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ABSTRACT

How can we find meaningful clusters in a graph robustly against noise
edges? Graph clustering (i.e., dividing nodes into groups of similar
ones) is a fundamental problem in graph analysis with applica-
tions in various fields. Recent studies have demonstrated that graph
neural network (GNN) based approaches yield promising results
for graph clustering. However, we observe that their performance
degenerates significantly on graphs with noise edges, which are
prevalent in practice. In this work, we propose METAGC for robust
GNN-based graph clustering. METAGC employs a decomposable
clustering loss function, which can be rephrased as a sum of losses
over node pairs. We add a learnable weight to each node pair, and
METAGC adaptively adjusts the weights of node pairs using meta-
weighting so that the weights of meaningful node pairs increase and
the weights of less-meaningful ones (e.g., noise edges) decrease. We
show empirically that METAGC learns weights as intended and con-
sequently outperforms the state-of-the-art GNN-based competitors,
even when they are equipped with separate denoising schemes, on
five real-world graphs under varying levels of noise. Our code and
datasets are available at https://github.com/HyeonsooJo/MetaGC.
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« Information systems — Data mining; Clustering; - Comput-
ing methodologies — Machine learning; Neural networks.
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1 INTRODUCTION

Graphs are a powerful way to represent various systems in physics,
bioinformatics, social science, etc. Real-world graphs usually con-
tain substructures called clusters, where each cluster is a set of
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similar nodes. Clusters in real-world graphs have useful implica-
tions, such as social groups in friendship networks [2, 17], func-
tional modules in protein-interaction networks [8], and groups of
papers on the same topic in citation networks [49]. Recently, graph
neural networks (GNNs), which are a class of deep learning models
designed to perform inference on graph-structured data with side
information (e.g., node attributes), have received considerable at-
tention. GNN-based representation learning has shown remarkable
performance in various tasks, including node classification, link
prediction, and graph classification [20, 28, 59].

Several GNN-based approaches have been developed also for
graph clustering [4, 16, 53]. In them, GNNs are trained for objectives
of graph clustering (e.g., cut and modularity) to produce a (soft)
clustering assignment of nodes. These approaches are effective,
especially when abundant node attributes are given, because GNNs
are trained end-to-end to exploit both node attributes and graph
topology for a considered task.

GNN-based approaches in general are known to be vulnerable
to noise edges in graphs, since message passing, the fundamental
building block of GNN:s, is performed through both meaningful
edges and noise edges. Therefore, GNN-based graph-clustering
methods also have a common problem of being vulnerable to noise
edges. We observe that their performance degenerates greatly on
graphs with noise edges, as detailed in the experiment section.

However, real-world graphs, including social networks [3, 15],
auction networks [43], SMS networks [46], review networks [56],
computer networks [51], are often contaminated by noise edges
[12,36] due to click errors [19], bots [7, 48], and spam [33], to name a
few. Recently, several trials have been made on training GNNs to be
robust to structural noise. To alleviate structural noise such as noise
edges, some methods [13, 21, 36, 57] eliminate noise edges by using
similarity of node attributes or some assumptions such as low rank,
sparsity, and attribute-smoothness. Another related line of research
has focused on enhancing the robustness of GNNs by modifying
the message-passing schemes without explicit graph denoising.
Specifically, in those works, GNNs are designed to be robust for
node classification [14, 60, 61]. However, methods for improving
the robustness of graph clustering have been underexplored.

To address the above problems, we propose METAGC (Meta-
weighting based Graph Clustering) for robust GNN-based graph
clustering against noise edges. METAGC employs a decompos-
able clustering loss function, with theoretical justification, and it
uses a meta-model to adaptively adjust the weight of each pair
in the corresponding loss term (spec., lowering the weights of
noise edges). Both the meta-model and the GNN-based cluster-
ing model in METAGC are trained end to end for graph clustering.
Consequently, METAGC is able to produce better clusters than sep-
arately applying graph denoising schemes before graph clustering.
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Table 1: Frequently-used symbols and definitions.

Symbol ‘ Definition
G=(V,E) an input graph with nodes V and edges E
N=|V| the number of nodes

A e {0,1}N*N the adjacency matrix of G
F the dimension of each node’s attribute vector

X € RNXF the node attribute matrix of G
D = diag(Aln) the degree matrix of A
d; = Zf\,lzl A the degree of node v;

K the number of clusters
Pe P clo1]N*K

a (soft) cluster assignment matrix

Moreover, we demonstrate the effectiveness of meta-weighting in
comparison to non-meta-weighting-based end-to-end approaches
[21, 36], which we adapt for graph clustering.

Our contributions are listed as follows:

e Observations: We show that GNN-based clustering approaches
are vulnerable to noise edges. Theoretically, we define a class of
decomposable clustering loss functions (e.g., modularity-based
ones) and prove that they are suitable for continuous relaxation
needed by GNN-based end-to-end learning.

o Methodology: We design METAGC for improving the robustness
of GNN-based graph clustering. To the best of our knowledge, we
are the first (a) to use meta-weighting for the robustness of GNNs
and (b) to use meta-weighting specialized in graph clustering.

o Extensive Experiments: In our experiments on 5 real-world
graphs under 3 levels of noise, we show the advantages of METAGC
over its state-of-the-art competitors, even when they use separate
denoising schemes.

The rest of this paper is organized as follows. In Sec. 2, we
provide some preliminaries and give a brief survey of related work.
In Sec. 3, we describe our proposed method. In Sec. 4, we review
our experiments. In Sec. 5, we conclude our work.

2 PRELIMINARIES & RELATED WORK

In this section, we provide some mathematical preliminaries used
throughout this paper and review some related studies.

2.1 Mathematical Background

Let G = (V, E) be an unweighted, undirected,! and self-loop-free
graph with node set V = {v1,- -+ ,oy|} and edge set E C (‘Z/) Each
edge (vj,vj) = (vj,v;) € E joins two nodes v; € V and vj € V. Let
N = |V| denote the number of nodes. Let A € {0, 1IVXN denote the
adjacency matrix of G, where for two nodes v; and vj, A;j = 1if
and only if (v;,0;) € E, i.e., v; and v; are joined by an edge. The
degree matrix of G is D = diag(A1y), where each diagonal entry
Dji =d; = ny:l Ajy is the degree of node v;.

We assume that an attribute vector of dimension F is given for
each node, and we use X € RV*F to denote the corresponding
node attribute matrix, where the i-th row of X, denoted by X;, is
the node attribute vector of node v;.

Let K be the number of clusters. We call a matrix P € [0, 1]NV*K
a (soft) cluster assignment matrix if Zle Pixy = 1LV1 < i < N,
where each element P;x can be interpreted as the probability that
we assign node v; to cluster x. If P € {0, 1}N*K further holds, then

!For simplicity and due to the nature of the datasets, we focus on unweighted and
undirected graphs. Our method is easily extended to weighted and/or directed graphs.
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we call P a deterministic cluster assignment matrix. Let P be the set
of all (soft) cluster assignment matrices and P* C P be the set of
all deterministic ones. We list frequently-used symbols in Table 1.

2.2 Graph Clustering & Quality Functions

Given a graph, the goal of graph clustering is to divide the nodes
into disjoint and exhaustive (i.e., every node is assigned to one
group) groups (namely, clusters) so that nodes in the same group are
more similar to each other than to those in different groups. Many
algorithms have been developed for the problem, and they can be
categorized largely into partitioning methods [24], agglomerative
methods [5], divisive methods [17], and spectral methods [41].

