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ABSTRACT
Poster layout is a crucial aspect of poster design. Prior methods pri-
marily focus on the correlation between visual content and graphic
elements. However, a pleasant layout should also consider the rela-
tionship between visual and textual contents and the relationship
between elements. In this study, we introduce a relation-aware diffu-
sion model for poster layout generation that incorporates these two
relationships in the generation process. Firstly, we devise a visual-
textual relation-aware module that aligns the visual and textual
representations across modalities, thereby enhancing the layout’s
efficacy in conveying textual information. Subsequently, we pro-
pose a geometry relation-aware module that learns the geometry
relationship between elements by comprehensively considering
contextual information. Additionally, the proposed method can
generate diverse layouts based on user constraints. To advance
research in this field, we have constructed a poster layout dataset
named CGL-Dataset V2. Our proposed method outperforms state-
of-the-art methods on CGL-Dataset V2. The data and code will be
available at https://github.com/liuan0803/RADM.

CCS CONCEPTS
• Computing methodologies→ Neural networks.
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1 INTRODUCTION
Poster layout generation aims to predict the position and category
of graphic elements on the image, which is important for visual
aesthetics and information transmission of posters. Due to the need
to consider both graphic relationships and image compositions
when creating high-quality poster layouts, this challenging task
is usually completed by professional designers. However, manual
design is often time-consuming and financially burdensome.

To generate high-quality poster layouts at low cost, automatic
layout generation has become increasingly popular in academia and
industry. With the advent of deep learning, some content-agnostic
methods [9, 10, 12, 13, 15, 30] are proposed to learn the internal
relationship of graphic elements. However, these methods priori-
tize the graphic relationships between elements and overlook the
impact of visual content on poster layout. Therefore, applying these
methods directly to poster layout generation can negatively impact
subject presentations, text readability and the visual balance of the
poster as a whole. To address these issues, several content-aware
methods [4, 16, 34] generate layouts based on the visual contents of
input background images. ContentGAN [16] leverages visual and
textual semantic information to implicitly model layout structures
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Figure 1: The visual examples of poster layout produced by
CGL-GAN[34] and ours.

and design principles, resulting in plausible layouts. However, Con-
tentGAN lacks spatial information. To overcome this limitation,
CGL-GAN [34] combines a multi-scale CNN and a transformer
to extract not only global semantics but also spatial information,
enabling better learning of the relationship between images and
graphic elements.

Despite their promising results, two relationships still require
consideration in poster layout generation. On one hand, text plays
an important role in the information transmission of posters, so
the poster layout generation should also consider the relationship
between text and vision. As shown in the first row in Fig. 1, ignoring
text during layout generation will result in the generated layout not
being suitable for filling the given text content. On the other hand,
a good layout not only needs to consider the position of individual
elements, but also the coordination relationship between elements.
As shown in the second row in Fig. 1, considering the geometric
relationships between elements can work better on graphic metrics.

In this paper, we propose a relation-aware diffusion model for
poster layout generation as depicted in Fig. 3, considering both
visual-textual and geometry relationships. As diffusion models have
achieved great success in many generation tasks [1, 2, 26, 32], we
follow the noise-to-layout paradigm to generate poster layout by
gradually adjusting noisy layout via the learned denoising model.
In each sampling step, given a set of boxes sampled in Gaussian
distribution or the estimated boxes from the last sampling step as
input, we extract RoI features from the feature map generated by
the image encoder. Then a Visual-Textual Relation-Aware Module
(VTRAM) is proposed to model the relationship between visual
and textual features, which makes the layout result determined by
both the image and text content. Meanwhile, we design a Geometry
Relation-AwareModule (GRAM) to enhance the features of each RoI
based on its relative position to other RoIs. This enables themodel to
better understand the contextual information of graphic elements.
Finally, the position and category of elements are determined by
the outputs of VTRAM and GRAM, as well as the RoI features.
The predicted results are sent to the next step to progressively
refine themselves. Benefiting from the newly proposed VTRAM

and GRAM, users can regulate the layout generation process by
predefining layouts or adjusting text content.

To summarize, the contributions of our work are listed below:
• We propose a novel visual-textual relation-aware module
to study the relationship between visual and textual infor-
mation, which makes the generated layout results easier for
posters to convey text information.

• A geometry relation-aware module is used to explicitly learn
the geometric relationships between elements, so that each
element can consider the context more comprehensively.

