module,
the message-related modules, and the embedding module. PINT
[20] introduces a novel method that leverages position features to
enhance TGN, achieving state-of-the-art performance in dynamic
graph representation learning.

All of these works overlook the presence of noise in real-world
dynamic graphs, where inherent noise in original graphs can sig-
nificantly impair the performance of these methods.

2.2 Graph Structure Learning (GSL)
Existing GSLmethods primarily consist of two components: a graph
generation module and a Graph Neural Network (GNN) module.
The purpose of the graph generation module is to eliminate or
reduce the noise in static graphs and obtain a denoised structure.
Then, the noise-reduced structure is used to optimize the parameter
of the GNN module in node classification tasks [9, 14, 16, 26, 35].
Most GSL methods pay attention to modifying the weights of edges
to optimize the specific graph structure, including increasing the
weights of normal edges and reducing the weights of noisy edges or
eliminating them directly [4, 19, 24]. In general, GSL methods can
be roughly divided into three categories [36]: direct optimization
method [9], probabilistic modelingmethod [14], andmetric learning
method [2]. The metric learning method is the most widely used
recently, which relies on a metric function such as similarity [2, 4]
or Gaussian distribution [14] to learn a weight for every pair of
nodes, absorbing the noise in static graphs.

However, existing GSL methods solely concentrate on static
graphs, leaving the challenge of handling noise in dynamic graphs

unaddressed. Our method can be regarded as the pioneering exten-
sion of graph structure learning to dynamic graph settings.

3 PRELIMINARIES
This section illustrates important notations and terminology defini-
tions in this paper.

3.1 Notations
We summarize the important notations in this paper and their
definitions as displayed in Table 1.

Table 1: Important notations in this paper.

Notations Definitions

e𝑖 𝑗 (𝑡) Feature of edge (𝑖, 𝑗, 𝑡)
𝑤𝑖 𝑗 (𝑡) Weight of edge (𝑖, 𝑗, 𝑡)
S𝑖 𝑗 (𝑡) Dynamic noise filter of edge (𝑖, 𝑗, 𝑡)
ℎ
(𝑙 )
𝑖

(𝑡) Embedding of node 𝑖 in the 𝑙-th embedding layer
z𝑖 (𝑡) Temporal embedding of node 𝑖 at time 𝑡

L𝑇𝐸𝐿 Loss function of Temporal Embedding Learner
L𝐷𝐺𝑆𝐿 Loss function of Dynamic Graph Structure Learning

3.2 Terminology Definitions
Definition 3.1. Dynamic Graph. A dynamic graph is modeled

as a sequence of timestamped events G = {(𝑖1, 𝑗1, 𝑡1), (𝑖2, 𝑗2, 𝑡2), ...},
representing the addition or change of interaction between a pair of
nodes at times 𝑡1 ≤ 𝑡2 ≤ ... . Given node set V = {1, 2, ..., |V|} and
timestamp set T = {𝑡1, 𝑡2, ...}, an event between nodes 𝑖 ∈ V and
𝑗 ∈ V at time 𝑡 ∈ T is represented by a temporal edge (𝑖, 𝑗, 𝑡) ∈ E
(edge set), whose edge feature is e𝑖 𝑗 (𝑡).

A dynamic graph G also can be seen as the edge set E that is
sorted by time order. For the remaining part of this paper, we will
misuse the terminologies of “dynamic graph G” and “edge set E”
interchangeably without distinguishing their differences. Moreover,
nodes 𝑖 and 𝑗 may have multiple interactions at different times, so
we consider (𝑖, 𝑗, 𝑡1) and (𝑖, 𝑗, 𝑡2) as different edges when 𝑡1 ≠ 𝑡2.

Definition 3.2. Dynamic Graph Representation Learning.
Given a dynamic graph G, dynamic graph representation learning
pursues to learn a temporal mapping function 𝑓 : V × T →
R

𝑑 , where 𝑑 is the representation dimension and 𝑑 ≪ |V|. The
intention of the mapping function 𝑓 is to capture the valuable
pattern of the dynamic graph for various downstream tasks.

4 PROPOSED METHOD
In this paper, edges in dynamic graphs could be noisy or disturbed.
Unfortunately, mainstream solutions overlook the presence of noise
in real-world dynamic graphs. This oversight is concerning because
the noise in such error-prone dynamic graphs can significantly
degrade their performance [5]. To address this critical issue, we
propose RDGSL, a novel representation learning method aimed at
effectively absorbing and purifying noise in dynamic graphs.
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Figure 3: The simplified description of denoising in dynamic graphs. (a) A noisy dynamic graph. Note that we omit the timestamp
on edges for convenience. (b) Dynamic noise function. At the current time 𝑡 𝑗 , 𝑣3 has three interactions (𝑣3𝑣1, 𝑣3𝑣4, 𝑣3𝑣6 in “Now”).
We take 𝑣3𝑣4 as an example. Our base function (represented by dash lines) is utilized between 𝑣3 and 𝑣4 to encode the current
noise and evaluate its degree at 𝑡 𝑗 . Meanwhile, our temporal function (represented by solid arrows) dynamically captures and
models the historical noise originating from historical interactions before 𝑡 𝑗 (𝑣3𝑣1, 𝑣3𝑣2 and 𝑣4𝑣5, 𝑣4𝑣2 in “History”), enhancing
the ability to assess the temporal aspect of noise. (c) An edge-weight predictor. With the supervisory signal of dynamic graph
structure learning, noisy edges (𝑣3𝑣6) are more likely to get a lower weight, and normal edges (𝑣3𝑣4 and 𝑣3𝑣1) tend to get a higher
one. (d) A denoised dynamic graph. As time goes on, the noisy graph is purified for representation generation.

