2401.11215v1 [cs.LG] 20 Jan 2024

arxXiv

Selecting Walk Schemes for Database Embedding

Yuval Lev Lubarsky
Technion
Haifa, Israel
lubarsky@cs.technion.ac.il

Martin Grohe
RWTH Aachen University
Aachen, Germany
grohe@informatik.rwth-aachen.de

ABSTRACT

Machinery for data analysis often requires a numeric representation
of the input. Towards that, a common practice is to embed compo-
nents of structured data into a high-dimensional vector space. We
study the embedding of the tuples of a relational database, where
existing techniques are often based on optimization tasks over a
collection of random walks from the database. The focus of this
paper is on the recent FORWARD algorithm that is designed for
dynamic databases, where walks are sampled by following foreign
keys between tuples. Importantly, different walks have different
schemas, or “walk schemes,” that are derived by listing the rela-
tions and attributes along the walk. Also importantly, different walk
schemes describe relationships of different natures in the database.

We show that by focusing on a few informative walk schemes,
we can obtain tuple embedding significantly faster, while retaining
the quality. We define the problem of scheme selection for tuple
embedding, devise several approaches and strategies for scheme
selection, and conduct a thorough empirical study of the perfor-
mance over a collection of downstream tasks. Our results confirm
that with effective strategies for scheme selection, we can obtain
high-quality embeddings considerably (e.g., three times) faster, pre-
serve the extensibility to newly inserted tuples, and even achieve
an increase in the precision of some tasks.
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1 INTRODUCTION

Machine-learning algorithms are conventionally designed to gener-
alize observations about numerical vectors, and hence, their appli-
cation to non-numeric data requires embeddings of these data into a
numerical vector space. The embedding should faithfully reflect the
semantics of data in the sense that similar entities are to be mapped
to vectors that are close geometrically and vice versa. Instantiations
of this practice include models like WorD2VEC [17] and BERT (Bidi-
rectional Encoder Representations from Transformers) [9] that map
words (or tokens of words) in natural language [15], NODE2VEC
that maps nodes of a graph [11], TRANSE [5] that map entities of
a knowledge graph, MoL2VEc [14] that maps molecule structures,
and EMBDI [6] and FORWARD [22] that map database tuples. Data-
base embeddings have enabled the deployment of machine-learning
architectures to traditional database tasks such as record similar-
ity [2-4, 12, 13], record linking [10, 19] integration tasks such as
schema, token and record matching (entity resolution) [6], and
column prediction [22]. The embedded entities are typically either
tuples or attribute values. Here we focus on tuple embeddings.

Embedding techniques are often based on the analysis of se-
quences obtained from the data. In word embedding, the data is
naturally organized in sequences (e.g., sentences or sliding win-
dows in the text) [9, 17]; in node embedding, the sequences are
paths obtained from random walks in the graph [11]; and in tuple
embedding, the sequences consist of database components (cells
and tuples) that one can reach through natural joins [6] or foreign-
key references [22]. The analysis is typically done by learning to
predict masked parts of the sequence from other parts of the se-
quence [6, 9, 11, 17]. We focus on FORWARD that is designed for
producing stable embeddings in dynamic databases, as we explain
next. FORWARD analyzes walks, which are sequences of tuples con-
nected via foreign-key references, and it does so differently from
masking. Roughly speaking, training aims for the distance between
two (vector representations of) tuples to capture the distance be-
tween the distributions of values reachable from the tuples through
foreign-key references, starting from the corresponding tuples. (We
recall the exact definition of FORWARD in Section 2.)

The FORWARD algorithm has been designed to solve the stable
embedding problem, where the goal is to infer the embedding of
the new tuples without recomputing the embedding over the entire
database and without changing the embeddings of existing tuples
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Figure 1: FORWARD vs. FORWARD with scheme selection

(that downstream tasks might already be using and rely on past
decisions thereupon) [22]. A technique for performing this task has
been proposed along with the FORWARD framework [22].

A walk in a database is naturally associated with a meta-data
pattern, which is formed by taking the names of the relations of the
tuples along the sequence, as well as the names of the attributes that
are used for the (outgoing and incoming) references. This pattern
is called a walk scheme [22], and examples of these are depicted in
Figure 4 in the context of a geographical database. Sequence-based
embedding algorithms for other modalities do not encounter (and
do not account for) such meta-information in the training phase.
Our premise is that the walk scheme determines, to a large extent,
the contribution of a walk to the quality of the learned embedding.
Hence, unlike word and node embedding, in tuple embedding, we
can introduce important a-priori bias over the training sequences.

We claim and prove empirically that one can considerably reduce
the number of training walks by restricting the learning phase to
the walks of the most effective walk schemes, with a mild (or no) re-
duction in quality. Moreover, the embedding quality might improve
by filtering out walk schemes that contribute more noise than ben-
eficial information. We devise techniques for the selection of walk
schemes within FORWARD, as illustrated in Figure 1. To illustrate
the importance of scheme selection, a sample of our experiments is
shown in Figure 2. Here, we are using the learned embedding in the
Mondial database [21] to predict the religion of a country based on
the database’s information. Each curve corresponds to a selected
percentage of the walk schemes and shows the quality of the pre-
diction as a function of the embedding time (where each epoch
contributes a point). The actual way of selecting the walk schemes
is discussed in the next paragraphs. As the chart showed, selecting
a fifth of the walk schemes fully preserves the quality in about
one-third of the embedding time and eventually even outperforms
the embedding with the entire set of walk schemes.