• To promote research in this field, we extend the dataset
proposed in CGL-GAN [34] to CGL-Dataset V2 by adding
text content annotations. Extensive experiments show that
our method outperforms state-of-the-art methods, and can
generate layout based on user constraints.

2 RELATEDWORK
2.1 Layout Generation
In recent years, there has been a surge of interest in the field of
layout generation. Researchers have been exploring new techniques
and algorithms to automate the process of designing layouts for
various applications, such as web design [14, 22], graphic design
[3, 33, 34], and even interior design [31]. Various techniques have
been proposed to generate layouts automatically that are visually
appealing and semantically meaningful. Prior approaches can be
roughly divided into two subcategories: rule-based and template-
based methods. Rule-based methods [3, 21, 22] define a set of rules
that govern the placement of various elements in a layout. These
rules are based on design principles and heuristics that have been
established by experts in the field. Template-based methods [11, 24]
involve using pre-defined templates to generate layouts that con-
form to specific design patterns. However, the methods mentioned
above require professional knowledge and the generated layouts
usually lack diversity. According to whether the visual content
is considered, we divide the deep generative models into two cat-
egories: content-agnostic and content-aware methods. Content-
agnostic methods usually yield layouts with visual balance and
symmetry as there are fewer constraints, making them suitable
for documents, user interfaces, and publication generation. Layout-
VAE [12], which utilizes Variational Autoencoders, is a method that
learns to produce layouts based on the categories of elements. To
further improve the quality of the generated layouts, transform-
ers [13, 30] are used in the generation task. Due to the attention
mechanism, transformer-based methods are capable of implicitly
learning the relationships between elements.

Nonetheless, content-agnostic methods tend to have inadequate
performance when it comes to layout generation tasks that require
comprehension of given content. To solve the problem, content-
aware methods are proposed for specific tasks. ContentGAN [33]
is the first model to incorporate both visual and textual semantics
in the generation of magazine layouts. It used Generative Adver-
sarial Networks (GANs) to learn complicated layout structures and
generate layouts from noise, which enables the diversity of layouts.
However, the lack of spatial information and detailed features of the
image leads to unsatisfactory layout results under complex back-
ground conditions. More recently, transformer-based models such
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Figure 2: (a) Poster layout annotation. Different colors represent different element types, the text annotation results are in the
gray box, and the English translation is in brackets; (b) Clean image; (c) Input for inference stage.

as CGL-GAN [34] and LCVT [4] have been introduced for stronger
layout capabilities. Although these methods introduce spatial visual
information and domain alignment information respectively, they
do not consider the impact of text content on layout and how to
more accurately model the positional relationship between layout
elements. Different from the above methods, we introduce visual
and textual prior knowledge to generate layouts and consider geo-
metric relation priors to strengthen the feature expression between
layout elements.

2.2 Diffusion Models
In recent years, diffusion models [8, 27] have gradually become the
focus of generative tasks because of their impressive high-quality
generative capabilities. The diffusion and denoising processes are
key components of this approach. Diffusion refers to the gradual
transformation of an initial image into a final noisy image through
a series of small, random perturbations. Denoising, on the other
hand, is the process of learning to remove noise from the image to
actual distribution. Besides image generation, Diffusion models are
gaining momentum in various fields and showing promising perfor-
mance. DiffusionDet [5] is the first to apply diffusion model for the
task of object detection. InST [32] implemented Inversion-Based
Style Transfer with Diffusion Models. Video LDM [2] achieved
high-resolution video generation by training a diffusion model in a
compressed low-dimensional latent space. Naturally, the diffusion
model is also introduced into the field of layout generation. Lay-
outDM [10] uses a discrete diffusion model to predict the attributes
of elements like category and position. LDGM [9] unifies uncondi-
tional and conditional generation in a single diffusion model. But
these methods are oblivious to input contents and perform poorly
in poster layout generation. By introducing a multimodal diffusion
model, our method can align the image and texts and produce more
visually convincing posters.