Our RDGSL is mainly composed of two modules: the Dynamic
Graph Filter that dynamically evaluates the temporal noise and gen-
erates a denoised graph, and the Temporal Embedding Learner that
conducts representation generation that remains resilient to noise.
Specifically, in the Dynamic Graph Filter, we propose the dynamic
noise function, a dual-function module that dynamically evaluates
and captures both the current and historical noise with the base
function and temporal function, respectively. Consequently, a de-
noised graph is generated. Meanwhile, in the Temporal Embedding
Learner, we leverage an attention mechanism that combines the
evaluated temporal noise from the noise-reduced graph. It enables
us to selectively focus on normal edges rather than noisy edges to
obtain representation, which further increases the expressiveness
of our method in downstream tasks. What’s more, as illustrated in
Figure 3, we propose dynamic graph structure learning, a super-
visory signal that equips our method with denoising capability. It
can weaken the influence of noisy edges meanwhile strengthen-
ing the contribution of normal ones. We represent these crucial
components in the following subsections.

4.1 Dynamic Graph Filter
In this paper, the Dynamic Graph Filter is aimed at dynamically
evaluating the temporal noise and generating a denoised dynamic
graph. We first introduce our dynamic noise function and then con-
struct our Dynamic Graph Filter through an edge-weight predictor.

4.1.1 Dynamic noise function. Given that nodes with similar at-
tributes often connect through normal edges, while noisy edges
tend to link dissimilar nodes, similarity [2, 4] is a commonly used

static noise function to evaluate noise in static graphs. However,
noise in dynamic graphs exhibits dynamics, and using a static noise
function alone cannot effectively capture the temporal aspect of
noise dynamically. To tackle this challenge, we propose a dynamic
noise function that incorporates both a base function and a tempo-
ral function, allowing us to address the temporal noise in dynamic
graphs.

Precisely, like the static noise function, similarity acts as the base
function, effectively encoding and evaluating the current noise
in each incoming edge. In addition, we employ a similarity-based
attention mechanism among historical interactions as the temporal
function, which enables us to capture andmodel the historical noise,
considering the evolving nature of the noise in dynamic graphs.
This dual-function module empowers us to dynamically handle
the temporal noise in dynamic graphs, ensuring the generation of
denoised graphs even amidst the presence of noise fluctuations.

Formally, given an incoming edge, (𝑖, 𝑗, 𝑡), we define dynamic
noise function S𝑖 𝑗 (𝑡) with the embedding of nodes 𝑖 and 𝑗 at time
𝑡 , z𝑖 (𝑡) and z𝑗 (𝑡), which will be discribed in Section 4.2:

S𝑖 𝑗 (𝑡) = 𝑔
(
z𝑖 (𝑡) , z𝑗 (𝑡)

)︸             ︷︷             ︸
base function

+ 𝛽𝑖 𝑗

∑︁
𝑝∈N𝑖 (𝑡 )

𝛼𝑝𝑖 (𝑡)𝑔
(
z𝑝 (𝑡−) , z𝑗 (𝑡)

)
𝜅

(
𝑡 − 𝑡𝑝

)
+

(
1 − 𝛽𝑖 𝑗

) ∑︁
𝑞∈N 𝑗 (𝑡 )

𝛼𝑞𝑗 (𝑡)𝑔
(
z𝑞 (𝑡−) , z𝑖 (𝑡)

)
𝜅

(
𝑡 − 𝑡𝑞

)
︸                                                               ︷︷                                                               ︸

temporal function

,

(1)
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where 𝑔(𝑥,𝑦) = | |𝑥 −𝑦 | |22, 𝑝 ∈ N𝑖 (𝑡) and 𝑞 ∈ N 𝑗 (𝑡) are the histori-
cal neighbors of nodes 𝑖 and 𝑗 , respectively. The term 𝜅

(
𝑡 − 𝑡𝑝

)
=

exp
(
−𝛿

(
𝑡 − 𝑡𝑝

) )
is a time decay function where 𝛿 is a trainable

parameter with the decay rate, and 𝑡𝑝 is the time point when node
𝑖 interact with 𝑝 . 𝛼 and 𝛽 are the proposed self-temporal attention
and cross-temporal attention respectively, and we will describe
them as follows.

