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ABSTRACT
While one-dimensional convolutional neural networks (1D-CNNs)

have been empirically proven effective in time series classification

tasks, we find that there remain undesirable outcomes that could

arise in their application, motivating us to further investigate and

understand their underlying mechanisms. In this work, we propose

a Temporal Convolutional Explorer (TCE) to empirically explore

the learning behavior of 1D-CNNs from the perspective of the fre-

quency domain. Our TCE analysis highlights that deeper 1D-CNNs

tend to distract the focus from the low-frequency components lead-

ing to the accuracy degradation phenomenon, and the disturbing

convolution is the driving factor. Then, we leverage our findings

to the practical application and propose a regulatory framework,

which can easily be integrated into existing 1D-CNNs. It aims to

rectify the suboptimal learning behavior by enabling the network

to selectively bypass the specified disturbing convolutions. Finally,

through comprehensive experiments on widely-used UCR, UEA,

and UCI benchmarks, we demonstrate that 1) TCE’s insight into

1D-CNN’s learning behavior; 2) our regulatory framework enables

state-of-the-art 1D-CNNs to get improved performances with less

consumption of memory and computational overhead.

CCS CONCEPTS
• Information systems→ Data mining; • Computing method-
ologies → Neural networks.
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1 INTRODUCTION
In the past, time series classification (TSC) tasks were commonly

addressed by traditional methods, such as distance-based [32],

similarity-based [4], interval-based [13] and shapelet-based tech-

niques [15]. Unfortunately, these methods require tedious crafting

on feature engineering or data preprocessing. With the empirical

successes of deep learning in the computer vision (CV) field, some re-

searchers began to explore the application of deep neural networks

(DNNs) in TSC, especially convolutional neural networks (CNNs)

to 1D time series domain, such as Fully Convolutional Network

(FCN) [38], Residual Networks (ResNet) [26, 38], and InceptionTime

[18]. CNN-based methods offer the advantage of avoiding the need

for elaborate feature engineering and data preprocessing and are

generally more flexible to be applied to various time series sce-

narios. However, unlike CNNs handling 2D image data which has

been heavily studied, the working mechanism of one-dimensional

CNNs (1D-CNNs) on TSC has received relatively little attention,

indicating that they have the remaining power to be inspired [43].

In the CV field, it is a well-established empirical trend that deeper

CNNs tend to exhibit stronger performance [1, 16, 35]. However,

upon revisiting this property of 1D-CNNs, we find that they do

not follow this trend in TSC tasks. To shed light on this intriguing

phenomenon, we designed an intuitive experiment examining the

relationship between accuracy and network depth. Specifically, we

employed the ResNet architecture as a foundational network to

mitigate issues such as network degradation and gradient vanishing

[16]. As indicated in Fig. 1, contrary to a common view, we unex-

pectedly found that deeper ≠ better. Furthermore, the analysis, as

discussed in Sec. 6.2, has revealed that overfitting does not explain

the observed phenomenon, thereby implicating the involvement of

other factors. Such noteworthy outcomes pertaining to the accuracy

degradation issue have motivated our investigation into the intri-

cate learning mechanisms of deep 1D-CNNs. Our goal is to develop
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Figure 1: Accuracy of ResNet at different depths on four TSC
datasets. The highest accuracies of all datasets do not occur
at the maximum depth.

a comprehensive understanding of their learning behavior and

identify the underlying factors at play. Through this exploration,

effective strategies can be devised to improve the performance of

deep 1D-CNNs for TSC tasks.

Starting from some usual observations in deep CNNs, recent

studies have delved into the underlying reasons behind the train-

ing outcomes of deep CNNs, focusing on analyzing the correlation

between the frequency spectrum of images and deep CNNs’ be-

havior [25, 37, 39, 41]. Although incorporating frequency analysis

methods into time series data with a wealth of frequency charac-

teristics analogous to images [30, 42], could aid in elucidating the

causes of the aforementioned phenomenon, such approaches are

not inherently applicable for 1D-CNNs in TSC tasks. The primary

distinction lies in the fact that 1D-CNNs process the time series

data relying on capturing temporal information between numerous

channels. Specifically, as opposed to image data that only contains

three color channels, TSC tasks typically have a high number of

channels with diverse attributes [5]. 1D-CNNs focus on extracting

temporal features by recognizing the cross-channel information

in time series, while CNNs focus on capturing spatial features by

processing inter-pixel relationships within images. These indicate

the learning behavior of 1D-CNNs for TSC tasks is distinct, thereby

highlighting the necessity of a novel mechanism to explore it.