The main question then is how to select the best walk schemes for
learning an embedding? This is the challenge that we focus on in
this paper. The goodness of a selection method is reflected in two
measures: (1) Efficiency—the choice should be considerably faster
than the embedding itself, and (2) Quality—the choice should be
such that we can select just a small number of walk schemes and
retain the quality of the embedding (e.g., on downstream tasks).
Regarding the efficiency measure, we already said that an important
(but not the only) use case for walk-scheme selection is that the
combined time it takes to select the walk schemes and then learn
the embedding is considerably faster than learning the embedding
on the initial full collection of walk schemes. As for the quality
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Figure 2: Religion prediction over the Mondial dataset with
FoRWARD and scheme selection via kernel variance. With a
fifth of the walk schemes, we get to full equality in about one-
third of the embedding time and eventually even outperform
the embedding with the entire set of walk schemes.

measure, if we are to select a% of the walk schemes and have
downstream success of % compared to 100% of the walk schemes,
then we would like @ to be as small as possible (e.g., 10) and f as
large as possible (e.g., 95). Actually, our experiments show cases
where 8 exceeds 100 for the reason discussed above. Importantly,
the quality of the selection strategy should also apply to the stable
embedding problem in the dynamic setting. In particular, we would
like the performance of the learned embedding to reach (or even
exceed) that of the full set of walk schemes when the embedding is
extended to newly arriving tuples.

The choice can be made by ranking the walk schemes by some
scoring function and selecting the top candidates. This scoring
function can reflect properties that are hypothetically important
to the embedding but do not require seeing in action the embed-
ding algorithm, namely FORWARD; we refer to this approach as
FoRWARD-less. Alternatively, one can execute the embedding al-
gorithm in some limited (light) manner and infer the walks from
that execution (or, more precisely, from the internal state of the
model); we refer to this approach as light training. Finally, one can
also eliminate walk schemes gradually during the embedding pro-
cess, where in each epoch, we estimate the importance of a walk
scheme (similarly to the way it is done in light training) and leave
a strict subset for the next epochs, until we decide that none can be
further eliminated; we refer to this approach as online scheme elim-
ination. In summary, we devise and study strategies for selecting
walk-schemes in three different approaches: (1) FORWARD-less, (2
light training, and (3) online scheme elimination.

In each approach, several different strategies can be proposed. In
the FORWARD-less approach, we look at measures that inspect the
probability distribution that one establishes by following random
walks guided by the walk scheme (in addition to simple baselines
such as eliminating the longest schemes and random schemes). The
strategy that stands out is what we call kernel variance: what is the
variance among the differences that one observes by selecting two
random starting points for the walks? In the light-training approach,
we look at two types of training restrictions: a single epoch (out of
all epochs) and a full training on a sample of the database. In the
online elimination approach, we apply the single-epoch selection
(of light training) after every epoch.
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In the experiments, we follow the convention of evaluating the
embedding quality on downstream tasks and use column-prediction
tasks in the bio-medical and geography domains. Our study (Sec-
tion 5) has three parts. First, we test the performance of each se-
lection strategy as a function of the time and number of selected
schemes. Second, we conduct a comparison among the strategies in
a technique that we devise. Third, we study the performance with
the selected walk schemes in a dynamic setting. Our conclusion is
that kernel-variance performs best.

In summary, our contributions are as follows. First, we intro-
duce the problem of scheme selection for tuple embedding. We do
so in the context of FORWARD, yet the problem applies to every
sequence-based database embedding. Second, we propose three ap-
proaches to scheme selection and devise several specific strategies
within each approach. Third, we conduct a thorough experimen-
tal evaluation that investigates the empirical effectiveness of the
strategies, compares them, and studies their performance in the
dynamic setting.

2 PRELIMINARIES

Relational Model. A database schema o consists of a finite col-
lection of relation schemas R(Aj, ..., Ax) where R is a distinct rela-
tion name and each A; is a distinct attribute name. Each attribute
A is associated with a domain, denoted dom(A). Each relation
schema R(Aj1, ..., Ag) has a unique key, denoted key(R), such that
key(R) € {A1,...,Ax}. A fact over arelation schema R(Ay, ..., Ay)
has the form R(ay, ..., ag) where a; € dom(4;) foralli=1,... k.
A database D over the schema o is a finite set of facts over the
relation schemas of ¢. In addition, such an a; can be missing and
given as a distinguished null value. The fact R(ay, ..., ai) is also
called an R-fact and a o-fact. We denote by R(D) the restriction
of D to its R-facts. For a fact f = R(ay, ..., ax) over R(Ay, ..., Ag),
we denote by f[A;] the value g;, and by f[By,...,Be] the tuple
(f[B1l,--., f[Be]). The active domain of an attribute A (w.r.t. to the
database D), denoted adomp (A), is the set {f[A] | f € R(D)}.

A foreign-key constraint (FK) is an inclusion dependency of the
form R[B] C S[C] where Rand S are relation names, B = By, ..., By
and C = Cy,...,C; are sequences of distinct attributes of R and S,
respectively, and key(S) = {Cy, ..., Cr}. For every FK R[B] C S[C]
and R-fact f € D there exists an S-fact g € D such that f[B] = g[C].
We then say that f references g.