Several measures, including normalized cut [58] and modular-
ity [40], have been used to measure the structural quality (the ho-
mogeneity within-cluster nodes and/or the dissimilarity between
the cross-cluster nodes) of a given clustering, and they also have
been used as objectives for a specific formulation of optimization
problems. Especially, a number of approaches [5, 32, 39] directly
aim to maximize modularity.

2.3 Meta-weighting

Meta-weighting is a method of learning the weights of training
samples while minimizing an objective function based on meta-
learning. The weights usually represent the different importance
of samples, and they are useful for alleviating class imbalance and
reducing the noise in labels. The weight of each training sample
is obtained by a meta-model, whose parameters are optimized us-
ing a small amount of high-quality data without biases and noises
along with the learning process of the main model. Recently, meta-
weighting-based schemes outperform traditional rule-based weight-
ing schemes [11, 37] in various tasks, including image classification
and recommendation [25, 26, 47, 52].

Our contributions in the context of meta-weighting. To the
best of our knowledge, we are first to apply meta-weighting to graph
learning. It should be noted, however, that the above techniques are
not directly applicable to graph-level tasks (e.g., graph clustering)
since (a) a graph is not naturally divided into independent samples,
and (b) which part of a graph is of high quality is typically unknown.
Regarding (a), rather than decomposing data into components, we
suggest a novel idea of decomposing a loss function that satisfies the
conditions in Definition 3.1. Regarding (b), our study demonstrates
that, despite the presence of noise, a meta-model can be effectively
trained by using simply distinct batches for it and the clustering
model. That is, we show that a noise-free validation dataset is not
mandatory, at least in the context of our problem.

2.4 GNN-Based Graph Clustering Methods

Recently, several approaches based on graph neural networks (GNNs)
have been proposed for graph clustering [4, 16, 53]. Those ap-
proaches are particularly effective when abundant node attributes
are given, as GNNs learn to combine node attributes and graph
topology for a considered task through end-to-end training.
MinCutPooL [4] uses a graph convolutional network (GCN)
followed by a multi-layer perceptron (MLP) and softmax activation.
Its output is a (soft) cluster assignment matrix P (see Sec. 2.1) that is
relaxed to be continuous for end-to-end trainability. The objective
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function consists of a continuous relaxation of the normalized cut
objective. DMoN [53] employs a similar architecture while it uses a
continuous relaxation of modularity (see Sec. 2.2) instead of normal-
ized cut. GCC [16] leverages GCN and the k-means clustering loss
[35] to perform node embedding and clustering simultaneously.

2.5 Graph Denoising and Robust GNNs

GNNs in general are vulnerable to noise edges in graphs because
message passing, which is the basic operation of GNNs, is per-
formed not only through valid edges but also through noise edges.
Thus, several methods have been proposed to improve the robust-
ness of GNNs by removing potential noise edges from an input
graph. GCN-JACCARD [57] removes an edge if the Jaccard similarity
between the node attributes of its two endpoints is below a prede-
termined threshold. GCN-SVD [13] uses a low-rank approximation
of the given adjacency matrix instead of the original adjacency
matrix. PROGNN [21] further assumes the sparsity of the denoised
adjacency matrix. Specifically, in PROGNN, the denoised adjacency
matrix and GNN parameters are learned end to end to minimize
jointly (a) a classification loss, (b) the #; norm (for sparsity) and
nuclear norm (for low-rankness) of the adjacency matrix, and (c)
the difference between attributes of adjacent nodes. GDC [30] cre-
ates edges between nodes with high proximity (measured by heat
kernel and personalized PageRank) and uses them, and uses such
edges, instead of the original edges, for message passing in GNNs.
PTDNET [36] produces a denoised adjacency matrix through a pa-
rameterized denoising network. The denoised adjacency matrix
is subsequently optimized jointly with downstream-task models.
FGC [22] employs spectral clustering for graph clustering by gen-
erating a node-similarity matrix. This matrix is obtained through
a learning process that minimizes a loss function based on both
node proximity and filtered attributes, where the filtered attributes
are obtained through a graph Laplacian filter. All these methods,
except for FGC, yield only a denoised adjacency matrix without
providing clustering results. Therefore, on top of these methods,
except for FGC, we apply DMoN (see Sec. 2.4) to obtain clustering
results so that they can be directly compared with our proposed
method for the purpose of clustering (see Sec. 4.2).

Another related line of research has focused on enhancing the
robustness of GNNs by modifying the message-passing schemes
without explicit graph denoising. However, they are designed specif-
ically for node classification [14, 60, 61].

3 PROPOSED METHOD: METAGC

In this section, we introduce our proposed method, METAGC (Meta-
weighting based Graph Clustering), for robust GNN-based graph
clustering. As shown in Figure 1, METAGC consists of a GNN-based
clustering model C (see Sec. 3.1) and a meta-model M (see Def. 3.1
and Sec. 3.2), where M adjusts the weights of node pairs in a decom-
posable clustering loss function (see Sec. 3.3) that is used to train
C. The key idea of METAGC is to let M learn to properly adjust
the weights of the node pairs (spec., to lower the weights of noise
edges) so that the clustering performance of C becomes robust.
Below, we first introduce the detailed structures of both models
(C and M). Then, we discuss the details of the objective function
with theoretical analyses. Lastly, we describe the training process.
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Figure 1: Overall procedure of METAGC. METAGC consists
of a GNN-based clustering model C and a meta-model M.
The meta-model M adjusts the weights of the terms in the
modularity-based loss function, which is used to train C.

3.1 GNN-based Clustering Model

Given an adjacency matrix A, a node attribute matrix X, and the
number of clusters K| the clustering model C outputs a (soft) cluster
assignment matrix P¥ € [0, 1]V*K | where N is the number of
nodes. The clustering model C consists of a GNN, a multilayer
perceptron (MLP), and a softmax activation; and C is parameterized
by w. Specifically,

PY = C(A, X, K;w) = Softmax(MLP(GNN(A, X))). (1)
While any GNN models can be used for this purpose, we use a

variant with skip connections of GCN [28]. Formally, each GNN
layer is formulated as the following transformation:

H* = 6o(D~1V2AD 12D wy + HOwy),

where W; and W, are learnable parameters, D is the degree matrix
(see Sec. 2.1), oc is an activation function (spec., SELU [29]), and
H foreachi > 1is the output of the i-th GNN layer and HO =X
We use P¥ to compute a decomposable clustering loss function L".
We give the definition of decomposable clustering loss functions
first, and the detailed theoretical analyses are deferred to Sec. 3.3.

Definition 3.1 (Decomposable clustering loss functions). Given G =
(V,E) with |V| = N, K € N, and a (soft) cluster assignment matrix
P € P, a clustering loss function f : # — R is decomposable, if
there exist constants c;j = ¢;;(G), Vi, j € [N] s.t.