To this end, we provide the Temporal Convolutional Explorer
(TCE) mechanism to identify the frequency components of time

series that are emphasized/overlooked by deeper convolutional

layers. By conducting Fast Fourier Transform (FFT) [7] on each

channel of the feature map and the input instance, TCE reveals

that deeper 1D-CNNs distract the focus from low frequencies lead-
ing to the accuracy degradation, and points out that the disturbing
convolution is the driving factor for this problem. To leverage our

findings to a practical application, we further propose a plug-and-

play regulatory framework composed of TCE and gating mechanism

to rectify the suboptimal learning behavior by selectively skipping

over the specified disturbing convolutions. We verify TCE’s in-

sights through a series of comprehensive experiments on public

UCR [8], UEA [3] and UCI [2] benchmarks, including univariate

TSC (UTSC) datasets and multivariate TSC (MTSC) datasets. The

experimental results first demonstrate that deeper 1D-CNNs ex-

hibit stronger learning ability (i.e., generalization performance and

learning speed) on low frequencies. To understand why the deeper

network with such strong learning ability does not perform well,

we then experimentally reveal that deeper 1D-CNNs tend to distract

the focus from the low frequencies. Such learning behavior could
hinder the deep network from fully utilizing its learning ability,

ultimately resulting in accuracy degradation. After skipping the

disturbing convolutions, deeper 1D-CNNs effectively improve the

accuracy and recover the focus on low frequencies, which supports

that the disturbing convolution is responsible for low-frequency

focus distraction. To further verify our practical application, we

equip our regulatory framework on advanced 1D-CNN baselines

(i.e., ResNet, InceptionTime, and FCN), and the results show that

our framework enables these models to improve their performances

with less consumption of memory and computational overhead.

It is important to note that the aim of our work is not to claim a

new algorithm for TSC. Instead, we attempt to provide empirical

analysis to help understand the learning behavior of 1D-CNNs on

TSC tasks and present a practical application of our findings. We

hope TCE’s insights can benefit the community to develop more

suitable and powerful 1D-CNN classifiers for TSC tasks.

2 RELATEDWORK
Deep learning methods, particularly 1D-CNNs, have been exten-

sively explored in the analysis of 1D time series. [38] first made a

comparison of the FCN and ResNet on 44 UTSC tasks, and then

[12] provided the standardized large-scale comparative study of

deep learning approaches in TSC. They found that FCN and ResNet

could significantly be better than all other methods on UTSC and

MTSC datasets. Building upon the concept of Inception modules

[34], InceptionTime was introduced as an advanced CNN-based

approach for UTSC tasks [18]. The effectiveness of InceptionTime

was further confirmed by [26] in their comparison of MTSC algo-

rithms on the UEA archive, where InceptionTime outperformed

traditional methods like Dynamic Time Warping [32].

In addition, some effective methods [9, 10, 36] aim to use the

random 1D convolutional kernels without training, thus being con-

sidered as non-deep learning methods [26, 43]. Nevertheless, their

success emphasizes the potential of 1D convolutional kernels to

filter time series features, especially frequency information [23].

In addition, some methods [27–30] with strong ability of frequent

extraction can significantly improve the performance of the TSC

models. Thus, utilizing frequency analysis as an auxiliary tool to

explore the learning behavior of 1D-CNNs is helpful to understand

their strengths and limitations.

More importantly, lots of works have proved that it is meaningful

to explore the working mechanism of CNN capturing 2D images

from the frequency perspective. [41] introduced the frequency prin-

ciple, elucidating CNN generalization, with subsequent in-depth

theoretical proofs by [40]. This principle clarifies that CNNs often

fit target functions from low to high frequencies during the train-

ing process and high-frequency components are hard to encode.

On this basis, CNNs were designed to fast learn a function with

high frequencies to improve their performances [19, 22, 44]. In line

with this, [25] pointed out that the CNNs exhibit a bias towards

low frequencies, and [39] explored the bias of deeper hidden lay-

ers towards lower frequencies during the initial stages of training.

However, previous efforts primarily aimed at understanding CNNs
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Figure 2: Illustration of TCE in four convolutional layers. (a) Transform feature maps from the time domain to the frequency
domain to obtain FE feature maps. (b) Get the focus scales from FE feature maps with layer 2 and layer 3 as examples. (c)
Refine frequency components to HFCs and LFCs by the frequency centroid, demonstrated with an input instance variable as
an example. Here, its frequency centroid being closer to 0 indicates that energy is concentrated at lower frequencies. (d) The
learning behavior described in Remark 1. Focus scales of layer 2 and layer 4 increase, while layer 3 (disturbing convolution)
decreases. With the shift of deeper focus to HFCs, layer 3 drives the network to distract from LFCs.

in image data processing, which differs significantly from time se-

ries analysis. In contrast, we focus on addressing the complex and

rarely explored challenge of accuracy degradation in TSC. From

this perspective, we investigate the underlying mechanism of 1D-

CNNs to better understand their learning behavior and harness

their potential to overcome limitations in TSC tasks.