3 CGL-DATASET V2
CGL-Dataset V2 is a dataset for the task of automatic graphic layout
design of advertising posters, containing 60,548 training samples

and 1035 testing samples. It is an extension of CGL-Dataset [34].
The original CGL-Dataset contains 4 types of elements: logos, texts,
underlays and embellishments as shown in Fig. 2 (a). Each element
consists of category and coordinates information. However, it does
not include text content annotations, which have a crucial impact
on the layout of posters. As shown in Fig. 2 (a), to study the influ-
ence of content, we supplementally annotate the textual content.
In the training set, in order to obtain a clean background image for
model training, we use an inpainting model [28] to erase layout
elements, and the result is shown in Fig. 2 (b). The text information
is not provided in the test set of the original CGL-Dataset, so we
additionally collect 1035 poster images with usable textual descrip-
tions to replace the original test set. As shown in Fig. 2 (c), the
collected poster images are processed the same as the training set
to get a clean background image. Meanwhile, we collected all the
promotional slogans of the current product for analysis of different
textual content for poster layout impact. Since the collected text
content is more focused on the e-commerce field, we use a pre-
trained model based on massive e-commerce text corpus training
to extract textual features. The extraction method is detailed in
section 4.2. For convenience, we will publish the language model
for extracting textual features.

4 METHOD
The overview of our method is shown in Fig. 3. The proposed
method is composed of four parts: feature extractor, Visual-Textual
Relation-Aware Module (VTRAM), Geometry Relation-Aware Mod-
ule (GRAM) and layout decoder. The feature extractor extracts
features from text and images respectively. Then VTRAM models
the visual and textual relationship for superior layouts. Meanwhile,
GRAM is used to strengthen the ability to express the positional
relationship between each RoI feature. Finally, based on the out-
puts of VTRAM and GRAM, as well as the RoI features, the layout
decoder predicts the coordinates and category of elements. Next,
we will introduce the process of applying the diffusion mechanism
to poster layout generation and the details of the four parts.
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Figure 3: The overview of our method, which contains four parts: feature extractor, VTRAM, GRAM and layout decoder.

Figure 4: Inspired by diffusion denoising process, from left to
right, we formulate the poster layout generation as a process
to gradually refine the position and size of boxes from step
𝑇 to step 𝑖.

4.1 Poster Layout Generation with Diffusion
Model

Diffusion models are a class of probabilistic generative models that
convert noise to a representative data sample by using Markovian
chain. As shown in Fig. 4, we formulate the poster layout genera-
tion problem as a noise-to-layout generative process by gradually
adjusting the noise layout with a learned denoising model. The
poster layout generated by the diffusion model also includes two
processes: the diffusion process and the denoising process. Given a
poster layout, we gradually add Gaussian noise to corrupt the deter-
ministic layout result, we call this operation the diffusion process.
Instead, given an initial random layout, we obtain the final poster
layout by stepwise denoising, which is called the denoising process.
Next, we will introduce the diffusion process and the denoising
process respectively.

4.1.1 Diffusion Process. 𝑥0 is a set of layout elements, each el-
ement consists of coordinates (𝑥,𝑦,𝑤,ℎ), where 𝑥,𝑦,𝑤,ℎ repre-
sent the horizontal center, vertical center, width and height of the
rectangular box, respectively. We get sample data 𝑥0 from a true
data distribution 𝑞(𝑥) and gradually add Gaussian noise to sample
data in each step 𝑖 . We get a sequence of intermediate samples
𝑥1, · · · , 𝑥𝑖 , · · · , 𝑥𝑇 . The noise is controlled by the variance schedule

𝛽 (𝛽𝑖 ∈ (0, 1)).

𝑞(𝑥𝑖 |𝑥𝑖−1) = N(𝑥𝑖 ;
√︁
1 − 𝛽𝑖𝑥𝑖−1, 𝛽𝑖 I),

𝑞(𝑥1:𝑇 |𝑥0) =
𝑇∏
𝑖=1

𝑞(𝑥𝑖 |𝑥𝑖−1).
(1)

With the nice property found by [8], we can directly sample 𝑥𝑖 at
any arbitrary time step 𝑖 as:

𝑞(𝑥𝑖 |𝑥0) = N(𝑥𝑖 ;
√︁
𝛼𝑖𝑥0, (1 − 𝛼𝑖 )I),

𝛼𝑖 =

𝑖∏
𝑗=1

(1 − 𝛽 𝑗 ).
(2)

4.1.2 Denoise Process. These conditional probabilities 𝑞(𝑥𝑖−1 |𝑥𝑖 ),
however, are intractable. Instead, we train amodel 𝑓𝜃 (𝑡, 𝑥𝑡 , 𝐼𝑖𝑚𝑔, 𝐼𝑡𝑒𝑥𝑡 )
to approximate the reverse process, where 𝐼𝑖𝑚𝑔 is visual input, 𝐼𝑡𝑒𝑥𝑡
is textual input, the 𝑓𝜃 reconstructs 𝑥0 from 𝑥𝑡 , combining visual
and textual input. More specifically, in our work, the 𝑥0 is no longer
an image but a layout annotation consisting of 𝑁 bounding boxes.
In inference, starting from random boxes, our model gradually
modifies the position and size of boxes until a plausible layout is
formed.