N N
f(P)=ZZCijPi'Pj, (2)

i=1 j=1

where P; denotes the i-th row of P.2

3.2 Meta-Model

The inputs of the meta-model M are (a) the adjacency matrix A, (b)
the node attribute matrix X, (c) the topology-based node-similarity
matrix S (spec., we use the Adamic-Adar indices [1]), and (d) the
soft cluster assignment matrix P (i.e., the output of C); and M
outputs the node-pair weight matrix V¢ € RQI&(N for weighting
the terms in the final loss function (i.e., Eq. (7) in Sec. 3.3). The
parameters of M are denoted by 6. Specifically,

VO = M(A X,S, P¥;0)

- Zf:l @) oy ((Zm(z(r))T) o Y<r>), (3)

2WLOG, we assume f does not contain constant terms.
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where © denotes the element-wise product, o)y is an activation
function (spec., we use sigmoid), and R is the number of the features
of node pairs. For each 1 < r < R, Y(") e RNXN s a feature
matrix for node pairs, the scalar a'") is the learnable weight? for
Y and the symmetric matrix Z(") (Z(")T ¢ RN*N with (") =
MLP(" )(X) is used as the attention matrix for Y("). While any
features of node pairs can be employed, after a preliminary study,
we use the following three features (i.e., R = 3) for each node pair
(0,0)): () if Ay = 0, (Y1, v\, ¥) = (1,0,0); () if Ay =
1, (Yi(jl), Yi(.z), Yl.(js)) = (1, Sij,Li‘;), where S is the topology-based
node-similarity matrix, and Li‘}{ is a decomposable clustering loss
function computed using P" (i.e., the output of C), whose details
with theoretical analyses will be provided in Sec. 3.3.

3.3 Learning Objective

The objective function of METAGC includes a decomposable cluster-
ing loss function (see Def. 3.1). We shall show that decomposable
clustering loss functions are expectation-conforming, which is a
desirable property for continuous relaxation needed by GNN-based
end-to-end learning. Given a soft clustering assignment matrix P,
we can interpret each entry Pjy as the probability that we assign
node v; to the cluster x. Thus, we may see P as a random vari-
able taking values in P* (see Sec. 2.1) and the probability that P
corresponds to a deterministic P* € P* is

B(P=P) =[] Piscie @
where S(i; P*) is the cluster to which P* assigns v; (i.e., P, = 1if
and only if x = S(i; P*)). Using such a perspective, we first give the
formal definitions of expectation-conforming and decomposable
clustering loss functions.

Definition 3.2 (Expectation-conforming clustering loss functions).
Given G = (V,E) with |[V| = N, K € N, and a (soft) cluster as-
signment matrix P € P, a clustering loss function f : # — R is
expectation-conforming, if

FPY = B(P=P)f(P7),VP € P. 5)

The intuition is that, if f satisfies Eq. (5), then for each (soft)
cluster assignment matrix P, the value of f directly taken on P
is equal to the expectation of the value of f when we see P as a
random variable taking values in P*.

Lemma 3.3. If f : P — R is expectation-conforming, then (1)
minpep f(P) = minpscp+ f(P*), and (2) for each P € arg minpc p
f(P),P(P =P*) > 0= P* € argminp-cp+ f(P*).

ProOF. Since P* C P, itis trivial that minpep f(P) < minp«cp-
f(P*). On the other hand, since for each P € P, Y pscp« P(P =
P*) =1, f(P) = Sprepr B(P = P)F(P*) > minp-cpo- f(P*), com-
pleting the proof for (1).

Regarding (2), suppose the opposite, i.e., AP € arg minpcp f(P),
P; € P* ¢ argminp:cp~ f(P*),P(P = P*) > 0, then it is easy
to see that f(P) = Ypreps P(P = P*)f(P*) > minp:cp+ f(PY),
which, combined with (1), completes the proof. O

3The weights are normalized so that Y, | (") = 1 holds.
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Why is being expectation-conforming desirable? When we use
an expectation-conforming clustering loss function f, if we reach a
global minimum after training, then it is guaranteed that we can
obtain an optimal solution to the graph clustering problem (i.e., an
optimal deterministic clustering assignment) from the trained (soft)
clustering assignment matrix.

LemmaA 34. If f : P — R is decomposable, then f is expectation-
conforming.

Proor. By Def. 3.1, Eq. 4, and linearity of expectation, it suffices
to show that each term of f is expectation-conforming. For the P;-P;
terms, p-cppr B(P = P*)P} P} = Yp: p: B(P; = P))E(P; = P))P;-
Pi = Y P(Pi = PP = DP(Pj = PPl = 1) = Xy PixPjx =
P; - Pj, where we have used the independence between P; and Pj,

for all i # j, completing the proof. O

Specifically, in METAGC, we use a modularity-based loss function
(Eq. (6)).* As mentioned before, modularity [40] is a representative
objective for clustering. We use the output P¥ of the clustering
model C (see Sec. 3.1) to compute the loss function. Formally,

~ N 1 didj w w
Ow) = D5 1oy 375 A = 5P P ©)
=0i;(w)

where we have decomposed modularity over node pairs. Note that,
Q(w) is one specific example of decomposable clustering loss func-
tions, which are denoted above by LY.

LEMMA 3.5. The function Q is decomposable, and thus it is expectation-
conforming.
PROOF OF LEM. 3.5. 0 is decomposable with c;; = L(Aij -

21E]
d;d; ..
TEJ‘),VI,] € [N]. ]

Remark. Due to the NP-hardness of modularity optimization [6],
finding a globally optimal solution is non-trivial in general, and we
are not claiming that using an expectation-conforming function
makes it easier to reach an optimal solution. Instead, we are claiming
that applying a continuous extension to an expectation-conforming
function does not introduce any “bad” minima [23] (minima of the
continuous extension but not the original problem).

In contrast, the normalized cut [4, 58] is not decomposable nor
expectation-conforming in general.

LEMMA 3.6. In general, NC = NC(P) = — Tr(PTAP) /Tr(PT DP)
is not expectation-conforming, and thus it is not decomposable either.

(PP

Proor. We expand NC as NC(P) = Z.(P..P.))lf;il‘j' Consider a

simple case where G consists of two nodes and one edge between
. Py -P.

them with K = 2. We have NC(P) = —% # Yprep: P(P =

P*)NC(P*) = P11P21 NC((]§)) + P12P22 NC((§ 1)) = =P11P21 -

P12Pyp = —P1 - P2. The counterexamples when G has more nodes

or edges can be constructed similarly. O

4Modularity measures how much a cluster’s edge count (A; j’s) exceeds the expected
edge count (d;d;/2|E|’s) under a null model preserving the degree distribution.
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Algorithm 1: Learning Algorithm of METAGC
input :(a) graph G = (V,E), (b) node attribute matrix X,
(c) number of clusters K, (d) number of epochs T,
(e) number of batches b
output:clustering model parameter w

1 Initialize clustering/meta-model parameter w/0

2 forepoch=1toT do

3 foritr=1toN/bdo

4 B, By« two disjoint subsets of V' of size b sampled
uniformly at random

// Meta-model update

5 w o= W_']ZuieBc VwLi(w,0)

6 0 —0—pYoepy, VoQi(w)
// Clustering model update

7 we w—1Yyee Vwli(w, 0)

8 end

9 end

10 return w

In order to integrate the meta-weighting strategy into our de-
composable clustering loss function, the loss at each node pair v;
and v; is weighted by Vg € Rs¢ produced by the meta-model M
(see Sec. 3.2). Formally, the final loss function is

Lon,0) = (D0 VILY) +2R¥, @)

where A denotes the regularization rate,and R = \/TI? [l Zfil P¥||p—
1 is a collapse regularization term introduced in [53]. For ease of
explanation, we also define the loss at each node as follows:

Li(w, ) = (Zj\; VgLi‘;) + %RW. ®)

3.4 Overall Training Procedure

In Alg. 1, we provide the pseudocode of the training process, where
we alternatingly optimize the meta-model and the clustering model,
following the general procedure of meta-weighting [47, 52].
While the general procedure requires noise-free validation data,
it is typically unknown which part of the input graph is noise-
free. Thus, without such requirements, METAGC employs distinct
batches (i.e., subsets) of nodes and their corresponding incident
edges for training the meta-model and the clustering model. This
approach is founded on the belief that the input graph contains
sufficient information to effectively train the meta-model, even in
the presence of noise edges, and this belief is validated in Sec. 4.2.
Meta-model update. In each training step ¢, in order to update the
parameters 6; of the meta-model M, the parameters w; of clustering
model C are employed. We first update w; once using the weighted
loss function (i.e., Eq. (7)) using a batch C; of nodes as follows:

wi e wemn ) Valin 0], ©)

where 7 is the learning rate for C.
Using the updated parameters w’, we update the parameters
0; of the meta-model using another batch M; of nodes and the
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Table 2: Summary of the real-world datasets

Name ‘ # Nodes ‘ # Edges ‘ # Attributes ‘ # Classes

Cora 2,708 5,278 1,433 7

Cora-ML 2,995 8,158 2,879 7
Citeseer 3,327 4,552 3,703 6
Amazon-Photo 7,535 119,081 745 8
Pubmed 19,717 44,324 500 3

unweighted loss function:
A ’
0111 — 0, —p ZviEMt VgQi (wt)lgzeta (10)

where y1 is M’s learning rate, and Q; = 2 Qij (see Eq. (6)).
Clustering model update. In each training step t, the clustering
model C is updated after the meta-model update. The parameters
w; of C are updated using the weighted loss function (i.e., Eq. (7))
with a batch C; of nodes and the meta-model M with its updated
parameters 0.1 as follows:

Wepl <~ We — 1 Zu»ect VawLi(w, 0t+1)|w=wt' (11)

4 EXPERIMENTS
In this section, we evaluate METAGC to answer the Q1-Q3:

Q1. Robustness & Accuracy: Is METAGC more robust and accurate
than the competitors on noisy graphs?

Q2. Effectiveness of Meta-Weighting: Does the meta-model in
METAGC properly adjust the weights of loss terms?

Q3. Ablation Study: Does each component of METAGC contribute
to performance improvement?

4.1 Experiment Settings

Hardware. We run all experiments on a workstation with an Intel
Xeon 4214 CPU, 512GB RAM, and RTX 8000 GPUs.

Datasets. We use 5 real-world datasets: 4 citation graphs (Cora,
Cora-ML, Citeseer, Pubmed [49]) and a co-purchase graph (Amazon-
Photo [50]). For all graphs, self-loops are ignored. Some basic sta-
tistics of the graphs are provided in Table 2.

Noisy-graph Generation. For each dataset, we generate noise
edges that do not exist in the original graph and add them to the
graph. Specifically, the noise edges are chosen uniformly at random
among those whose endpoints belong to different classes. Noise
levels I, II and III indicate that the ratio between the number of
noise edges and that of the existing edges are 30%, 60%, and 90%,
respectively. For each dataset and each noisy level, we generate five
noisy graphs, and all experimental results are averaged over them.
Competitors. We compare METAGC with 13 competitors that are
divided into three categories: (a) four node-embedding-based meth-
ods (DEEPWALK [45], NoDE2VEC [18], DGI [55], and GMI [44]),
whose outputs are clustered by K-means++ [54], (b) three GNN-
based graph clustering methods (MINCuTPooL [4], DMoN [53], and
GCC [16]) (see Sec. 2.4 for the details), and (c) six graph denois-
ing methods (GCN-Jaccarp [57], GCN-SVD [13], PROGNN [21],
GDC [30], PTDNET [36], and FGC [22]).° All the graph denoising

SNote that the weighted loss function (7) cannot be used to update 8 since it is trivially

minimized when each Vg =0.
®Technically speaking, GDC and FGC are graph augmentation methods.



CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

methods, except for FGC, are combined with DMoN for graph clus-
tering. Note that DMoN aims to maximize a continuous relaxation
of modularity, which is used as an evaluation metric.

Some modifications are needed for the graph denoising methods
so that they can be used for graph clustering. For GCN-SVD and
GDC, which generate weighted graphs, we have observed that ap-
plying DMoN directly on weighted graphs impairs the performance
of graph clustering. Therefore, we convert each generated weighted
graph to an unweighted one by selecting the |E| edges with the
largest weights, where |E| is the number of edges in the original
graph. For PROGNN and PTDNET (see Sec. 2.5 for more details), we
replace their classification loss with our clustering loss (see Eq. (6)).

For METAGC and all its competitors, we use the ground-truth

number of classes in each graph as the target number of clusters K.
See Apppendix A for more hyperparameter settings.
Evaluation Metrics. To evaluate METAGC and the competitors,
we use both topology- and correlation-based metrics. As a topology-
based metric, we use the modularity in the original graph without
injected noises. As correlation-based metrics, we use the pairwise
F1 Score (F1 Score) and the normalized mutual information (NMI)
between the given classes of nodes and the cluster assignments
of nodes. For each output (soft) cluster assignment matrix of the
methods, we apply each of the evaluation metrics after converting
it to a deterministic one by setting the maximum value of each row
to 1 and the rest to 0. Notably, using each of the metrics alone, there
exist cases where a higher value may not necessarily mean more
meaningful clustering [9, 31, 34]. We also observe some specific
cases in our experiments (see Sec. 4.2). Therefore, it is important to
take all of them into consideration.

On each noisy graph, three independent trials are conducted, and
thus for each dataset and each noise level, we report the average
results over the 15 trials (5 noisy graphs X 3 independent trials).

4.2 Q1. Robustness & Accuracy

In Table 3, for each dataset, each noise level, each method, and each
evaluation metric, we report the mean and standard deviation of
the results over 15 trials.

For each dataset and each method, we also report the average
rank (AR) over all the evaluation metrics. With regard to AR, tests of
statistical significance are performed between the proposed method
METAGC and each competitor over 15 independent random trials.
Specifically, for each competitor, the null hypothesis is that there
is no significant superiority of METAGC over the competitor w.r.t
AR. One-tailed ¢-tests are employed to ascertain whether the AR of
METAGC is significantly better than that of each competitor. The
results of the tests are reported as follows: * means p < 0.05, **
means p < 0.01, and *** means p < 0.001.

First of all, METAGC performs best overall and ranks first in
every dataset w.r.t the average rank. Specifically, METAGC achieves
an average rank of 1.2 to 3.3 among all the 14 considered methods
on the five datasets. Below, we discuss the results in detail.

Since DEEPWALK and NoDE2VEC use only graph topology with-
out node attributes, their performance w.r.t modularity, which is
a topology-based metric, is favorable. However, they are much
less competitive than METAGC w.r.t F1 Score and NMI, which are
correlated-based metrics.

Hyeonsoo Jo, Fanchen Bu, & Kijung Shin

In some cases, DGI and GMI perform better than METAGC w.r.t
NMI, but in most cases, they perform significantly worse w.r.t the
other two metrics, especially F1 Score. Moreover, their performance
decreases on large graphs (Amazon-Photo and Pubmed).