FoRWARD. The goal of FORWARD is to derive an embedding
functiony : D — RX for the tuples in a database. Here, the dimen-
sion k > 0 is a hyperparameter. The general objective is to compute
an embedding y that represents the data in a way that makes it
accessible for data analysis and machine learning algorithms. To
this end, FORWARD learns embeddings that encode the distribution
of values seen along random walks through the database. Next, we
introduce FORWARD’s notion of random walks through databases
formally and recap how these walks are used to produce an embed-
ding. A walk scheme s has the form

Ro[A°]—[B'|R [A']—[B?|R;[A%]—---—[B'IR, 1)

such that forall k = 1,..., ¢, either Ry, [Ak-1] ¢ Ry [B¥] is an FK
or Re[B¥] € Ry_;[A*~1] is an FK. We say that s has length ¢, that
it starts from Ry, and that it ends with Rp.
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A walk with the scheme s is a sequence (fy, ..., fz) of facts such
that fi is an Ri-fact and fi_,[AK~1] = fi,[BF] forallk = 1,...,¢.
We say that (fy, ..., fz) starts from, or has the source, fj, and that it
ends with, or has the destination, fp. FORWARD allows walk schemes
and walks of length zero; the walks of this scheme have the form
(fo) and consist of the fact fy. A random walk with s defines a
distribution over the destinations. Formally, let fy = f be an Ry-fact.
We denote by ‘W (f, s) the distribution over the walks with the walk
scheme s where each walk is sampled by starting from f; and then
iteratively selecting fi, for k = 1,..., ¢, randomly and uniformly
from the set {f € R | f[B¥] = fi_1[A*1]}]. We denote by
df,s the random element that maps each walk in W(f,s) to its

destination—the last fact in the walk. For g € R (D), the probability
that a walk sampled from W (f, s) ends with g is Pr(dys = g).

Targeted Walk Schemes. A targeted walk scheme is a pair (s, A)
such that s is a walk scheme from a relation R to a relation R’, and A
is an attribute of R’. Given a start fact f in the start relation R of the
walk scheme s, a targeted walk scheme (s, A) defines the random
variable dy ;[A] that forms the value of the random walk’s destina-
tion in the attribute A. We denote by TWS(R, fmax) is the set of all
targeted walk schemes (s, A) such that s is a walk scheme of length
at most fmayx starting from the relation R (and ending in any relation
that includes A). For example, Figure 4 shows several targeted walk
schemes over the schema of the database D of Figure 3. To illustrate,
(s7,A7) is the targeted walk scheme with A7 := name and s7 :=
CouNTRY|[code]|—[country] MEMBER|[org]—[abbrev]OrG. Walks of
s7 include the sequences (c1, m1,01) and (c2, ms, 02). The distribu-
tion de, s, [A7] is uniform between European Union and Nordic
Council. The walk schemes (s1,A1), ..., (s7,A7) are in the set
TWS(COUNTRY, 3) since they all start with CounTRY and have
length at most three, yet (ss, As) is not in TWS(COUNTRY, 3) but
rather in TWS(COUNTRY, 4).

Recall that databases may have nulls. A random walk starting
at f might end at an R,-fact g with null on A. As a convention, we
define the probability distribution of df ([A] by ignoring the nulls
(and normalizing). With this modification, we enforce dys[A] €
dom(A). This will be crucial in Section 2, where we define similarity
measures for dr ;[A] based on dom(A).

Kernelized Domains. FORWARD assumes that every attribute A
is associated with a kernel function x4 that maps all pairs of ele-
ments from dom(A) to the nonnegative reals. Intuitively, k4 (a, b)
measures the similarity between elements a,b € dom(A). Kernel
functions offer a straightforward way of encoding domain knowl-
edge by modeling the similarity of the domain values. Kernels are
also helpful when dealing with noisy data. For example, kernels
based on the edit distance can be used to smooth out random typos
in text. FORWARD uses these kernel functions to define similarity
measures for the random variables df s [A].

Let s be a walk scheme of length ¢ from R to R’. Let A be an
attribute of R” and let f and f” be two distinct R-facts. Then df s [A]
and d o [A] are random variables over a shared kernelized domain
dom(A). The Expected Kernel Distance KD is the expected distance
between two random values selected independently at random:

JKA(ds,f[A]’ds,f’[A])] @)

KD(d ¢ [A].ds, [A]) KA

= E
W(f.5)xW
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COUNTRY MEMBER
code name capital country | org type
¢y A Austria Vienna my A E member
c2 SF Finland | Helsinki my SF EU | member
c3 PR P. Rico | San Juan ms3 SF NC | member
MEMBER|[country] C
CoUuNTRY|[code]
MEMBER[org] € Org[abbrev]
Poritics
country | independence | depend gov
p1 A 12/11/1918 - fed. republic
P2 SF 06/12/1917 - republic
P3 PR - USA assoc. with US
Porrtics[country] € COUNTRY[code]
Porrtics|dependent] € CouNTRY[code]
ORrG
abbrev name city country
01 EU European Union Brussels B
03 NC Nordic Council | Stockholm S

l ORrG[country] € COUNTRY[code]

Figure 3: Example of a database, with foreign-key constraints,
taken from the Mondial dataset.

FoRWARD uses the Expected Kernel Distance to quantify the simi-
larity between dy s [A] and dfr s[A] with respect to the kernel k4.

Embedding . Intuitively, FORWARD aims to encode the kernel
KD(ds,f[Al.ds,f [A]). The primary output is the embedding ¢ :
D — Rk. Additionally, the FORWARD algorithm learns an aux-
iliary embedding ¢ : TWS(R, fmax) — R4*4 that maps each tar-
geted walk scheme (s, A) to a symmetric matrix (s, A). (Recall that
TWS(R, fmax) is the set of targeted walk schemes of length at most
k.) The objective is to find ¢ and i satisfying o (f) T/(s, A)p(f’) =

KD(d, [Al,dg  [A]) forall f, f” € R(D) and (s, A) € TWS(R, fmax).

Effectively, FORWARD minimizes

le(HTY(s. Ao(f’) ~ KD(ds r[Al dg g [A])] ®)

for all f, f’, s and A, via Stochastic Gradient Descent (SGD).