Self-temporal attention. The historical noise experienced by
nodes themselves can exert varying effects on their current rep-
resentations. For example, if a node has encountered noisy in-
teractions in the past, it can contaminate its current representa-
tion. Therefore, we introduce the self-temporal attention mech-
anism, enabling our method to capture the historical noise pat-
terns that persist within the nodes themselves. The term 𝑔(𝑝, 𝑗) =
| |z𝑝 (𝑡−) − z𝑗 (𝑡) | |22 represents the similarity between 𝑖’s certain
historical behavior (𝑖, 𝑝, 𝑡𝑝 ) and the current behavior (𝑖, 𝑗, 𝑡), de-
scribing historical noise influence on current event. We define self-
temporal attention as follows:

𝛼𝑝𝑖 (𝑡) = 𝜎
(
𝜅

(
𝑡 − 𝑡𝑝

)
a⊤

[
Wz𝑖 (𝑡) | |Wz𝑝 (𝑡)

] )
, (2)

𝛼𝑝𝑖 (𝑡) =
exp

(
𝛼𝑝𝑖 (𝑡)

)∑
𝑝′∈N𝑖 (𝑡 ) exp

(
𝛼𝑝′𝑖 (𝑡)

) , (3)

where 𝜎 (·) is the sigmoid function. 𝜅
(
𝑡 − 𝑡𝑝

)
is the time decay func-

tion where 𝑝 will have a larger impact on event occurred at 𝑡 if 𝑡𝑝 is
closer to 𝑡 . a andW are learnable parameters, and | | is concatenation
operation. Similarly, we can get the expression of 𝛼𝑞𝑗 (𝑡).

Cross-temporal attention. The historical noise experienced
by the historical neighbors of a node can also have diverse effects
on its current representation. When the historical neighbors of a
node have engaged in noisy interactions in the past, it may pol-
lute the representation of this certain node. Hence, we propose
cross-temporal attention to capture the historical noise patterns in
historical neighbors. Firstly, the information of 𝑖’s neighbors is:

z̃𝑖 (𝑡) = 𝜎
©­«

∑︁
𝑝∈N𝑖 (𝑡 )

𝛼𝑝𝑖 (𝑡)Wz𝑖 (𝑡)ª®¬ . (4)

Then, the average of the time decay is calculated as 𝛿𝑡𝑝 =
1

|N𝑖 (𝑡 ) |
∑
𝑝∈N𝑖 (𝑡 )

(
𝑡 − 𝑡𝑝

)
, and the final cross-temporal attention

represents as follows:

𝛽𝑖 = 𝑠

(
𝜅

(
𝛿𝑡𝑝

)
z̃𝑖 (𝑡)

)
, 𝛽 𝑗 = 𝑠

(
𝜅

(
𝛿𝑡𝑝

)
z̃𝑗 (𝑡)

)
, (5)

𝛽𝑖 𝑗 =
exp(𝛽𝑖 )

exp(𝛽𝑖 ) + exp(𝛽 𝑗 )
, (6)

where 𝑠 (·) is a neural network.

4.1.2 Building Dynamic Graph Filter. To generate a denoised graph,
we assign an edge-weight predictor for each incoming edge. Given
a dynamic graph G, our denoised graph is weighted, and the weight
of a temporal edge (𝑖, 𝑗, 𝑡) is represented as𝑤𝑖 𝑗 (𝑡) ∈ R+. Moreover,
noisy edges on denoised graphs are assigned low weights while
clean edges are assigned high weights. In practice, we compute the
edge weight by a multi-layer procedure (MLP) between nodes 𝑖 and
𝑗 at time 𝑡 with their representations, z𝑖 (𝑡) and z𝑗 (𝑡):

𝑤𝑖 𝑗 (𝑡) = ReLU
(
MLP

(
z𝑖 (𝑡) ∥z𝑗 (𝑡)

) )
, (7)

where ∥ is the concatenation operator. The representation of node
𝑖 at time 𝑡 , z𝑖 (𝑡), is learned from the Temporal Embedding Learner
in Section 4.2 and initialized by the zero vector. For simplicity, we
utilize an MLP as our Dynamic Graph Filter, which benefits from
the training of dynamic graph structure learning and effectively
generates a denoised graph, which will be described in Section 4.3.

4.2 Temporal Embedding Learner
To prevent the issue of more severe noise mentioned before, we
deploy the Temporal Embedding Learner to generate representa-
tions that are robust to noise for downstream tasks. The critical
challenge for this module lies in how to effectively utilize denoised
graphs to enhance the quality of representation generation. To ad-
dress this challenge, we integrate an attention mechanism with
the evaluated temporal noise on the noise-reduced graphs. It can
obtain representation by selectively focusing on aggregating the
neighbors’ information from normal edges instead of noisy edges,
bolstering the effectiveness and expressiveness in handling noisy
dynamic graphs. This integration ensures that our representations
are resilient to noise and well-suited for downstream tasks.