Compared to the two GNN-based graph clustering methods with-
out meta-weighting (MiNnCuTtPoor, DMoN, and GCC), the perfor-
mance superiority of METAGC becomes more significant as the
noise level increases, showing that meta-weighting indeed enhances
the robustness (see Sec. 4.3 for more discussions on the effective-
ness of meta-weighting). In some cases, MINCuTPooL and GCC
output only one cluster that contains all nodes, which results in a
high yet meaningless F1 Score (see the low NMI and modularity).

Recall that each of the graph denoising methods except FGC is
actually DMoN with a separate or combined denoising process (see
Sec. 4.1), and DMoN aims to maximize a continuous relaxation of
modularity, which is used as an evaluation metric. METAGC outper-
forms all of them w.r.t the average rank on every dataset. Notably,
even though GCN-SVD and GDC use the ground-truth number
of the edges in the original noise-free graph, which is unknown
to METAGC, they perform consistently worse than METAGC in all
respects. GCN-JACCARD sometimes shows slightly better perfor-
mance than METAGC w.r.t F1 Score, but METAGC performs better
w.r.t the other two metrics in almost all the other cases (except
for the performance w.r.t modularity on Pubmed in noise level I).
PrROGNN and PTDNET both have a clear drawback compared to
METAGC. Moreover, PROGNN is not scalable for large graphs due to
its O(N?) time complexity. PTDNET is not scalable for large graphs
either due to its space complexity associated with its parameterized
denoising network, which generates a denoised adjacency matrix.

4.3 Q2. Effectiveness of Meta-Weighting

We shall show that the meta-model in METAGC effectively distin-
guishes real edges and noise edges by assigning high weights to
real edges and low weights to noise edges. We see this as a binary
classification task, and in Table 4, for each dataset and each noise
level, we report the PRAUC (the area under the Precision-Recall
curve) and HITS@10% (i.e., the proportion of real edges among
the top-10% edges with highest weights) value. We also include a
baseline representing the expected value of PRAUC and HITS@10%
when we randomly assign the weights, which is equal to the propor-
tion of real edges among all the edges. We can see that both PRAUC
and HITS@10% of METAGC are consistently higher than the ex-
pected value. Moreover, HITS@10% values are consistently close
to 1, which means that in all the cases, almost all top-10% edges
with the highest weights assigned by the meta-model are real edges,
as intended. In Figure 2, we present the detailed Precision-Recall
curves at different noise levels for each dataset.

4.4 Q3. Ablation Study

We have just shown that the meta-model in METAGC is effective
in distinguishing real edges and noise edges. We further examine
how much it affects the performance of METAGC by comparing
METAGC with two variants of it:

o METAGC-X: METAGC without the meta-model, i.e., the weight
Vij of every pair (v;,v;) is the same.
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Table 3: (Q1) Robustness & Accuracy. METAGC shows the best overall performance. It ranks the first in all datasets w.r.t the
average rank (AR). Statistical significance of the AR differences between METAGC and each of its competitors is reported at the
following levels: *p < 0.05, **p < 0.01, ***p < 0.001. O.0.T.: out of time (> 6 hours). 0.0.M: out of (GPU) memory. For each setting

(each column), the best, second-best and third-best results are in red , blue , and green , respectively.