Intuitively, the algorithm learns an inner product (-, -)s 4 on the
latent space of the embedding ¢ defined by (x,y)s.a = x "¢/ (s, Ay
for all s and A such that the similarity of facts f and f” with respect
to this inner product matches the similarity between the random
variables dy s [A] and dyr s[A] with respect to the kernel kg, 4.

FORWARD uses gradient descent to learn ¢ and . During train-
ing, tuples of the form (f, f',s, A, g,g’) are sampled, where f and
f” are R facts from the database and (s, A) € TWS(R, fmax)- The Ry
facts g and ¢’ are the destinations of random walks with scheme
s sampled for f and f’, respectively. We use a hyperparameter
Ngsamples € N. For each R-fact f and scheme (s, A) € TWS(R, fmax).
we sample ngamples tuples (f, f7,s, A, g,g") with f” # f. The follow-
ing loss is then minimized for each sample using SGD:

L= 210NV o) - xr aGLALG TADE. @

This objective uses kg, 4(g[Al, g’ [A]) as a (stochastic) estimate of
KD(d; r[Al dg g [A]).
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COUNTRY @

name o
COUNTRY Poritics @
code country @
COUNTRY Poritics @ (535 A3)
code country @

(s1,41)

(s2,42)

indep
COUNTRY Pourrtics COUNTRY @ (s4,Aq)
code country depend code
caplta[ @
COUNTRY Porrtics COUNTRY @ (s5, As)
code country depend code
Lhame @
COUNTRY MEMBER @ (56, Ag)
code country
type @
COUNTRY MEMBER OrG @ (s7,A7)
code country org abbrev
Lhame @
(58, Ag)
COUNTRY MEMBER COUNTRY
code country org abbrev country code
Lhame

Figure 4: Examples of targeted walk schemes of length one to
four, for the database schema of Figure 3. All walk schemes
start at the COUNTRY relation. The figure of the walk scheme
for (s, A) shows s as a path of rectangles and A (e.g. name) as
an attribute under the rightmost (last) rectangle.

3 PROBLEM DEFINITION

Recall that FORWARD uses all targeted walk schemes of length at
most fpax for training its embedding. That is, all of TWS(R, fmax)-
Our conjecture in this work is that some targeted walk schemes are
considerably more useful than others for the task of embedding,
and furthermore, that a small subset of TWS(R, fiax) suffices for
achieving the quality of the full set. If so, then we can considerably
reduce the training time by focusing on just a few walk schemes.
It is also perceivable that, with a small yet valuable collection of
targeted walk schemes, we can surpass the quality of the original
set for the same training time.

Consequently, our goal in this work is to find a subset 77 of
TWS(R, fmax) such that the training of FORWARD on 7 rather
than TWS(R, fmax) is more effective. In particular, we would like to
find a 77 such that: (1) 7 is small compared to TWS(R, fmax), and
importantly an epoch of training with 7 is considerably faster than
training with TWS(R, fimax); and (2) the quality (on downstream
tasks) of the embedding resulting from 7 is high compared to
TWS(R, fmax). Hence, we would like to find a 7 that would enable
us to train considerably faster without a penalty of loss in quality.

Example 3.1. One way of selecting a subset of TWS(R, fmax) is to
score each and take the top-k for a desired number k of schemes. For
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illustration, Figure 4 depicts two scores (written in filled ellipses)
beside each targeted walk scheme. The first (blue) score is what
we later define as the kernel variance score. The second (green) is a
simplistic score that we use as a baseline; this is the reciprocal of the
scheme’s length (e.g., it is 1/3 for (s7, A7) since s7 is of length three).
If we use the second scoring function, then we take the shortest of
the targeted walk schemes (and apply tie-breaking if needed). @

4 STRATEGIES FOR SCHEME SELECTION

Recall that our goal is to study how walk schemes should be se-
lected in order to establish a proper balance between the execution
cost and the quality of the embedding. Our general approach is to
start with a large collection of walk schemes (i.e., the initial one of
FoRWARD) and eliminate walk schemes one by one. In this section,
we propose several strategies for such elimination.

Technically, a strategy T assigns to every (s, A) € TWS(R, fmax)
a number scorer (s, A, D) for the database D, where a higher score
means that the targeted walk scheme is considered more valuable.
When we select k schemes to eliminate, we select the bottom k
according to the score. We propose strategies that fall into three cat-
egories: (1) The FORWARD-less strategies determine scorer (s, A, D)
based on an evaluation that does not require the actual execu-
tion of FORWARD. (2) In the light training strategies, we run FoR-
WARD in some limited and light fashion in order to determine
scorer (s, A, D). (3) The strategy of online scheme elimination incor-
porates the scheme selection in the actual embedding phase (using
FORWARD) while targeted walk schemes are eliminated during
the epochs of the training; hence, the values scorer (s, A, D) are
computed multiple times during the embedding phase.

4.1 FoRWARD-Less Strategies

This category includes simplistic baseline strategies such as the
length of the scheme, which is illustrated in Figure 4 in the green
ellipses. Next, we describe two more involved strategies: mutual
information and kernel variance.

Mutual Information. A walk scheme s, as defined in (1), induces a
probability distribution over random walks, which are sequences
(fi,.--, fr) of factsin Ry, ..., Ry, respectively. Fori = 1,..., ¢, let X;
be the random variable that takes the random fact f;. Let p(f;, fi+1) €
[0, 1] denote the marginal joint distribution of the variables X; and
Xi+1. Recall that the mutual information of X; and Xj41 is given by:

pUifisn)log o ey )

(X Xin) = ) ©)

fi€Xi, fin €Xin

We estimate the probabilities p(f;, fi+1) as the empirical probabili-
ties, that is, their probability in our samples.