Different from traditional TGN, for each iteration, the memory
module is initialized by the temporal node representation, i.e., z𝑖 (𝑡)
and z𝑗 (𝑡), and the weight of the edge between them, i.e., 𝑤𝑖 𝑗 (𝑡).
Then, we combine an 𝐿-layer temporal graph attention network
[18] with the edge weight we evaluated from Dynamic Graph Filter
to aggregate neighborhood information as:

h(𝑙 )
𝑖

(𝑡) = MLP(𝑙 )2

(
h(𝑙−1)
𝑖

(𝑡)∥h̃(𝑙 )
𝑖

(𝑡)
)
, (8)

h̃(𝑙 )
𝑖

(𝑡) = 𝑅𝑒𝐿𝑈
©­«

∑︁
𝑗∈N𝑖

𝑤𝑖 𝑗 (𝑡)MLP(𝑙 )1

(
h(𝑙−1)
𝑗

(𝑡)


e𝑖 𝑗 

𝜙 (

𝑡 − 𝑡 𝑗
) )ª®¬ ,
(9)

where MLP(𝑙 )1 ,MLP(𝑙 )2 are two different MLPs, e𝑖 𝑗 (𝑡) is the edge
feature and 𝜙 (·) is time encoding presented in [10] and used in [27].
Temporal node representation is recorded as z𝑖 (𝑡) = h(𝐿)

𝑖
(𝑡), and 𝐿

is the number of attention layer.
Existing TGNs utilize link prediction as the self-supervised task

for temporal representation generation. Since we assume edges are
noisy and disturbed in this paper, evolving node classification is
conducted to effectively reduce the impact of noise. This measure
ensures that our method is better equipped to handle noisy dynamic
graphs. Thus, the training loss of Temporal Embedding Learner is
recorded as L𝑇𝐸𝐿 :

L𝑇𝐸𝐿 =
∑︁
𝑖∈V

CE (𝑦𝑖 (𝑡), 𝑦𝑖 (𝑡)), (10)

where CE(·) is the cross-entropy. 𝑦𝑖 (𝑡) = MLP(z𝑖 (𝑡)) is the predict-
ing evolving label of node 𝑖 , and 𝑦𝑖 (𝑡) is the ground truth.

4.3 Dynamic Graph Structure Learning
We propose dynamic graph structure learning to ensure that our
method has the ability to denoise effectively in dynamic graphs. As
previously mentioned, we build Dynamic Graph Filter and Tempo-
ral Embedding Learner in our RDGSL. The challenge of dynamic
graph structure learning is how to conduct a supervisory signal
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to optimize these two components that equip them has the abil-
ity to attenuate the influence of noisy edges while enhancing the
contribution of normal edges.

To address this challenge, we consider the edge weight 𝑤𝑖 𝑗 (𝑡)
for a given temporal edge (𝑖, 𝑗, 𝑡) in dynamic graphs. Specifically,
we modify the edge weight to weaken the impact of noisy edges by
reducing their values while increasing the edge weight of normal
edges to strengthen their contribution. However, directly using an
edge (an event) itself only focuses on the event participants, which
neglects the importance of non-participants. To address this prob-
lem meanwhile controlling the computational cost, negative sam-
pling [15] is introduced: For each incoming edge (𝑖, 𝑗, 𝑡),𝑄 randomly
sampled nodes, {𝑛1, 𝑛2, ..., 𝑛𝑄 } ⊂ V , and equally random-sampled
time points, {𝑡𝑛1 , 𝑡𝑛2 , ..., 𝑡𝑛𝑄 } ⊂ T , are used as negative samples to
construct the negative events, {(𝑖, 𝑛1, 𝑡𝑛1 ), ..., (𝑖, 𝑛𝑄 , 𝑡𝑛𝑄 ))}, which
not happened actually.

Therefore, the positive and negative events are re-weighted by
our method with the supervisory signal based on structure learning.
For a positive sample 𝑗 of node 𝑖 , 𝑗 ∈ N𝑖 , − log𝜎

( S𝑖 𝑗 (𝑡 )
𝜖

)
(𝑤𝑖 𝑗 (𝑡) −

1)2 will be minimized where S𝑖 𝑗 (𝑡) is the dynamic noise function
mentioned in Section 4.1.1 and 𝜖 ∈ R+ is a hyper-parameter to con-
trol it, and 𝜎 (·) is the sigmoid function. If two nodes are similar, they
are more likely to share a clean edge and − log𝜎

( S𝑖 𝑗 (𝑡 )
𝜖

)
would be

large, which will force𝑤𝑖 𝑗 (𝑡) close to one by minimizing this signal.
Instead, if two nodes are dissimilar, they tend to connect with a
noisy edge and − log𝜎