4.2 Feature Extractor
4.2.1 Image Encoder. Given a clean background image, we use
ResNet-50 [7] with the Feature Pyramid Network (FPN) [17] to
extract visual features. ResNet-50 has gained widespread popularity
due to its exceptional performance in computer vision. Besides, we
use FPN to produce multi-scale feature maps 𝐹 , which consist of
image features from low level to high level. Based on 𝐹 , we extract
RoI features [6] 𝑉 with proposal 𝑥 as follows:

𝑉 = 𝑅𝑜𝐼𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝐹, 𝑥), (3)

where the shape of 𝑉 is (𝐶,𝑊 ,𝐻 ). In the training stage, the RoI
feature comes from the real layout with Gaussian noise added, and
it derives by random layout denoising in the inference stage.
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4.2.2 Text Encoder. Given all the promotional slogans of the prod-
uct on a poster, we extract textual features through a pre-trained
language model RoBERTa [19]. We note that the product descrip-
tion is not simply repeating the product name, but highlighting the
selling points of the product. For instance, if you want to promote
a computer, you describe it as "high CPU performance" without
mentioning "computer". Therefore, it is important to narrow the
gap between the product description and the product itself. To
address the problem, we gathered a vast product corpus of 200
million items from JD.com and adapt the same pretraining strategy
which comprises Masked Language Model (MLM), Attribute-Value
Prediction (AVP), and Tertiary Category Prediction (TCP) to fine-
tune RoBERTa. For MLM, we randomly mask certain words from
the input product title and feed it into the language model. This
allows the model to predict the original sentence accurately. AVP
and TCP are used to predict the value of a product based on its
attribute and tertiary category. AVP is utilized to extract product
values from the product description by utilizing product attribute
queries. TCP involves the analysis and assessment of product in-
formation to determine the appropriate category. In order to let
the model perceive the relationship between text length and layout,
we supplement textual length embedding as a part of text features.
Finally, we fuse the content features and length features of the text
by concat operation, as the output of the text encoder, denoted as
𝐿 ∈ R𝐷𝑛×𝑑 . It is worth noting that our method is not limited to
Chinese. Migrating to another language only requires replacing the
text encoder here.

Figure 5: The overview of the VTRAM. As illustrated in the
figure, it takes as input text features, RoI features and cor-
responding coordinates. The coordinate information is first
embedded into RoI features to get 𝑉𝑖𝑝 . Next, the scaled dot-
product attention[29] is calculated using the visual position
feature 𝑉𝑖𝑝 as the query, and text features 𝐿 as the key and
value.

4.3 Visual-Textual Relation-Aware Module
Instead of concatenating visual features and text features directly,
we design a visual-textual relation-aware module to align the fea-
ture domain of the image and texts. The module is aware of the
relationship between visual and textual elements and makes op-
timal use of features from both images and texts. This allows for
a more comprehensive understanding of the content. In order to
ensure a constant number of texts, we employ a method of padding
additional vectors to reach a fixed number 𝐷𝑛 . This approach offers
the advantage of allowing our model to process texts of varying
lengths.

Fig. 5 depicts the pipeline of VTRAM, which performs the multi-
modal fusion of each RoI features 𝑉𝑖 ∈ R𝐶×𝑊 ×𝐻 and linguistic
features 𝐿 ∈ R𝐷𝑛×𝑑 in two steps. First, to add explicit position
information in visual features, the RoI feature 𝑉𝑖 and its corre-
sponding position embedding are concatenated to get the visual
position feature 𝑉𝑖𝑝 :

𝑉𝑖𝑝 = 𝑉𝑖

⊕
𝑃𝑔 (𝐺𝑖 ), (4)

where the 𝑃𝑔 is the project function,𝐺𝑖 is the coordinate of the 𝑖-th
RoI.

Second, we use visual position feature 𝑉𝑖𝑝 as the query and
linguistic feature maps 𝐿 as the key and value:

𝑉𝑖𝑞 = 𝑃𝑞 (𝑉𝑖𝑝 ),
𝐿𝑘 = 𝑃𝑘 (𝐿),
𝐿𝑣 = 𝑃𝑣 (𝐿),

(5)

where the 𝑃𝑞 , 𝑃𝑘 , 𝑃𝑣 are the 1 × 1 convolution function to convert
the vectors into proper shape.