We score a targeted walk scheme by the minimal mutual infor-
mation along the walk. Formally, we have the following score:

scoremi(s, A, D) = — o<1?<i?+1I(Xi [Xi+1) (6)

Note that the minus sign means that we favor schemes with small
mutual information. The rationale is that small mutual information
encourages the embedding to capture less predicted distributions.
As we show later, this rationale is consistent with our experiments.
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Kernel Variance. The measure kernel variance is, intuitively, one
that favours targeted walk schemes where different start tuples
are associated with varied distributions, and so, the embedding
of FORWARD is encouraged to distinguish between these starting
tuples. Formally, for a targeted walk scheme (s, A) we define the
kernel variance score, denoted scorey, (s, A, D), as the variance of
the expected kernel distance between the distributions induced by
s and A when starting with random f and f” in the source of s.

scoreiyar(s A D) i= Var (KD(dy plAL ds p [4D) ()

We can estimate scoreyy (s, A, D) from a pool of samples of the
form (f, f’,g,9’), where g and g’ are destinations of random walks
of s starting at f and f”, respectively. The number of samples is a
hyper-parameter, and in our experiments, we used 10% of the num-
ber of samples that FORWARD uses for computing its embedding.

4.2 Light Training

If we run the full embedding over all schemes, then we can track the
experience of the embedding algorithm with respect to the different
schemes. We can then score the contribution of the targeted walk
scheme based on the accumulated loss incurred by instances of the
targeted walk scheme. While this approach works well empirically,
it beats an important purpose of the scheme reduction—to reduce
the execution cost of the embedding. So, our approach is to apply
this idea lightly, that is, we run the training phase but either stop
it early (“Early Termination”), run it only a small sample of the
data (“Sample”), or combine between the two. In what follows, we
present a precise materialization of these alternatives.

For the next strategies, we need some notation. Recall that
the training of FORWARD involves several steps: (1) For each R-
fact f and (s,A) € TWS(R, fmax), we sample tuples of the form
(f, f',s,A,9,9"). (2) For each (s, A) € TWS(R, max), the Ry facts g
and ¢’ are the destinations of random walks with scheme s sam-
pled for f and f’, respectively. (3) Using SGD, we minimize the loss
Ly 7.5,A,9,¢ according to Equation (4). Note that the loss L, 175 4 g,
is computed for each choice of (s, A), f, f’, g and ¢g’. We denote by
Li(s, A, D) the mean of the losses Ly, 77 5 4 g4 for each combination
of s, A and D, until the ith epoch.

Single-Epoch Training. This score is the mean loss after an epoch:
scoretep(s, A, D) = Ly (s, A, D) ®)

Note that the computation of this score is disconnected from the
training phase, where we train from scratch without accounting
for the epoch we spend for computing.

Sampling. The second type of light training uses a sample of the
database. It is crucial to have a sample where the walk schemes
materialize, so we need to carefully select the sample. We create a
sample D’ of the database D in two steps: (1) randomly select a small
set F of facts from D; (2) insert to D’ all of the facts of D that are
reachable from F through paths of foreign keys (in both directions).
Yet, with this approach, we still suffer from walk schemes with too
few instances in D’. Thus, we construct F by considering every
scheme s and selecting random facts from those that participate in
paths of s. Finally, we run ten epochs and take the average loss:

scoresmpl (s, A, D) = Lig(s, A, D) 9)
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Table 1: Datasets used in the experiments. “4TWS” is the
cardinality of TWS(R, fmax), that is, the number of targeted
walk schemes of length up to £yax. “Avglen” is the average
length of a walk scheme in TWS(R, fnax).

Dataset #Rel. | #Tuples | #Attr. | #TWS | fmax | Avglen
Mondial 40 21497 167 63 3 2.44

World 3 5411 24 60 3 1.68
Hepatitis 7 12927 26 21 3 1.73

Genes 3 6063 15 32 3 2.25
Mutagen. 3 10324 14 58 4 3.10

4.3 Online Scheme Elimination

This strategy is similar to the single-epoch training, except that
we apply it iteratively during training, where in each epoch we
remove the bottom-k schemes according to the score computed for
that epoch according to Equation (8). This way, we are potentially
allowing to account for schemes that become more important once
other schemes are removed (in earlier epochs). Note that online
scheme elimination is different from the light-training approach in
the sense that the latter is performed as a pre-processing step that
takes place before the embedding computation, while the former is
performed as part of the embedding computation.

5 EXPERIMENTAL EVALUATION

The goal of our experimental study is threefold. First, we evaluate
the effectiveness of the scheme-selection strategies in terms of the
quality of the embedding and the execution cost of its computation.
Second, we compare the strategies. Third, we study the impact of
the strategy on the performance in a dynamic setting where new
tuples are repeatedly inserted, and their embedding is computed
without changing the embedding of existing tuples.

To evaluate an embedding, we adopt the common approach of
measuring the accuracy on downstream predictions. Hence, we
measure the running time of the embedding algorithm, namely
FORWARD, and the quality of a learned model for the downstream
task. We focus on multi-relational data and use the same databases
and tasks that were used for the evaluation of FORWARD [22].

5.1 Experimental Setup

5.1.1 Datasets and Tasks. Information about the datasets and down-
stream tasks of our experiments is given in Tables 1 and 2, respec-
tively. Each dataset is a database of multiple relations (with the
number of relations given in the “4#Rel” column of Table 1), and
the task is to predict the content of an attribute of one of the rela-
tions. Hereafter, we refer to this relation as the prediction relation.
In different downstream tasks on the same dataset, the prediction
attribute is changed in the prediction relation to the one we aim to
predict. Importantly, the predicted attribute is excluded from the
database throughout the entire embedding phase, and it is seen by
neither FORWARD nor the walk-scheme selector.