( S𝑖 𝑗 (𝑡 )
𝜖

)
would be small, which will have lit-

tle influence on𝑤𝑖 𝑗 (𝑡) with the signal minimization. Similarly, for a

negative sample 𝑛𝑞 of node 𝑖 , − log𝜎

(
−S𝑖𝑛𝑞

(
𝑡𝑛𝑞

)
𝜖

)
(𝑤𝑖𝑛𝑞 (𝑡𝑛𝑞 )−0)2

will be minimized. If two nodes are dissimilar, − log𝜎

(
−S𝑖𝑛𝑞

(
𝑡𝑛𝑞

)
𝜖

)
would be large, which will force 𝑤𝑖𝑛𝑞 (𝑡𝑛𝑞 ) to zero by minimiz-
ing this signal as expected. In summary, dynamic graph structure
learning is proposed as L𝐷𝐺𝑆𝐿 :

L𝐷𝐺𝑆𝐿 =
∑︁
𝑖∈V

∑︁
𝑗∈N𝑖 (𝑡 )

[
− log𝜎

(S𝑖 𝑗 (𝑡)
𝜖

)
(𝑤𝑖 𝑗 (𝑡) − 1)2

−
𝑄∑︁
𝑞=1

·E𝑛𝑞∼𝑃𝑛 (𝑖 ) log𝜎
©­­«
−S𝑖𝑛𝑞

(
𝑡𝑛𝑞

)
𝜖

ª®®¬ (𝑤𝑖𝑛𝑞 (𝑡𝑛𝑞 ) − 0)2
 ,

(11)
where 𝑛𝑞 ∼ 𝑃𝑛 (𝑖) is the distribution of negative samples of node 𝑖 .

The final training objective of RDGSL is defined as:

argmin
𝜃𝑆 ,𝜃G

L𝑇𝐸𝐿 + 𝛾L𝐷𝐺𝑆𝐿, (12)

where 𝜃𝑆 , 𝜃G are parameters of Dynamic Graph Filter and Temporal
Embedding Learner, respectively, and 𝛾 ∈ R+ is a hyper-parameter
to balance the supervisory signal from dynamic graph structure
learning and the evolving node classification task. The method
proposed in this paper is end-to-end, which can resist the temporal
noise in dynamic graphs with structure learning.

Table 2: Details of datasets.

Datasets #Nodes #Edges #Edge feature Label type

Wikipedia 9,227 157,474 172 editing ban
Reddit 10,984 672,447 172 posting ban
MOOC 7,144 411,749 100 course dropout

4.4 Complexity Analysis
We analyze the time complexity of training RDGSL with respect
to the input data. Denote the number of nodes as ♯V , the edges as
♯E, and the dimension of the input features as 𝑑 . Similar to TGNs
[18], we utilize the memory module to update nodes with edges
and classify them in a recursive manner. The time complexity of the
memory module is O

(
𝑑 · ♯E

)
, which is also the time complexity

of TGNs. If we achieve Dynamic Graph Filter by feeding the input
data from the beginning time to evaluate the temporal noise and
denoise, the corresponding time complexity is:

O ©­«
♯E−1∑︁
𝑒=0

𝑑𝑒
ª®¬ = O

(
𝑑

(
(♯E)2 − ♯E

)
/2

)
= O

(
𝑑 (♯E)2

)
, (13)

which is much higher than the complexity of TGNs.
Therefore, in Dynamic Graph Filter, we record the weight of

edges that have appeared (the memory complexity is O
(
♯E

)
). In

every batch 𝑏, the time complexity is O
(
𝑑 · ♯E (𝑏 )

)
, where E (𝑏 ) is

the edges set of batch 𝑏 to be denoised. Summing the complexity of
all batches up leads to

∑
𝑏 𝑑 · ♯E (𝑏 ) . Thus, the final time complexity

of RDGSL is

O
(
E

[
𝑑 · ♯E +

∑︁
𝑏

𝑑 · ♯E (𝑏 )
])

= O
(
𝑑 · ♯E + 𝑑 · E

[∑︁
𝑏

♯E (𝑏 )
])

= O(2𝑑 · ♯E) = O(𝑑 · ♯E),
(14)

which is the same as TGNs.

5 EXPERIMENTS
5.1 Experimental Settings
5.1.1 Datasets. In this paper, three widely-used real-world dy-
namic graph datasets are employed, including Wikipedia [12], Red-
dit [1] and MOOC [12]. Note that the train-validation-test split
on all datasets is the same as [18], which is convenient for us to
analyze and compare. Data between the train split and validation
or test split has no intersection. The detailed descriptions of our
datasets are shown in Table 2.

5.1.2 Perturbation Methods. For verifying the robustness of our
method under different types of noise, we put forward four pertur-
bation methods on dynamic graphs. Original graph: The dynamic
graph of original datasets, which may exist inherent noise naturally.
Disturb time: Edges are picked randomly with perturbation rate 𝑝 ,
whose timestamps are perturbed by Gaussian noise [25]. Disturb
edge feature:We pick edges with perturbation rate 𝑝 . For every
selected edge, each dimension of their features may be forced to
zero value with probability 𝑝 . Disturb structure: With the rate
𝑝 , original edges are omitted, and fake edges are added randomly
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Table 3: Evolving node classification performance (AUC(%) ± Std) on various types of noisy dynamic graphs with both static
graph methods (above) and dynamic graph methods (below). * denotes the methods that have the ability to denoise. Note that

we abridge the name of perturbation methods due to space limitations.