Noise Level || I [ 1I | I [ AR
Metric H F1 Score ‘ NMI ‘ Modularity H F1 Score ‘ NMI ‘ Modularity H F1 Score ‘ NMI ‘ Modularity H
DEEPWALK || 0.405:+0.048 | 0.465£0.008 | 0.689£0.006 || 0.297+0.022 | 0.389+0.010 | 0.659+£0.007 || 0.256+0.014 | 0.352+0.012 | 0.641x0.007 || 6.0%**
NODE2VEC || 0.410+0.043 | 0.464:0.006 | 0.690£0.005 || 0.296+0.023 | 0.389+0.008 | 0.660+£0.004 | 0.261£0.017 | 0359+0.011 | 0.642+0.007 || 5.4***
DGI 0.230+0.010 | 0.287+0.003 | 0.151+0.007 || 0.198£0.009 | 0.239+0.004 | 0.141x0.010 || 0.183+0.006 | 0.203£0.013 | 0.122£0.013 || 9.7
GMI 0.099+0.004 | 0.021+0.001 | -0.003+£0.001 || 0.103+£0.005 | 0.025:0.001 | -0.0020.001 || 0.109+0.006 | 0.030+0.001 | -0.0020.001 || 11.7°**
MINCUTPOOL || 0.464:0.000 | 0.000£0.000 | 0.000+0.000 || 0.464+0.000 | 0.000£0.000 | 0.000£0.000 || 0.464+0.000 | 0.000£0.000 | 0.000£0.000 || 9.4°*
DMoN 0.556+0.049 | 0.533+0.041 | 0.609+0.036 || 0.528+0.028 | 0.494£0.025 | 0.599+0.023 || 0.470+0.033 | 0.425+£0.036 | 0.531£0.050 || 3.3
GCC 0.538+0.022 | 0501+0.039 | 0.619+0.034 || 0.469£0.007 | 0.377+0.019 | 0.540+0.027 || 0.459+0.006 | 0.353x0.018 | 0.526+0.024 || 5.9
GCN-JACCARD || 0.557+0.049 | 0.533+0.040 | 0.610£0.036 || 0525+0.034 | 0.493+0.028 | 0.597+0.032 | 04730034 | 0.431+0.038 | 0.538+0.052 || 3.1**
GCN-SVD || 0.390+£0.004 | 0.365£0.009 | 0.497+0.002 || 0.408+0.005 | 0.379+0.004 | 0.506+0.006 || 0.403+£0.005 | 0.374+0.017 | 0.507+0.011 || 7.4***
GDC 0.514£0.073 | 0.502+0.054 | 0.572+0.043 || 0.474=0.057 | 0.447+0.052 | 0.547+0.059 || 0.463+0.033 | 0.418£0.031 | 0.532£0.050 || 4.9
PROGNN O.0T. O.0T. O.0LT. 0.0T. 0.0T. 0.0T. O.0T. O.0T. O.0T. NA.
PTDNET 0.0M. 0.0M. 0.0M. 0.0M. 0.0M. 0.0M. 0.0M. 0.0M. 0.0M. NA.
FGC 0.377+0.000 | 0.071+0.001 | 0.145+0.003 || 0.366£0.000 | 0.055:0.000 | 0.103x0.001 || 0.362+0.000 | 0.048+£0.000 | 0.084+0.001 || 9.6"*
MeTaGC || 0.562+0.015 | 0.566=x0.017 | 0.675:0.008 || 0.528+0.020 | 0.520+0.013 | 0.664=x0.007 || 0.508+0.014 | 0.498+0.009 | 0.658+0.006 || 1.2
(a) Amazon-Photo
Noise Level || I [ 1I | 11 I AR
Metric H F1 Score NMI ‘ Modularity H F1 Score ‘ NMI ‘ Modularity H F1 Score NMI ‘ Modularity H
DEEPWALK || 0.300+0.024 | 0.243£0.010 | 0.680£0.009 || 0.216+0.010 | 0.155+0.006 | 0.593x0.011 | 0.169+0.014 | 0.111+0.009 | 0.528+0.008 || 8.3***
NODE2VEC || 0.292+0.028 | 0.247+0.015 | 0.684£0.009 || 0.210+0.016 | 0.154x0.010 | 0.594:0.009 | 0.170£0.009 | 0.111x0.011 | 0.528+0.009 || 8.3***
DGI 0.351+0.040 | 0.415£0.011 | 0.619+0.015 || 0.294+0.027 | 0330+£0.012 | 0.547+0.017 | 0.248+0.018 | 0.240£0.017 | 0.412+0.033 || 6.1
GMI 0.277+0.023 | 0319+0.008 | 0.576x0.010 || 0.226£0.016 | 0.229+0.005 | 0.496+0.007 || 0.152+0.016 | 0.145:0.012 | 0.391x0.020 || 9.7
MINCUTPOOL || 0.265+0.035 | 0.222£0023 | 0.614£0.012 || 0.217£0.027 | 0.147+0.019 | 0.556£0.012 || 0.219£0.097 | 0.086x0.039 | 0.436x0.172 || 10.1°""
DMoN 0.400£0.023 | 0343+0.015 | 0.661+0.012 || 0.355+0.023 | 0.280+0.013 | 0.620+0.013 || 0.326x0.016 | 0.231x0.016 | 0.576£0.012 || 4.6
GCC 0.375+0.017 | 0.230+0.013 | 0.486+0.011 || 0.364=0.023 | 0.114+0.014 | 0312+0.053 || 0.364+0.041 | 0.076£0.016 | 0.252+0.073 || 9.6"*
GCN-JACCARD || 0.415+0.022 | 0.364+0.017 | 0.661:0.014 || 0.369+0.030 | 0310+0.014 | 0.627+0.013 | 0.348£0.030 | 0.276£0.017 | 0.602+0.016 || 2.7
GCN-SVD || 0313+0.025 | 0.207+0.019 | 0.487+£0.022 || 0.291£0.031 | 0.172+0.023 | 0.468+0.016 | 0.288+0.024 | 0.156+0.017 | 0.458+0.018 | 8.9***
GDC 0.298+0.030 | 0.218+0.021 | 0.577+0.020 || 0.266£0.027 | 0.183:0.017 | 0.555x0.011 || 0.269+0.010 | 0.175:0.016 | 0.540£0.015 || 8.1
PROGNN 0.405£0.023 | 0.348+0.015 | 0.631x0.015 || 0.370£0.022 | 0.296+0.011 | 0.590+0.016 || 0.341+0.018 | 0.248£0.017 | 0.544£0.019 || 4.2°
PTDNET 0.198+0.014 | 0.033+0.010 | 0.300+0.011 || 0.186=£0.010 | 0.031£0.005 | 0.279+0.007 || 0.209+0.018 | 0.025:x0.003 | 0.256£0.009 || 13.6***
FGC 0.388+0.005 | 0.145+0.005 | 0.3370.006 || 0.374=0.005 | 0.123+0.006 | 0.314x0.006 || 0.364+0.010 | 0.112+0.008 | 0.295+0.005 || 8.7°*
METAGC || 0.413+0.030 | 0.379+0.027 | 0.696£0.010 || 0372+0.028 | 0.320+0.023 | 0.660£0.015 || 0.348+0.028 | 0.282+0.021 | 0.628+0.018 || 1.7
(b) Cora
Noise Level || 1 [ 1 I 11 RS
Metric H F1 Score NMI ‘ Modularity H F1 Score ‘ NMI ‘ Modularity H F1 Score NMI ‘ Modularity H
DEEPWALK || 0.375+0.009 | 0.276=0.013 | 0.636£0.016 || 0314%0.010 | 0.201x0.012 | 0.581£0.009 | 0.250£0.018 | 0.147+0.011 | 0.535%0.010 || 6.4
NODE2VEC || 0377+0.007 | 0.282+0.006 | 0.644£0.005 || 0.308+0.010 | 0.199+0.011 | 0.584:0.006 | 0.263x0.015 | 0.152+0.010 | 0.540+0.008 || 5.8***
DGI 0.379£0.063 | 0.295+0.037 | 0.340+0.045 || 0.242+£0.009 | 0.131£0.015 | 0.167+0.021 || 0.210+0.015 | 0.063£0.017 | 0.083£0.027 || 9.8"*
GMI 0.366+0.018 | 0.268+0.011 | 0.395+0.013 || 0.259+0.012 | 0.144:0.007 | 0.234+0.017 | 0.201x0.023 | 0.062+£0.005 | 0.115+0.008 || 10.1"**
MINCuTPoOL || 0.271+0.026 | 0.200+0.019 | 0.592+0.018 || 0.278+0.103 | 0.105x0.054 | 0.398+0.236 || 0.437+0.067 | 0.012+0.026 | 0.035x0.124 || 9.3
DMoN 0.340£0.026 | 0.289+0.025 | 0.661+0.016 || 0.314:£0.020 | 0.237+0.023 | 0.630+0.016 || 0.291x0.018 | 0.204£0.019 | 0.600£0.016 || 4.8"*
GCC 0.461£0.022 | 0.299+0.024 | 0.441x0.041 || 0.415£0.014 | 0.165:0.049 | 0.306+0.086 || 0.379+0.030 | 0.105:0.036 | 0.232+0.063 || 5.7°*
GCN-JACCARD || 0.358+0.033 | 0.283+0.033 | 0.600+0.015 || 0.323x0.025 | 0.232+0.025 | 0.569£0.011 || 0.295:0.020 | 0.200+0.019 | 0.538+0.017 || 5.4°*°
GCN-SVD || 0.275+0.022 | 0.165+0.024 | 0.403£0.029 || 0.247+0.017 | 0.142+0.011 | 0.365:0.015 | 0.261£0.016 | 0.129+0.011 | 0338+0.016 | 9.4***
GDC 0.267£0.019 | 0.159+0.016 | 0.475+0.019 || 0.230£0.020 | 0.102£0.012 | 0366+0.013 || 0.190+0.024 | 0.060+£0.014 | 0.285£0.009 || 11.0°**
PrROGNN 0.345£0.026 | 0.297+0.025 | 0.662+0.016 || 0.319£0.020 | 0.244+0.023 | 0.631x0.015 || 0.297+0.018 | 0.212£0.020 | 0.603£0.015 || 3.6"*
PTDNET 0.235£0.045 | 0.058+0.007 | 0.288+0.007 || 0.216=£0.055 | 0.046£0.006 | 0.249+0.012 || 0.271x0.041 | 0.044+0.006 | 0.244£0.013 || 11.9°**
FGC 0.395:0.013 | 0.035:0.011 | 0.111x0.029 || 0.415£0.002 | 0.017+0.003 | 0.059+0.005 || 0.4240.003 | 0.010£0.001 | 0.038+0.006 || 9.8"*
METaGC || 0.380+0.034 | 0.337+0.024 | 0.683x0.014 |[ 0.333x0.026 | 0.282+0.015 | 0.656x0.015 || 0.319+0.021 | 0.255x0.014 | 0.639+0.015 [ 1.8
(c) Cora-ML