We calculate the final multi-modal feature𝑀𝑖 as follows:

𝑀𝑖 = 𝑃𝑜 (𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (
𝑉𝑇
𝑖𝑞
𝐿𝑘

√
𝐶

)𝐿𝑇𝑣 ), (6)

where the 𝑃𝑜 is also a 1 × 1 convolution function. The multi-modal
feature𝑀𝑖 gathers textual information that is closely related to RoI
features, making visual features textual-aware.

4.4 Geometry Relation-Aware Module
We construct RoI features combining the results of the denoising
process and image features, but these features of RoI are indepen-
dent. To strengthen the position-aware relationship between RoI
features, we designed Geometry Relation-Aware Module (GRAM)
to allow the model to better learn the content information relation-
ship between graph elements. The details are as follows. Firstly,
given 𝑁 RoIs, the relative position feature 𝑅𝑖 𝑗 of two boxes 𝑙𝑖 and
𝑙 𝑗 (𝑖, 𝑗 ∈ {1, 2, . . . , 𝑁 }) is calculated as :

𝑅𝑖 𝑗 = [ log(
|𝑥𝑖 − 𝑥 𝑗 |

𝑤 𝑗
), log(

|𝑦𝑖 − 𝑦 𝑗 |
ℎ 𝑗

), log(𝑤𝑖

𝑤 𝑗
), log( ℎ𝑖

ℎ 𝑗
)] . (7)

Then, the 4-dimensional vectors are embedded to geometry weights
by sin-cos encoding method [29] as 𝑅𝑝𝑖 𝑗 .

𝑃𝐸 (𝑝𝑜𝑠,2𝑘 ) = sin( 𝑝𝑜𝑠

100008𝑘/𝑑ℎ
),

𝑃𝐸 (𝑝𝑜𝑠,2𝑘+1) = cos( 𝑝𝑜𝑠

100008𝑘/𝑑ℎ
),

𝑅𝑝 = 𝑃𝐸 (𝑅),

(8)
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Figure 6: The overview of GRAM. It exploits the relative po-
sitional relationships between elements. The input consists
of two parts: relative position features 𝑅 and RoI features 𝑉 .

where the 𝑝𝑜𝑠 is the position and𝑘 is the dimension. The𝑑ℎ we set in
our experiment is 64. Finally, the geometry weights are normalized
by the softmax function which prunes the weak pairwise relation
and focuses more on the strong ones.

𝑊 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑅𝑝 ) . (9)

What we need to emphasize is that there are different positioning
strategies for different types of elements. The underlay should cover
others while the rest elements should avoid overlapping. Therefore,
we use extracted RoI features as element category information. To
merge the position and category information, the extracted visual
features𝑉 are flattened and transformed to vectors in 𝑑𝑡 dimension
by project function 𝑃 . Finally, the visual embeddings multiply the
geometry weights to get the final geometry features 𝑇 :

𝑇 =𝑊 · 𝑃 ((𝑉 ′)), (10)

where 𝑉 ′ is the flattened form of 𝑉 .

4.5 Layout Decoder
Similar to the task of object detection, the layout decoder predicts
the category and coordinates of elements based on various types of
RoI features. We construct the whole input of the layout decoder
by fusing the outputs of VTRAM and GRAM, as well as the RoI
features. The above process can be expressed as follows:

𝐼𝑑𝑒𝑐𝑜𝑑𝑒𝑟 = 𝑀
⊕

𝑇
⊕

𝑉 , (11)

where 𝐼𝑑𝑒𝑐𝑜𝑑𝑒𝑟 represents the input of layout decoder, 𝑀 is the
output of VTRAM,𝑇 is the output of GRAM and𝑉 refers to the RoI
features.