Mondial contains information from multiple geographical re-
sources [16]. We used multiple attributes for prediction tasks on
this dataset: religion (Christian or not), continent, infant mortality
g40 (whether the rate is lower than forty per thousand), gdp g8e3

Yuval Lev Lubarsky, Jan Tonshoff, Martin Grohe, and Benny Kimelfeld

Table 2: Downstream tasks. “CC” (Common Class) is the fre-
quency of the common value of the predicted bit.

Downstream task | Pred.Rel. | Pred. Attr. | #Samples | CC
M.-Religion religion 206 54.8%
M.-Continent continent 242 22.7%
M.-Infant Mort. Target infant g40 238 60.5%
M.-GDP gdp g8e3 238 50.0%
M.-Inflation inflation g6 238 50.8%
World Country continent 239 24.2%
Hepatitis Dispat type 500 58.8%
Genes Classific. | localization 862 42.5%
Mutagenesis Molecule | mutagenic 188 66.4%

(whether GDP is lower than $8000M), and inflation g6(whether the
inflation rate is lower than 6%).

World has geographical data on states and their cities [18]. The
task is to predict the continent of a country. The dataset contains
40 different relations with a total of 167 attributes and 21,497 tuples.
We use the whole database and use the TARGET relation as the
prediction relation as previously done by Bina et al. [1].

Hepatitis is from the 2002 ECML/PKDD Discovery Challenge.!
The task is to predict the type column, which is either Hepatitis B or
Hepatitis C based on medical examinations. There are in total 206
instances of the former and 484 cases of the latter. The relation with
the predicted column contains, in addition to the type classification,
the age, gender and identifier of the patient. The other relations
contain the rest of the medical data. The dataset contains 7 relations
with a total of 26 attributes and 12,927 tuples.

Genes [7] contains genomic and drug-design data. The task is to
predict the localization of the gene, based on biological data, with
15 different labels. The prediction relation contains only the class
and an identifier for the gene, while the rest contain biological data
such as the function, gene type, cellular location, and the expression
correlation between genes. The dataset contains 3 relations with a
total of 15 attributes and 6,063 tuples. (We deleted two tuples with
a unique class to prevent split in-balances during cross-validation.)

Mutagenesis contains data on the mutagenicity of molecules on
Salmonella Typhimurium [8]. The task is to predict the mutagenic-
ity of molecules, based on chemical properties of the molecule, with
122 positive samples and 63 negative ones. The prediction relation
contains the binary class, molecule ID, and some of the chemical
data, while the other relations contain more chemical data and
information about the relations between the molecules. The dataset
contains 3 relations with a total of 14 attributes and 10,324 tuples.

5.1.2 Compared Strategies. We compare the following strategies.
Random eliminates random schemes. Length eliminates the schemes
with the longest length. KVar eliminates the schemes with the least
scoreyyar (kernel variance), as defined in Equation (7). Ml elimi-
nates the schemes with the least scorep,; (mutual information) as
defined in Equation (5). 1lepoch eliminate the schemes with the least
scoretep (one epoch), as defined in Equation (8). Sampling elimi-
nate the schemes with the least scoregmp| (sampling), as defined in

Uhttps://sorry.vse.cz/~berka/challenge/PAST/. We use the modified version of [20].
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Figure 5: Performance on the downstream task as a function of time for different ratios of schemes used for training. At the
end of each training epoch of FORWARD we record the time (x-axis) and accuracy of the downstream task (y-axis).

Equation (9). Recall that in this strategy, we run the algorithm for
ten epochs on the sample D’ of the database D; afterward, we run
FORWARD from scratch on the remaining schemes. Online is the
online scheme-elimination approach is described in Section 4.3.
We have a full separation between the embedding process and
the downstream task: we generate the embedding independently
from the task (as opposed to training for the task) and then use
these embeddings as the input to a downstream classifier (that sees
only the embeddings and none of the other database information).

5.1.3  Programming. For a tuple embedding ¢, we denote by a(¢) €
[0, 1] the mean accuracy achieved by an SVM (Scikit-learn’s SVC im-
plementation) trained as a classifier that takes the tuple embeddings
in ¢ as input, and learns to predict the target of the downstream
task. The results are given for a ten-fold cross validation. We fix
one split for each dataset and task where this cross validation is
performed, and we do so for every evaluated embedding.

The value of a(¢) is our primary metric for the quality of an
embedding ¢. We usually train five embeddings ® = {¢1,...,¢5}
for each configuration, each with a different seed. We use the mean
cross-validated accuracy across the five as a measure of the expected
embedding quality: a(®) = mean;<;<s a(@;). We study how this
expectation develops over time for different strategies and selection
ratios. More formally, let 7~ be a scheme selection strategy and let
r € [0, 1] be the ratio of schemes used for training. By ®(7,r,t) we
denote the set of embeddings obtained after training five FORWARD
embeddings for t seconds on the targeted walk schemes reduced
using 7~ by ratio 1 — r. We evaluate the expected accuracy after
each epoch, thus the set of times ¢t where we record a(®(7,r,t))
is determined by the time it takes to complete an epoch.

We run all the experiments a server with two Intel Xeon Gold
6130 processors, 512 MB RAM, and an NVIDIA QUADRO RTX 6000
GPU with 24 GB memory.

5.2 Performance of Individual Strategies

We first study how the embedding quality develops throughout the
training of the embedding. We record the training time and the
quality on the downstream task at the end of each epoch. We study
the progress when training on different subsets of the targeted walk
schemes selected by the different strategies. In Figure 5, we provide
results for the Mondial-Religion (MR) and Genes downstream tasks
using the strategies KVar (kernel variance), 1epoch (one epoch),
and Random.