(continues on the next page)

o METAGC-A: METAGC with the metal model using only node at- In Table 5, we report the results of the ablation study on Citeseer.
tributes, spec (Y_(,l) v Y.(.S)) = (1,0,0) for every pair (v, 0;) For each noise level, each metric, and each variant including the
) - (X0 Y50 Y 0, ,0j ).
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Noise Level || I [ 1 | I (RS
Metric H F1 Score ‘ NMI ‘ Modularity H F1 Score ‘ NMI ‘ Modularity H F1 Score ‘ NMI ‘ Modularity H
DEEPWALK 0.128+0.004 0.089+0.003 0.650+0.004 0.103+0.004 0.053+0.003 0.586+0.005 0.086+0.004 0.037+0.002 0.545+0.003 7.3%%*
NoDE2VEC 0.127+0.004 0.089+0.003 0.650+0.003 0.101£0.005 0.053+0.002 0.587+0.005 0.085+0.004 0.037+0.003 0.545+0.005 7.6°F
DGI 0.199+0.019 0.108+0.003 0.169+0.005 0.160+0.007 0.064+0.002 0.153+0.007 0.130+0.006 0.043+0.003 0.160+0.007 9.2%%*
GMI 0.159+0.009 0.117+0.002 0.154+0.003 0.115+0.010 0.072+0.001 0.135+0.002 0.116+0.006 0.049+0.001 0.115+0.006 9.3%**
MinCuTtPooL 0.380+0.005 0.131+0.005 0.512+0.010 0.345+0.017 0.097+0.009 0.487+0.011 0.325+0.020 0.079+0.011 0.472+0.016 5.9%%*
DMoN 0.406+0.005 0.161+0.004 0.542+0.001 0.377+0.008 0.125+0.011 0.518+0.003 0.346+0.019 0.090+0.023 0.497+0.010 3.7
GCC 0.522+0.002 0.052+0.003 0.313+0.005 0.459+0.004 0.039+0.001 0.421+0.004 0.505+0.053 0.019+0.010 0.276+0.149 7.45%
GCN-JACCARD || 0.407+0.005 | 0.163£0.005 | 0.542+0.001 || 0.377+0.008 | 0.126+£0.011 | 0.518+0.003 || 0.346£0.020 | 0.090£0.023 | 0.498+0.010 || 3.2°**
GCN-SVD 0.372+0.043 0.094+0.022 0.379+0.006 0.351+0.038 0.076+0.014 0.372+0.006 0.332+0.035 0.060+0.014 0.365+0.005 7.0
GDC 0.360+0.022 0.113+0.013 0.481+0.010 0.351+0.006 0.097+0.005 0.477+0.004 0.327+0.023 0.071£0.022 0.475+0.011 6.2%**
PROGNN 0.0T. O.0T. O.0T. O.0T. 0.0T. 0.0T. 0.0T. 0.0T. O.0T. N.A.
PTDNET 0.0.M. 0.0.M. 0.0.M. 0.0.M. 0.0.M. 0.0.M. 0.0.M. 0.0.M. 0.0.M. N.A.
FGC 0.598+0.000 0.000+0.000 0.000+0.000 0.568+0.000 0.059+0.000 0.261+0.000 0.576+0.000 0.044+0.000 0.218+0.000 7.0

METAGC 0.414£0.009 [ 0.175+0.010 | 0.540+0.001 [[ 0.396:0.004 | 0.160+0.004 [ 0.523+0.001 [| 0.380+0.003 | 0.141£0.004 | 0513+0.001 [| 2.6

(d) Pubmed

Noise Level || I [ 1I | I [ ar

Metric H F1 Score ‘ NMI ‘ Modularity H F1 Score ‘ NMI ‘ Modularity H F1 Score ‘ NMI ‘ Modularity H
DEEPWALK 0.177£0.013 | 0.083+0.005 | 0.741£0.006 || 0.136+0.012 | 0.054+0.007 | 0.656£0.010 || 0.112+£0.014 | 0.044£0.004 | 0.596+0.007 || 9.7***
NoDE2VEC 0.180+0.011 | 0.084+£0.005 | 0.740+0.006 || 0.146+0.013 | 0.057+0.004 | 0.661+0.007 || 0.116+0.011 | 0.041£0.005 | 0.596+0.011 || 9.2***
DGI 0.256£0.021 | 0.294+0.006 | 0.704:0.015 || 0.204+0.013 | 0.228+£0.006 | 0.648+0.020 || 0.183£0.020 | 0.176£0.004 | 0.562+0.032 || 6.0***
GMI 0.248+0.016 | 0.292+0.006 | 0.606+0.011 || 0.210+0.011 | 0.238+£0.004 | 0.547+0.008 || 0.185+£0.009 | 0.199+0.006 | 0.486+0.015 || 7.1***
MINCUTPOOL || 0.267+0.034 | 0.157+0.024 | 0.677+0.012 || 0350£0.130 | 0.067+0.050 | 0.385+0.287 || 0.435%0.136 | 0.021£0.037 | 0.154x0.256 || 8.6***
DMoN 0.346£0.024 | 0.182+0.017 | 0.665+0.011 || 0.308+0.012 | 0.139+£0.009 | 0.624+0.008 || 0.283+£0.009 | 0.112£0.006 | 0.591+0.009 || 6.6***
GCC 0.410£0.011 | 0.191+0.031 | 0.545£0.066 || 0.415+0.024 | 0.147+0.039 | 0.448+0.114 || 0.419+£0.054 | 0.078+0.039 | 0.312+0.161 || 6.3***
GCN-JACCARD || 0.369£0.031 | 0.209+0.018 | 0.676£0.009 || 0.337+0.011 | 0.171£0.008 | 0.643£0.004 || 0.306£0.012 | 0.139£0.007 | 0.612+0.007 || 4.0%**
GCN-SVD 0.280£0.033 | 0.120+0.013 | 0.448+0.021 || 0.248+0.027 | 0.084:£0.008 | 0.422+0.022 || 0.237+0.027 | 0.062+0.010 | 0.398+0.022 || 9.8***
GDC 0.257+0.026 | 0.117£0.015 | 0.548+0.021 || 0.231+0.015 | 0.096£0.012 | 0.530+0.013 || 0.232+0.018 | 0.089£0.012 | 0.529+0.014 || 9.4***
PROGNN 03590025 | 0.191+0.017 | 0.636£0.012 || 0.326+0.016 | 0.153+0.009 | 0.587+0.013 || 0.302+0.012 | 0.125+0.006 | 0.544x0.012 || 5.9***
PTDNET 0.278£0.029 | 0.048+0.004 | 0.344:0.007 || 0.277+0.044 | 0.036£0.014 | 0.317+0.019 || 0.293£0.037 | 0.056+0.025 | 0.301x0.018 || 11.3***
FGC 0.410£0.004 | 0.131+0.005 | 0.409+£0.007 || 0.398+0.005 | 0.112+0.007 | 0.381+0.008 || 0.400+0.005 | 0.105+0.005 | 0.370+0.008 || 7.4***
MeTaGC || 0.363+0.017 [ 0.230£0.013 | 0.707£0.007 || 0330+0.025 | 0.194x0.021 | 0.677x0.012 || 0.289£0.017 | 0.151x0.013 | 0.640+0.009 [[ 3.3

(e) Citeseer

original METAGC, we report the mean and standard deviation of
the results of the 15 trials. In all the settings and in all respects,
the original METAGC performs best, and METAGC-X without the
meta-model performs worst, validating the performance boost of
the meta-model in METAGC. Moreover, the comparison between
METAGC and METAGC-A shows that using the additional infor-
mation on the topology-based node similarity and the soft cluster
assignment matrix from the clustering model is helpful. Interest-
ingly, meta-weighting is more helpful w.r.t F1 Score and NMI than
w.r.t modularity, although the meta-model is updated using the
modularity-based objective.