⊕
represents the fusion method of features, the concat

fusion used here. Then, these fused features are sent to the detec-
tion heads of bounding box regression and category prediction
respectively to get the final coordinates and categories. Based on
the above detection head results, we use box regression and classi-
fication losses to narrow the gap between the model’s predictions
and the ground truth, respectively. Meanwhile, in order to avoid
excessive overlap between predicted boxes, we supplement giou
loss as a penalty. The final weighted loss function is composed as
follows:

𝐿𝑜𝑠𝑠 = 𝛼𝑐𝑙𝑠 ∗ 𝐿𝑐𝑙𝑠 + 𝛼𝐿1 ∗ 𝐿𝐿1 + 𝛼𝑔𝑖𝑜𝑢 ∗ 𝐿𝑔𝑖𝑜𝑢 , (12)

where 𝐿𝑐𝑙𝑠 , 𝐿𝐿1 and 𝐿𝑔𝑖𝑜𝑢 respectively adopt focal loss [18], L1
loss and generalized IoU loss [25]. 𝛼𝑐𝑙𝑠 , 𝛼𝐿1 and 𝛼𝑔𝑖𝑜𝑢 are weight
coefficients for three different types of losses, which are set to 5, 5,
and 1 respectively in this paper.

5 EXPERIMENT
In this section, we will compare the performance of our method
and the SOTA method from both qualitative and quantitative per-
spectives.

5.1 Implementation Details
We implement the proposed method using Pytorch [23] and set the
maximum diffusion step for sampling and denoising to 1000. Our
model is trained using the AdamW [20] optimizer with the initial
learning rate as 2.5×10−5 and the weight decay as 10−4. We train
the model for 100 epochs with batch size 16 on NVIDIA P40 GPU
and the image size is normalized to 384×600 in order to improve
training efficiency.

5.2 Evaluation Metrics
We follow the evaluation metrics in CGL-GAN [34], including three
aspects: user study, composition-relevant measures and graphic
measures.

For the user study, we randomly select 60 images from the test
set and obtain the layout results corresponding to different methods
and invite two groups of designers (five professional, twenty novice
designers). Every designer needs to judge whether the layout result
is qualified and select the best layout result for the same image. We
denote the percentage passing the quality standard as 𝑃𝑞𝑠 and the
percentage that hits the best layout as 𝑃𝑏𝑒𝑠𝑡 (𝑃∗𝑞𝑠 and 𝑃∗𝑏𝑒𝑠𝑡 for the
professional group) for each method.

Composition-relevant measures such as Readability and visual
balance 𝑅𝑐𝑜𝑚 and Presentation of subjects (𝑅𝑐𝑠𝑢𝑏 and 𝑅𝑠ℎ𝑚) are in-
troduced in [34]. Readability and visual balance mean that when
designing posters, designers tend to place text without underlays
in a relatively flat area. 𝑅𝑠𝑢𝑏 and 𝑅𝑠ℎ𝑚 can reflect the degree of
occlusion of key subjects, the lower the better. 𝑅𝑜𝑐𝑐 means the ratio
of non-empty layouts predicted by models.

Graphic measures use the same indicators as in [34], such as
alignment 𝑅𝑎𝑙𝑖 , overlap 𝑅𝑜𝑣𝑒 and 𝑅𝑢𝑛𝑑 . 𝑅𝑜𝑣𝑒 excludes underlays and
embellishments, because these two elements are generally attached
to other types of elements. At the same time, redefine 𝑅𝑢𝑛𝑑 to
evaluate the influence of substrate elements on the layout quality.
𝑅𝑢𝑛𝑑 and layout quality show a positive correlation.
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Figure 7: Qualitative comparison results with SOTA methods. Each column layout represents the results obtained by different
methods for the same image, and each row represents the layout results of the same method for different images.

Table 1: Comparison with content-aware methods.

Model User study Composition-relevant measures Graphic measures
𝑃∗𝑞𝑠 ↑ 𝑃∗

𝑏𝑒𝑠𝑡
↑ 𝑃𝑞𝑠 ↑ 𝑃𝑏𝑒𝑠𝑡 ↑ 𝑃𝑠ℎ𝑚 ↓ 𝑃𝑐𝑜𝑚 ↓ 𝑃𝑠𝑢𝑏 ↓ 𝑃𝑜𝑐𝑐 ↑ 𝑃𝑎𝑙𝑖 ↓ 𝑃𝑜𝑣𝑒 ↓ 𝑃𝑢𝑛𝑑 ↑

ContentGAN 26.1% 12.8% 30.6% 7.2% 23.610 31.930 0.767 1.000 0.009 0.065 0.840
CGL-GAN 28.3% 16.1% 44.4% 8.9% 21.670 16.040 0.772 0.875 0.007 0.081 0.732