3 PRELIMINARIES
Problem formulation. TSC tasks can be represented as a set of

𝑁 times instances tuple: {(U1, 𝑦1), ..., (U𝑁 , 𝑦𝑁 )}, where U denotes

individual instance and 𝑦 ∈ {1, ..., 𝑌 } is the corresponding label in
𝑌 classes. Each instance U = {u1, ...,u𝐷 } ∈ R𝐷×𝑇

consists of 𝐷

variables with𝑇 length. The goal of TSC tasks is to train a classifier

that can assign each instance U to its corresponding label 𝑦.

1D convolution. We model the 1D-CNNs to process the above

TSC tasks. For 𝑙-th convolutional layer (or convolutional block with

a group of convolutional layers) of a 1D-CNN with 𝐿 depth, the

trainable 1D convolutional kernels can be represented as W𝑙 ∈
R𝐶𝑙−1×𝐶𝑙×𝑘

with 𝐶𝑙−1 as the input channel axis, 𝐶𝑙 as the output
channel axis and 𝑘 as the length axis. Then, the input of 𝑙-th layer

can be represented as X𝑙 ∈ R𝐶𝑙−1×𝐻𝑙−1
with 𝐻𝑙−1 as the length

axis. For the first layer, the input X1 is the individual instance U
of the TSC task. The output of 𝑙-th layer can be represented as

O𝑙 ∈ R𝐶𝑙×𝐻𝑙
, which is also called feature maps. More specifically,

we let x𝑐𝑙−1
𝑙

and o𝑐𝑙
𝑙
denote 𝑐𝑙−1-th channel input of X𝑙 and 𝑐𝑙 -th

channel feature map of O𝑙 respectively.w
𝑐𝑙−1,𝑐𝑙
𝑙

denotes the 𝑐𝑙−1-th
input channel and 𝑐𝑙 -th output channel convolutional kernel ofW𝑙 .

Therefore, the 1D convolution can be defined as

o𝑐𝑙
𝑙

=

𝐶𝑙−1∑︁
𝑐𝑙−1=1

w𝑐𝑙−1,𝑐𝑙
𝑙

⊛ x𝑐𝑙−1
𝑙

+ 𝑏𝑐𝑙
𝑙
, (1)

where ⊛ denotes convolution operation,𝑏𝑐𝑙
𝑙
denotes the correspond-

ing bias term. The above 1D convolution operation is defined as

F 𝑐𝑜𝑛𝑣 (·).

4 TEMPORAL CONVOLUTIONAL EXPLORER
In this section, we introduce the Temporal Convolutional Explorer
(TCE) mechanism to uncover 1D-CNNs’ learning behavior. We

present Frequency-Extracted (FE) feature maps, offering a distinct

representation of frequency features extracted by convolutional ker-

nels. Next, we propose the focus scale and frequency centroid con-

cepts. Integrating these aspects, TCE identifies emphasized/overlooked

frequency components in deeper layers, shedding light on the net-

work’s learning behavior. We reveal that deeper 1D-CNNs may

contain disturbing convolutions that cause accuracy degradation.

4.1 FE Feature Maps
Feature maps are the representation of the learning features of

convolution. To obtain its frequency features, TCE transforms the

feature maps by FFT and yields FE feature maps, which are em-

ployed as its basic feature maps, through the following definition.

Definition 4.1. For any time sequence swith𝑇 time length (s can
be o𝑐𝑙

𝑙
, x𝑐𝑙

𝑙
or u𝑑 in this paper), the transformation of s from time

domain to frequency domain can be described as

f𝜔 =
1

𝑇

∑︁𝑇−1
𝑡=0

s𝑡𝑒− 𝑗𝜔𝑡/𝑇 ,

where 𝜔 ∈ {0, ..., ⌊𝑇−1
2

⌋} × 𝜔𝑠

𝑇
denotes the frequency unit. 𝜔𝑠

denotes the sampling frequency. ⌊·⌋ is the floor bracket, which

rounds the number to a lower integer. f𝜔 is a complex number.

Let r𝜔 and i𝜔 represent the real part and imaginary part of f𝜔

respectively. We can get the amplitude at 𝜔 :

z𝜔 =
√︁
(r𝜔 )2 + (i𝜔 )2 .
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Therefore, we define the following transformation mapping:

A : s → z.

For the 𝑐𝑙 -th feature map o𝑐𝑙
𝑙

of 𝑙-th convolutional layer, we

define A(o𝑐𝑙
𝑙
) as its corresponding FE feature map. The above

process is shown in Fig. 2 (a).