Models Wikipedia Reddit MOOC
Original Time Feature Structure Original Time Feature Structure Original Time Feature Structure

GraphSage 82.14±0.2 69.88±1.0 73.28±0.6 68.23±0.1 61.62±0.1 55.71±0.3 56.36±0.9 56.01±0.5 62.88±0.1 56.56±0.7 55.19±1.0 54.38±0.6
Pro-GCN* 82.37±0.1 67.88±0.2 72.89±0.1 67.77±0.1 62.28±0.1 57.95±2.4 55.71±0.4 56.29±1.0 60.95±1.0 53.98±1.0 56.10±0.1 54.55±0.8
SimP-GCN* 82.48±0.4 74.87±1.0 79.25±0.2 79.21±0.1 63.03±0.1 58.24±0.1 57.37±0.2 54.60±0.4 63.99±0.6 57.61±0.2 57.20±0.6 55.91±1.0
RSGNN* 83.14±0.1 77.72±0.6 80.04±0.5 75.77±0.6 63.82±0.1 60.38±0.2 58.98±0.5 56.60±0.5 64.49±0.1 59.18±0.1 61.86±0.1 58.33±0.1

CTDNE 75.89±0.5 66.20±0.7 69.31±0.6 60.78±0.5 59.43±0.6 51.95±0.7 54.84±0.6 50.29±0.9 67.54±0.7 56.60±0.8 56.99±0.8 53.89±0.6
DyRep 84.59±2.2 79.96±2.5 76.75±2.1 76.08±2.0 62.91±2.4 56.66±1.9 54.74±2.5 50.62±2.8 67.76±0.5 57.99±1.4 62.62±1.2 60.27±1.2
JODIE 84.84±1.2 80.66±0.8 79.01±0.9 78.49±1.4 61.83±2.7 52.79±2.4 53.84±2.5 49.20±2.5 66.87±0.4 61.83±1.5 62.19±1.5 60.11±1.7
TGAT 83.69±0.7 74.94±0.9 74.60±0.9 72.03±0.5 65.56±0.7 60.61±0.9 60.08±0.5 59.80±0.8 53.95±0.2 52.82±0.7 51.48±0.9 51.38±0.8
TGN 87.81±0.3 79.50±0.4 82.99±0.7 78.77±0.5 67.06±0.9 62.63±0.6 60.30±0.9 57.56±0.8 69.54±1.0 64.82±0.8 64.52±0.9 61.24±0.7
PINT 87.59±0.6 77.86±0.3 81.88±0.4 75.56±0.8 67.31±0.2 62.25±0.3 58.35±1.0 55.26±0.8 68.77±1.1 62.72±1.2 63.81±0.8 59.11±0.2
Ours* 89.85±0.3 86.98±0.2 87.33±0.1 86.10±0.4 68.79±0.8 65.98±0.6 65.43±0.9 64.12±0.9 72.03±0.9 71.10±0.9 71.87±0.9 70.94±0.9

Table 4: Temporal link prediction performance (Accuracy(%) ± Std) on various types of noisy dynamic graphs with dynamic
graph methods.

Datasets Graph CTDNE DyRep JODIE TGAT TGN PINT Ours

Wikipedia

Original graph 79.42 ± 0.4 87.77 ± 0.2 87.04 ± 0.4 88.14 ± 0.2 89.51 ± 0.4 89.95 ± 0.1 89.25 ± 0.4
Disturb time 69.61 ± 0.5 79.22 ± 0.4 80.90 ± 0.6 76.98 ± 0.3 81.36 ± 0.5 76.88 ± 0.4 86.90 ± 0.7

Disturb edge feature 73.07 ± 0.2 77.89 ± 0.3 81.91 ± 0.6 78.72 ± 0.2 81.64 ± 0.2 78.52 ± 0.8 86.51 ± 0.6
Disturb structure 67.88 ± 0.1 76.49 ± 0.4 79.19 ± 0.4 76.10 ± 0.2 80.09 ± 0.7 76.42 ± 0.1 85.10 ± 0.7

Reddit

Original graph 73.76 ± 0.5 92.11 ± 0.2 90.91 ± 0.3 92.92 ± 0.3 92.56 ± 0.2 91.39 ± 0.1 93.28 ± 0.3
Disturb time 68.92 ± 0.6 83.11 ± 0.3 81.49 ± 0.4 79.33 ± 0.3 83.21 ± 0.3 81.40 ± 0.2 91.58 ± 0.4

Disturb edge feature 69.61 ± 0.5 82.95 ± 0.3 83.17 ± 0.3 81.87 ± 0.3 82.07 ± 0.5 79.86 ± 0.2 91.22 ± 0.2
Disturb structure 68.22 ± 1.0 79.79 ± 0.1 83.84 ± 0.2 78.63 ± 0.4 83.89 ± 0.1 82.38 ± 0.6 90.07 ± 0.6