Ours 75.6% 66.7% 86.7% 78.9% 15.970 10.260 0.742 0.997 0.008 0.046 0.983

5.3 Comparison with Content-Aware Methods
Asmentioned in the previous chapters, ContentGAN and CGL-GAN
are two generators considering the influence of image content on
layout, so here is our main comparison model. We re-implement
ContentGAN based on the released codes1, and specifically add con-
tent feature extraction and text feature extraction modules consis-
tent with ourmethod. Meanwhile, we tried our best to re-implement
the CGL-GANmethod based on the details in the paper. The quanti-
tative comparison results of the three methods are shown in Tab. 1.
No matter whether in user study or composition-relevant metric,
our method is obviously winning, which shows that the proposed

1https://xtqiao.com/projects/content aware layout

method has a better ability to represent the relationship between
image content and layout.

The qualitative evaluation results of different models are shown
in Fig. 7. The three columns on the left show that our model has a
stronger subject representation ability, which can effectively high-
light the subjects in posters such as commodities and models com-
pared with other methods. From the results in the middle part, due
to the introduction of the Visual-Textual Relation-Aware Module
(VTRAM), the model can learn where the text should be placed to
ensure the text readability and visual balance of the poster layout.
The right part shows that our model can also strongly express the
relationship between graph elements under the premise of ensuring
that the products are not occluded.

https://xtqiao.com/projects/content aware layout
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Figure 8: Layout results with different amounts of text. The
second to fourth columns represent a range of 1 to 3 input
texts, respectively.

5.4 Comparison with Content-Agnostic
Methods

Similarly, we also compare our model performance with recent
content-agnostic SOTA methods [10, 13]. Based on the released
code2 3, we re-implement the above methods. As shown in Tab. 2,
our model has great advantages in user study and composition-
relevant because of the modeling relationship between image con-
tent and layout. But is less effective on graphic metrics. We attribute
this to the fact that our model needs to consider image content in-
formation when generating layouts, such as considering visual
balance factors or avoiding the main product area, etc. For the
𝑅𝑢𝑛𝑑 , although our model does not exceed BLT, it is better than
LayoutDM. Because of the introduction of the GRAM, the model
learns the relationship between Underlay and other types of layout
elements. As shown in the right part in Fig. 7, our model is more
harmonious in the collocation of text and substrate.

5.5 Controllable Layout Generation
Our model can achieve controllable layout generation, which is
also a highlight of our method. We show the layout results of the
model under different constraints, which are (1) Text number and
content; (2) Given partial layout.

Text number and content. As shown in Fig.8, the last three
columns represent the layout results of the same background image
under different text number constraints. Interestingly, we find that
the number of text elements in the layout result is consistent with
the number of input text, which proves that our model has learned
the relationship between the number of texts and layout elements.

2https://github.com/CyberAgentAILab/layout-dm
3https://shawnkx.github.io/blt

Figure 9: Layout results with different text lengths (left col-
umn) and contents (right column).

Figure 10: Layout results under different user constraints.

As shown in Fig. 9, the left column indicates that given different
text lengths, our method can generate boxes in the appropriate
proportion, the right column represents the position of the element
affected by the text content. It proves that the proposed model has
a sufficient expression between literal semantic information and
layout output.

Given partial layout. In order to verify whether the output
results of the model are acceptable given the part layout, we con-
duct different experiments and the results are shown in Fig. 10.
Our model can give qualified results, especially in the results of the
third column, our model will not generate additional layouts with-
out enough layout space, which shows that the model has strong
constraints and generalization ability.

https://github.com/CyberAgentAILab/layout-dm
https://shawnkx.github.io/blt
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Table 2: Comparison with content-agnostic methods.

Model User study Composition-relevant measures Graphic measures
𝑃∗𝑞𝑠 ↑ 𝑃∗

𝑏𝑒𝑠𝑡
↑ 𝑃𝑞𝑠 ↑ 𝑃𝑏𝑒𝑠𝑡 ↑ 𝑃𝑠ℎ𝑚 ↓ 𝑃𝑐𝑜𝑚 ↓ 𝑃𝑠𝑢𝑏 ↓ 𝑃𝑜𝑐𝑐 ↑ 𝑃𝑎𝑙𝑖 ↓ 𝑃𝑜𝑣𝑒 ↓ 𝑃𝑢𝑛𝑑 ↑

BLT 57.2% 21.6% 57.8% 26.1% 22.450 28.540 0.765 1.000 0.004 0.002 0.993
LayoutDM 32.8% 13.8% 37.2% 22.8% 21.300 34.310 0.763 1.000 0.006 0.039 0.896

Ours 75.6% 58.9% 82.2% 46.7% 15.970 10.260 0.742 0.997 0.008 0.046 0.983

Table 3: Ablation studies of VTRAM. Ours∗ means our model
without VTRAM.