In each sub-figure of Figure 5, there are nine colored curves
and one gray curve. Each colored curve represents one ratio of
removed schemes from 10% to 90%. The gray curve shows the
original FORWARD run when training on all targeted walk schemes.
The x-axis provides the training time ¢ in seconds and we plot the
value of a(®(7,r,t)) (ie. the evaluation of the expected accuracy
t seconds) on the y-axis. Intuitively, this shows how the embedding
quality develops throughout the training of the embedding.

Across the experiments, we observe a range of behaviors. First,
the selection strategy has a significant influence on the result. For ex-
ample, the Random elimination strategy yields significantly worse
performance when a large percentage of schemes is removed. This
justifies the design of more sophisticated strategies that are able
to yield embeddings of high quality even when a larger ratio of
TWS(R, fmax) is removed. One example of this is the Mondial-
Religion downstream task. Vanilla FORWARD with all schemes
reaches 83% accuracy on the downstream task. When using Ran-
dom to train on only 50% of the walk schemes, accuracy drops to
74% while taking longer to converge. Furthermore, when using the
Random strategy to train on 20% of the targeted walk schemes, we
observe a more dramatic decrease in accuracy to 71%. In contrast,
when training with the KVar strategy on 50% or 20% of the targeted
walk schemes, the accuracy over the downstream task does not
differ much from the original 83%.

For most of the combinations of tasks and strategies, a signifi-
cant portion of the targeted walk schemes can be removed with
a negligible decrease in quality. The speed of convergence natu-
rally increases with the ratio of removed schemes. An example of
this behavior is the Mondial-Religion task. Here, when we train on
fewer schemes (using the KVar and lepoch strategies), we reach
the same 0.83 accuracy with less training time. For instance, by
selecting a fifth of the walk schemes using KVar, we get to the full
quality in about a third of the embedding time. Another example
is the Genes downstream task. Here, the original FORWARD with
all walk schemes takes 300 seconds to reach 92.9% accuracy over
the downstream task. This time improves to 124.5 and 148 seconds
when training on just 30% of the targeted walk schemes selected
by the KVar and 1epoch strategies, respectively.

There are several instances where the removal of schemes not
only accelerates training but actually increases the downstream
performance. An example of this is the Genes dataset. Here, the ac-
curacy achieved with all scheme selection strategies increases with
the percentage of removed schemes until about 70% of all schemes
are discarded. More specifically, the accuracy on the downstream
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Table 3: The best training time for each scheme selection strategy and task. The table contains the shortest time it takes to
reach the threshold quality o* over all tested removal ratios r (i.e. t*(7")). The last row (ALL) refers to the embedding time of
the original FORWARD run, with all schemes, as a baseline. The best (lowest) train time for each task is printed in bold.

Mutagenesis ~ World ~ Hepatitis ~ Genes

M.-Religion M.-Infant M.-Continent M.-GDP  M.-Inflation

KVar 20.59 154.32 29.31 107.18 42.75 42.17 54.39 56.84 49.46
(+-2.67) (+-18.71)  (+-6.52)  (+-5.73)  (+-2.63) (+-4.61) (+-1.58) (+-8.20) (+-6.47)

Online 41.89 150.38 60.88 115.91 61.76 61.96 69.44 56.55 65.31
(+-2.68) (+-11.09)  (+-33.53)  (+-4.15)  (+-2.31) (+-2.48) (+-2.88) (+-9.86) (+-4.80)

Random 39.09 268.97 69.98 115.39 88.22 76.16 113.15 71.02 82.5
(+-7.29) (+-81.67) (+-16.33) (+-5.83)  (+-14.12) (+-0.71) (+-7.07) (+-6.00)  (+-35.24)

1epoch 41.57 191.2 58.68 126.46 55.06 56.03 67.16 65.63 65.08
(+-1.21) (+-3145)  (+-15.50) (+-7.12)  (+-1.20) (+-3.36) (+-1.37) (+-4.88) (+-6.58)

All 55.89 550.65 58.36 161.9 101.32 76.16 113.14 69.03 95.37
(+-8.67) (+-22.92)  (+-93)  (+-6.74)  (+-8.53) (+-0.71) (+-7.06) (+-8.77) (+-8.61)

task is 93.8% for the original FORWARD run with the full set of walk
schemes; it goes up to 98% when 70% of the schemes are discarded
using the KVar and Tepoch strategies. Similar results are obtained
on the Mondial-Inflation and World tasks, although the margin of
improvement is different on these tasks.

5.3 Comparison between Strategies

We aim to better quantify the difference between strategies. We
first introduce additional metrics. We establish a high-performance
threshold by training five standard FORWARD embeddings ®rwp
with all targeted walk schemes. We set 95% of the expected cross-
validated accuracy as the performance target on each downstream
task: &* = 0.95 - a(Ppwp). In Figure 5 described next, the threshold
is shown as a dashed red line. We wish to study how each considered
strategy for scheme selection affects the compute time needed to
obtain an embedding of high quality. To this end, we will measure
how much training time is needed to reach the threshold o* with
each strategy. We will use the following definitions.

For a strategy 7~ and a ratio r, we denote by t* (7, r) the earliest
time it takes to reach the performance threshold: ¢* (77, r) = min{¢ |
a(®(T,r,t)) = a*}. For the strategy 7, we can further define a
metric that is the shortest time it takes to reach the target quality
over all tested ratios r: t*(7°) = min, t*(7, r). This is the primary
metric that we use for measuring the effectiveness of a strategy.