MOOC

Original graph 65.34 ± 0.7 73.36 ± 0.4 76.45 ± 0.6 75.20 ± 0.5 81.83 ± 0.6 80.98 ± 0.1 81.62 ± 0.2
Disturb time 59.42 ± 0.8 66.91 ± 0.5 67.20 ± 1.0 71.51 ± 0.7 75.91 ± 0.7 70.65 ± 0.2 79.76 ± 0.5

Disturb edge feature 57.81 ± 0.9 64.28 ± 0.4 69.01 ± 0.5 65.11 ± 0.4 75.48 ± 0.6 75.28 ± 0.2 80.21 ± 0.4
Disturb structure 56.08 ± 1.3 64.81 ± 0.5 66.82 ± 0.6 62.89 ± 0.4 73.18 ± 0.7 72.39 ± 0.1 79.97 ± 0.5

in dynamic graphs. The perturbation method used in our experi-
ments is widely used in static graphs denoising field [2, 4], which
simulates the real-world scenario and also provides a controlled
environment. Our perturbation method can evaluate and compare
the ability of different methods in handling noisy dynamic graphs.

5.1.3 Baselines. Our baselines are from two fields: static graph
methods and dynamic graph methods. The static graph methods
aim to evaluate the denoising ability of our method, including
GraphSage [6], Pro-GCN [9], SimP-GCN [8], RSGNN [2]. Specifi-
cally, GraphSage is a highly effective static graph method that is
often used as a baseline to compare with dynamic graph methods,
and Pro-GCN is a classic denoising method with structure learning
in static graphs. RSGNN and SimP-GCN are the state-of-the-art
static structure learning methods used for denoising, both of which
utilize similarity as the static noise function. To adapt static graph
methods to dynamic graph settings, in practice, for one epoch, we
divide the timestamps in dynamic graphs into several time inter-
vals. We then record the events and labels that appeared before the
end of each interval, which enables us to construct static graphs
for conducting node classification tasks using these static graph

methods. Afterward, we utilize the LSTM [7] to update the node
representations as the initial node features for the next intervals.
Repeat these steps until the end of the data. On the other hand,
state-of-the-art dynamic graph methods in representation learning
are chosen as follows: CTDNE [17], DyRep [22], JODIE [12], TGAT
[27], TGN [18], PINT [20]. The detailed discrimination of dynamic
graph methods is omitted due to space limitations. It is worth not-
ing that all of the static graph methods are primarily designed for
node classification tasks, thus, in our evaluation, we do not consider
them in the evaluation of the temporal link prediction task.

5.2 Evolving Classification on Noisy Graphs
We begin our study by employing four perturbation methods (men-
tioned in Section 5.1.2) on each of our three dynamic graphs. The
perturbation probability 𝑝 for all methods is set to 0.4. As a result,
we generate a total of 12 dynamic graphs, each containing noise.
We then proceed to conduct the evolving node classification task on
these noisy dynamic graphs and report the results in terms of AUC
ROC. Importantly, we maintain consistent experimental settings
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(b) Reddit.

Figure 4: Robustness under different levels of perturbation rates with structure perturbation and time perturbation.

with TGN [18], and for all baselines on the original graphs, we refer
to their corresponding table numbers as reported in [18].

Our experimental results are shown in Table 3. Notably, RDGSL
outperforms all other baselines on both the original graphs and the
perturbation graphs, highlighting the remarkable effectiveness of
RDGSL. Moreover, when noise is introduced, the impact of noise
on RDGSL’s performance is negligible, whereas the baselines ex-
hibit a considerable decline, underscoring RDGSL’s successful noise
absorption capabilities. Among the baselines, most static graph
methods, despite having denoising capabilities, have suboptimal
results compared to dynamic graph methods. This may be because
static graph methods are unable to effectively capture the temporal
noise in dynamic graphs, leading to lower performance.

5.3 Link Prediction on Noisy Graphs
In addition to evolving classification, the temporal representations
we obtained can also be effectively utilized in the link prediction
task. For this task, we consider the current edges as positive samples
and randomly sample an equal number of negative edges that do
not exist. Subsequently, we train a two-layer MLP to classify these
positive and negative edges, yielding the probability of whether
the edge occurs or not, as done in TGN [18].

The accuracy results are presented in Table 4. In the case of orig-
inal graphs, RDGSL achieves the highest accuracy among all base-
lines on Reddit and also remains highly competitive on Wikipedia
and MOOC. It may be owing to the fact that the inherent noise
in Reddit is strong, leading to poor performance in baselines but
RDGSL. Notably, for perturbation graphs, RDGSL consistently out-
performs all baselines by a significant margin, which demonstrates
that RDGSL achieves more satisfactory results under more devas-
tating noise.

5.4 Robust of Different Perturbation Rates
We design a comprehensive set of experiments to assess the per-
formance of RDGSL under varying levels of perturbation rates.
Specifically, we explore perturbation rates ranging from 0 to 0.5
with an interval of 0.1. Due to the consistent findings across datasets,
perturbation methods, and downstream tasks, we only present the
test AUC results for evolving node classification conducted on
Wikipedia and Reddit with structure and time perturbation.