Model 𝑃𝑠ℎ𝑚 ↓ 𝑃𝑐𝑜𝑚 ↓ 𝑃𝑠𝑢𝑏 ↓ 𝑃𝑜𝑐𝑐 ↑ 𝑃𝑎𝑙𝑖 ↓ 𝑃𝑜𝑣𝑒 ↓ 𝑃𝑢𝑛𝑑 ↑
Ours∗ 17.450 12.720 0.764 0.989 0.010 0.053 0.987
Ours 15.970 10.260 0.742 0.997 0.008 0.046 0.983

Table 4: Ablation studies of GRAM. Ours∗ means our model
without GRAM.

Model 𝑃𝑠ℎ𝑚 ↓ 𝑃𝑐𝑜𝑚 ↓ 𝑃𝑠𝑢𝑏 ↓ 𝑃𝑜𝑐𝑐 ↑ 𝑃𝑎𝑙𝑖 ↓ 𝑃𝑜𝑣𝑒 ↓ 𝑃𝑢𝑛𝑑 ↑
Ours∗ 17.190 10.120 0.753 0.922 0.012 0.083 0.976
Ours 15.970 10.260 0.742 0.997 0.008 0.046 0.983

5.6 Ablation Studies
We conduct comparative experiments in the visual-textual relation-
aware module, geometry relation-aware module, as well as the
layout diversity and rationality.

Visual-Textual Relation-Aware Module. In order to verify
the influence of visual and text attention features on the layout
effect, we conduct ablation experiments. Specifically, we train two
versions of the model on the same training data: (a) the model
contains all modules; (b) the model removes VTRAM. The results
can be seen in Tab. 3. Due to the introduction of the text and image
attention mechanism, the model has learned content information
related to the composition of the image, which greatly improves the
composition-relevant metrics without sacrificing the effectiveness
of graph metrics to a certain extent. We believe that multi-modal
deep semantic features have a more accurate expression for layout
elements.

GeometryRelation-AwareModule.Geometry Relation-Aware
Module (GRAM) is to obtain more robust and accurate box coordi-
nates and sizes after the diffusion process. We remove the GRAM
from the proposedmodel as a ablation comparisonmodel. As shown
in Tab. 4, the model with GRAM has a 0.4% reduction on 𝑅𝑎𝑙𝑖 , a
0.07% improvement on 𝑅𝑢𝑛𝑑 and a 3.7% reduction on 𝑅𝑜𝑣𝑒 , which
is attributed to the more accurate description of the boxes in the
process of generating the layout. In particular, the performance
of composition-relevant metrics has also been improved, because
the influence of image information on the position of elements is
also considered in the introduction of GRAM. In general, GRAM
can achieve a balance in the improvement of composition-relevant
metrics and graphic metrics.

Layout diversity and rationality. Because our method will
give some random layout boxes at the beginning of the inference
stage, in order to evaluate the layout diversity and rationality of the

Figure 11: Generated layouts under different random seeds.
Each row is the result of the same input image under different
random seeds, and each column the different images under
the same random seed.

model, we give qualitative experimental results. From left to right,
Fig. 11 shows the layout results corresponding to five different
layouts by random seeds at the beginning of inference. From top
to bottom, Fig. 11 also shows the layout results of different images
under the same random seed. Although the resulting layout results
are different, they are all reasonable, indicating the diversity and
rationality of the layout model.

6 CONCLUSION
In this paper, we propose a relation-aware diffusion model to gen-
erate poster layouts, in which the relationship between visual and
textual contents and the relationship between elements are con-
sidered to help get pleasant layouts. To better integrate visual and
textual features, we design a Visual-Textual Relation-Aware Mod-
ule (VTRAM) to learn the relationship between visual and textual
contents. As the coordination of element positions is important for
layout, a Geometry Relation-Aware Module (GRAM) is employed
to enhance features based on the relative position between ele-
ments. In addition, we build a large poster layout dataset, named
CGL-Dataset V2. We conduct extensive experiments to prove that
the proposed method significantly outperforms the existing meth-
ods and can achieve controllable generation. Ablation studies also
demonstrate the effectiveness of VTRAM and GRAM.
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