Table 3 provides the value of t*(7") for each strategy 7 and
task. Overall, KVar yields the fastest training times on most tasks.
However, the exact performance of each strategy depends on the
data. The Length strategy yields the best overall results on the
Genes dataset, but KVar performs substantially better than Length
on all other tasks. The Online strategy also yields the fastest training
times on the World and Modial-GDP tasks.

To further study training different selection strategies, in Figure 6
we provide the “best” learning curve of each strategy on each task.
More specifically, we plot the value of a(®(7,r*(7),t)), where
the ratio r*(7°) € [0,1] is r*(7) = argmin, t*(7,r). Note that
we also provide the training curve of FORWARD when using all
targeted walk schemes (gray). When training with reduced scheme
sets the training converges consistently speeds up. As observed

previously, the margin of the speedup depends on the scheme se-
lection strategy. The KVar (kernel Variance) strategy (red) yields
the fastest convergence on most downstream tasks.

The strong overall performance of the KVar (kernel Variance)
method suggests that it strikes the best balance between running
efficiently and determining a good subset of schemes to remove.
Thus, it enables us to train on less targeted walk schemes and reach
the same accuracy faster than simpler selection strategies.

5.4 Embedding for Dynamic Databases

Finally, we investigate how the reduction in the set of schemes af-
fects the dynamic-database setting, where new tuples arrive and we
need to compute an embedding of the new tuples without changing
the embedding of existing tuples. (Note that tuple deletion is not an
issue in this setting since we simply leave intact the embedding of
the remaining tuples; see Tonshoff et al. [22] for a discussion on
tuple insertion and its possible subtleties.) For this experiment, we
will use the dynamic extension of FORWARD [22]. This extension
is one of the key motivations for the design of FORWARD as it is
able to compute embeddings of new tuples unseen during training
by solving a single linear system of equations.

Naturally, a useful scheme-selection strategy should not impair
the quality of the new tuple embeddings. Here, we will conduct a
brief experiment to verify that this is indeed the case. More specifi-
cally, we adopt the exact experimental setup of the dynamic experi-
ments conducted by Toénshoff et al. [22]. This setup first deletes a
part of the database and trains an embedding on the remaining data.
This embedding is then used to train a classifier for the downstream
task. Only after this, the removed tuples are inserted back into the
database and the embedding is inductively extended to the new
data. These new embeddings can then be evaluated by measuring
the accuracy of the downstream classifier on the inserted data. By
varying the ratio of data that is initially removed we can test the
robustness of this dynamic embedding extension.

We train and then extend FORWARD where 60% of all targeted
walk schemes have been removed according to the KVar strategy.
As baselines, we include the results of FORWARD with no schemes
removed as well as the dynamic extension of node2vec, which was
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Figure 6: Comparison between different strategies. For each downstream task, we provide the best learning curve of each
strategy, that is, the first curve that reaches an accuracy of o*. Note that the color now denotes the selection strategy.

also proposed by Tonshoff et al. [22]. Figure 7 provides the results
on four tasks: Genes, World, Mondial Religion and Mutagenesis. We
observe that the FORWARD version with the reduced set of schemes
performs as well as the original FORWARD with all schemes. On
the Genes and World tasks the results actually improve slightly
when only the selected 40% of targeted walk schemes are used.
There is, though, a slight decrease in the accuracy in the case of
the Mutagenesis dataset.

Overall, we conclude that reduced scheme sets with a strong
performance on a static database are also well-suited for a dynamic
setting where new tuples are inserted over time.

6 CONCLUDING REMARKS

Walking through connected data items is the basis of sequence-
based embeddings like WorD2VEC and NoDpE2VEC. Database se-

quences are also associated with meta-data, namely the walk scheme.

The premise of this work was the conjecture that the walk schemes
have significant semantic value, as they can guide the embedding
algorithm to a small subset of informative sequences, thus dramati-
cally improving efficiency for a mild sacrifice of quality. We studied
the problem of selecting walk schemes in the context of FORWARD.
We considered different strategies of three types: FORWARD-less,
light training, and online scheme elimination. We conducted an
experimental study that measured the benefit of each strategy, com-
pared between them and tested how well they preserved the main
strength of FORWARD—extensibility to newly inserted tuples in dy-
namic settings. Our study has confirmed our conjecture and showed
that we can considerably accelerate FORWARD with negligent loss
of quality. Moreover, restricting the embedding phase to the right
walk schemes can even improve the quality on downstream classifi-
cation tasks. The kernel-variance strategy typically outperforms the
rest, and we recommend this one to be used alongside FORWARD.

The idea of directing the embedding algorithm to beneficial walk
schemes goes beyond FORWARD and is applicable to every database

embedding we are aware of. Our experience with EMBDI [6] has
indicated that EMBDI uses a large number of walk schemes with tiny
pairwise differences and a heavy-tailed distribution of a number
of instances. Thus we need to use ways of abstracting (clustering)
walk schemes. We also plan to expand the scope of our work to
data integration tasks (e.g., entity and schema matching) as done
with other database embedding algorithms [6, 19]. In the case of
FORWARD, there is a need to devise alignment between embeddings
of different databases, since FORWARD makes no attempt to produce
similar embeddings to matching entities of different databases.

Accuracy (%)

Ratio of new data (%) Ratio of new data (%)

Mondial-Religion Mutagenesis

Ratio of new data (%)

Ratio of new data (%)

Figure 7: Experiments on the dynamic setting: accuracy as a
function of the percentage of inserted tuples for Node2Vec,
FoRWARD, and FORWARD with 60% of the schemes selected
by KVar. The black line is the accuracy of the common class.
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