(a) Wikipedia. (b) MOOC.

Figure 5: Distribution of edge weights on noisy/normal edges.

The results are visually depicted in Figure 4. Notably, RDGSL
consistently outperforms all other baselines across all perturba-
tion rates. As the perturbation rate increases, the effectiveness of
all baselines significantly declines. Conversely, RDGSL exhibits
remarkable stability even under higher perturbation rates, show-
casing its robustness and providing further evidence of RDGSL’s
capacity to effectively denoise on noisy dynamic graphs.

5.5 Analysis of the Denoised Graphs
To provide insights into how RDGSL effectively distinguishes and
assigns weights to edges in dynamic graphs, we conduct an analysis
of the edge weight distribution in the denoised graphs. Specifically,
we extract the weights of edges in the denoised graphs obtained
from the best epoch of the Dynamic Graph Filter. Subsequently, we
plot the distribution of edge weights of normal edges (the edges we
do not disturb) and noisy edges separately. Note that our method
itself does not have prior knowledge about whether a given edge is
normal or noisy.

The results obtained on Wikipedia and MOOC are displayed in
Figure 5. We observe that the weights assigned to normal edges are
notably larger than those to noisy edges. It suggests that the influ-
ence of normal edges is significantly greater, highlighting RDGSL’s
remarkable capacity to effectively absorb and purify noise in dy-
namic graphs. Moreover, it is interesting to note that even in the
case of normal edges, there still exist many edges with relatively
low weights. It may be attributed to the fact that normal edges
that we do not disturb may also contain inherent noise, prompting
RDGSL to assign them lower weights to mitigate their potential
adverse effects.
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Figure 6: Ablation study on structure and time perturbation.

5.6 Ablation Study
We conduct ablation experiments by analyzing the contribution
of various components in RDGSL. In detail, we conduct four vari-
ants including the RDGSL-DGF, the RDGSL-TEL, the RDGSL-Sim,
and the w/o DGSL. The RDGSL-DGF only contains the Dynamic
Graph Filter module to verify its impact on our method, while the
RDGSL-TEL preserves the Temporal Embedding Learner to test its
contribution to the final results. Furthermore, we also implement
RDGSL-Sim where we replace the dynamic noise function with the
traditional GSL-based static noise function [2, 4]. With the com-
parison between the RDGSL and the RDGSL-Sim, the advantage
of our dynamic noise function could be presented. Moreover, we
set 𝛾 = 0 in Equation 12 to perform the w/o DGSL, examining the
effectiveness of dynamic graph structure learning.

The test AUC results under different levels of structure perturba-
tion and time perturbation on Wikipedia are presented in Figure 6.
Remarkably, RDGSL achieves the highest performance when uti-
lizing all components, and the performance declines when each
component is removed or replaced with the existing ones. Notably,
RDGSL-Sim exhibits inferior performance compared to RDGSL.
This outcome substantiates the effectiveness of our proposed dy-
namic noise function, which dynamically captures the temporal
aspect of noise in dynamic graphs. Furthermore, as the perturbation
rate increases, RDGSL remains stable, whereas w/o DGSL experi-
ences a significant decline, further validating the robustness and
effectiveness of dynamic graph structure learning.

5.7 Sensitivity Analysis
We perform comprehensive experiments to investigate the key
hyper-parameters in RDGSL. Concretely, we explore the impact of
four important hyper-parameters: 𝛾 that controls dynamic graph
structure learning (Equation 12),𝑄 that presents the number of neg-
ative samples (Equation 11), ℎ that denotes the number of sampled
neighbors (Section 4.1.1), and 𝜖 that controls the influence of dy-
namic noise function (Equation 11). We conduct these experiments
on the evolving node classification task using the original graph
and structure perturbation on Wikipedia. The results are shown in
Figure 7. We observe that a larger value of 𝛾 leads to higher AUC
in original graphs, but the trend is opposite in perturbation graphs.
We speculate this may be caused by noise levels in graphs: the
noise in perturbation graphs is more severe, which could diminish
our method’s noise reduction capability under high 𝛾 . Moreover,
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Figure 7: Sensitivity analysis on Wikipedia.

increasing the number of negative neighbors (𝑄) enhances the per-
formance of our method, and the contributions of 𝜖 and ℎ to RDGSL
exhibit an initial increase and then a decrease.

6 CONCLUSION AND FUTUREWORK
In this paper, we present RDGSL, a concrete dynamic graph rep-
resentation learning method with structure learning. We further
propose dynamic graph structure learning, a supervisory signal
tailored for dynamic graphs that equips our method with denoising
ability. Our dynamic noise function is able to dynamically capture
the temporal noise and then generate a denoised graph. Meanwhile,
our attention mechanism can generate representation that remains
resilient to noise, increasing the expressiveness of our method in
noisy dynamic graphs. For future work, the noise we assumed in
this paper is mainly in edges, while studying the noise in nodes’
attributes is also one of the most vital directions in the future.
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