5 CONCLUSION

In this work, we propose METAGC for robust GNN-based graph
clustering against noise edges. METAGC consists of a GNN-based
clustering model using a decomposable loss function with theo-
retical justification, and a meta-model that adaptively adjusts the
weights of node pairs in the loss function. In our extensive exper-
iments on the five datasets under three levels of noise, METAGC
is robust against noise edges, achieving an average rank of 1.2 to
3.3 among all the 14 considered methods. We also demonstrate the
effectiveness of the meta-model by showing that it (a) assigns high
weights to real edges and low weights to noise edges and (b) leads
to a performance boost, especially when it uses richer information.
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A APPENDIX: PARAMETER SETTINGS

In this section, we provide detailed parameter settings. For a fair
comparison, we set the embedding dimension of all the considered
methods (including METAGC) to 64, unless otherwise stated.

METAGC: METAGC consists of a meta-model and a clustering
model. The clustering model consists of a single-layer GCN with
skip connections (see Sec. 3.2 of the main paper) and a single-layer
perceptron. The number of hidden units is 64 in the GCN, and the
single-layer perceptron outputs the final cluster assignment vector,
whose length is equal to the number of clusters. In the meta-model,
for each q, H (@) is obtained by a two-layer perceptron. We use
ReLU activation [38] after the first layer, and we do not use any
activation after the second layer. We train METAGC with the Adam
optimizer [27]. The learning rates of the clustering model and the
meta-model are fine-tuned via a grid search, where the range of both
learning rates is {5e — 4, 1e — 3, 2e — 3, 3¢ — 3, 4e — 3, 5¢ — 3}. Similarly,
the batch sizes of the two models are fine-tuned via a grid search,
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Table 4: (Q2) Effectiveness of Meta-Weighting. METAGC successfully assigns high weights to real edges and low weights to
noise edges. The PRAUC and HITS@ 10% values are consistently and significantly higher than the baseline. The baseline is the
expected value of PRAUC and HITS@ 10% when weights are randomly assigned.

Dataset Cora Cora-ML Citeseer Amazon-Photo Pubmed
NoiseLevel [ T [ T [ I I [ o | m I [ 0 | I [ I | m I | I [
PRAUC 0.927 | 0.875 | 0.831 || 0.934 | 0.878 | 0.825 || 0.908 | 0.843 | 0.793 || 0.993 | 0.985 | 0.976 || 0.890 | 0.813 | 0.757
HITS@10% 0.999 | 0.997 | 0.993 1.000 | 0.997 | 0.988 || 0.999 | 0.995 | 0.991 1.00 | 0.999 | 0.999 || 0.999 | 0.997 | 0.991
Baseline 0.769 | 0.625 | 0.526 || 0.769 | 0.625 | 0.526 || 0.769 | 0.625 | 0.526 || 0.769 | 0.625 | 0.526 || 0.769 | 0.625 | 0.526
= Noise Level I = Noise Level II = Noise Level IIT
1.0 1.0 1.0 1.0 1.0
0.9 0.9 0.9 0.9 0.9
= =] a =} =}
Sos8 Sos8 Sos 208 Sos8
Lo.7 Lo0.7 Lo.7 Lo0.7 207
=% =% =% =% =%
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Figure 2: Detailed Precision-Recall curves used for Table 4.

Table 5: (Q3) Ablation Study. Meta-weighting in METAGC improves the performance (compare METAGC and METAGC-X). Using
the topology-based node similarity and the output of the clustering model is also helpful (compare METAGC and METAGC-A).

Noise Level I II 11
Metric F1Score | NMI | Modularity F1Score | NMI | Modularity F1Score | NMI | Modularity
METAGC-X 0.340+0.022 0.203+0.016 0.695+0.006 0.308+0.017 0.173+0.014 | 0.662+0.007 0.280+0.018 0.142+0.013 | 0.634+0.009
METAGC-A 0.346+0.020 0.214+0.014 | 0.701+0.007 0.324+0.019 0.187+0.016 | 0.674+0.011 0.288+0.017 0.150£0.012 | 0.638+0.009
METAGC 0.363+0.017 | 0.230+0.013 | 0.707+0.007 || 0.330+0.025 | 0.194+0.021 | 0.677+0.012 || 0.289+0.017 | 0.151+0.013 | 0.640+0.009

where the range of both batch sizes is {128, 256,512, 1024, 2048}.
METAGC is trained with at least 200 epochs and at most 1500 epochs.
We terminate the training if the modularity is not improved in the
last 50 epochs, and use the parameters giving the highest modularity
during the training.

Node embedding-based methods: For node-embedding-based
methods, DGI, GMI, DEepWALK, and NoDE2VEC, we cluster their
output embeddings using K-means++ [54], for which we set the
maximum number of iterations to 300 and the tolerance to le — 4.
For DGI and GMI, we increase the embedding dimension to 512,7
as in the original papers; and we use the hyperparameters in the
source code released by the authors. For DEEPWALK and NODE2VEC,
we set the number of walks as 80, the length of the walks 80, and
the window size 10.

GNN-based graph clustering methods: We compare METAGC
with three GNN-based graph clustering methods: MinCuTPoot,
DMoN and GCC. MinCuTPoor and DMoN consist of a single-
layer GCN with skip connections and a single-layer perceptron, as
METAGC does. We use ELU activation [10] in MiNnCuTPooL and
SELU activation in DMoN (as in METAGC), following the original
papers. Moreover, following the original paper, in DMoN, we use a
dropout layer before the softmax operation. The dropout ratio is
set as 0.5. MINCuTPooL and DMoN are trained with at least 2000
epochs and at most 4000 epochs. We terminate the training if the
modularity is not improved in the last 100 epochs, and use the
parameters giving the highest modularity during the training. For
GCC, we set the maximum number of optimization iterations as

"The performance of DGI and GMI degrades significantly if we set the embedding
dimension as 64.

30 and the tolerance 1e — 7. The propagation order is fine-tuned

exhaustively in the range from 1 to 150.

Graph denoising methods: We compare METAGC with four graph
denoising methods: GCN-Jaccarp, GCN-SVD, GDC, and PROGNN.
GCN-JaccarDp removes each edge such that the Jaccard similar-
ity between the attributes of the two endpoints is 0. GCN-SVD

generates a rank-100 approximation of the adjacency matrix, and

uses such an approximation instead of the original matrix. In GDC,
we use personalized PageRank [42], which performs best in the

original paper. For PROGNN and PTDNET (see Sec. 2.5 for more

details), we replace their GNN models with the clustering model

employed by METAGC and replace their classification loss with our

clustering loss (see Eq. (6)). The hyperparameters of PROGNN and

PTDNET are fine-tuned within the range specified in the source

code provided by the authors. For GCN-SVD and GDC, which gen-
erate weighted graphs, we observe that applying DMoN directly

on weighted graphs impairs the performance of graph clustering.
Therefore, we convert each generated weighted graph to an un-
weighted one consisting only of the |E| edges with the highest

weights, where |E| is the number of edges in the original noise-free

graph. For FGC, the node similarity matrix is optimized using the

loss function in the original paper. The order of the graph Laplacian

filter is fine-tuned exhaustively in the range from 1 to 15, and the

trade-off parameter « in the range {0.0001, 0.01, 1, 10, 100}.
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