4.2 Learning Behavior & Disturbing
Convolution

With FE feature maps as the spectrum of the output feature maps,

we further explore the learning behavior of each convolutional

layer. We first use the ratio relationship between the peak and

root-mean-square (RMS) of amplitude in the FE feature map as the

representative indicator of the feature response. For 𝑐𝑙 -th FE feature

map A(o𝑐𝑙
𝑙
) in 𝑙-th convolutional layer, it can be calculated by

𝑝
𝑐𝑙
𝑙

=

max

𝜔
{A𝜔 (o𝑐𝑙

𝑙
)}√︃∑

𝜔∈I (A𝜔 (o𝑐𝑙
𝑙
))2

×

√︄⌊
𝐻 𝑙 − 1

2

⌋
+ 1, (2)

where I = {0, ..., ⌊𝐻𝑙−1
2

⌋} × 𝜔𝑠

𝐻𝑙
, A𝜔 (o𝑐𝑙

𝑙
) denotes the amplitude

value of FE feature mapA(o𝑐𝑙
𝑙
) at the frequency 𝜔 . The ratio calcu-

lated using Eq. 2 characterizes the concentration of the frequency

response, which has been shown to accurately classify various sig-

nals [24, 33]. By calculating this ratio for each FE feature map in a

convolutional layer, we can effectively distinguish the frequency

response characteristics within each channel.

To assess the richness of frequency responses across feature

maps within a convolutional layer, we introduce the concept of

focus scale. By calculating the variance of these patterns across all

FE feature maps in the 𝑙-th convolutional layer, the focus scale 𝑣𝑙
of the 𝑙-th convolutional layer can be defined as

𝑣𝑙 =

∑𝐶𝑙

𝑐𝑙=1
(𝑝𝑐𝑙

𝑙
−∑𝐶𝑙

𝑐′
𝑙
=1

𝑝
𝑐′
𝑙

𝑙
/𝐶𝑙 )2

𝐶𝑙

. (3)

We use the focus scale to evaluate the diversity of frequency patterns

captured by each feature map within the 𝑙-th convolutional layer.

A larger focus scale implies that the layer responds to a broader

range of frequency features. Thus, the focus scale 𝑣𝑙 provides an

intuitive understanding of the frequency range captured by the 𝑙-th
convolutional layer. The process of computing the focus scale is

displayed in Fig. 2 (b).

To understand the frequency composition within the focus scale,

we utilize the frequency centroid of a signal to distinguish its high-

frequency components (HFCs) and low-frequency components

(LFCs), as depicted in Fig. 2(c). The frequency centroid, denoted

as F 𝑓 𝑐 (s), represents the distribution centroid of the frequency

components within a sequence s. It is formulated as

F 𝑓 𝑐 (s) =
∫ ⌊ (𝑇−1)/2⌋
0

𝜔A𝜔 (s)d𝜔∫ ⌊ (𝑇−1)/2⌋
0

A𝜔 (s)d𝜔
, (4)

whereA(·) is the transformation mapping in Definition 4.1. Within

the frequency spectrum of a signal, the frequency centroid acts as a

measure of central tendency for the signal’s frequency components.

It facilitates the effective identification and analysis of spectral

properties in diverse time series signals. Specifically, a frequency

centroid located at the frequency center indicates a uniform fre-

quency distribution, with no preference for lower or higher frequen-

cies. What’s more, a lower frequency centroid signifies a greater

concentration of energy in the low-frequency range of the signal,

highlighting significant information within that specific domain.

Conversely, a higher frequency centroid emphasizes the presence

of high-frequency information of the signal, associated with rapid

changes or noise disturbances.

By considering the information regarding the frequency con-

tent and energy distribution, we can distinguish between LFCs and

HFCs based on the relative positions of frequencies in relation to

the centroid. This distinction, as illustrated in Fig. 2(c), establishes

a natural reference point for categorizing the frequency compo-

nents into two distinct groups: LFCs located below the centroid

and HFCs located above it. Through this reference, we can filter

specific frequency components using the inverse FFT. This enables

us to observe the learning behavior of the 1D-CNNs with respect

to the targeted frequency components.

Moreover, monitoring the evolution of frequency centroidswithin

the feature maps of each convolutional layer aids in comprehend-

ing the learning bias of individual layers concerning frequency

components. When a deeper convolutional layer focuses its atten-

tion on modeling HFCs within the signal, as visually depicted in

Fig. 2 (d), it triggers a concentrated activation of high-frequency

energy, resulting in an elevated frequency centroid. Hence, the

frequency centroid helps to understand the learning direction of

deeper 1D-CNNs in terms of frequency.

With the focus scale and the focus centroid, we can analyze

the changes in focus with respect to both range and direction. It
reflects the frequency components emphasized/overlooked in the

time series by deeper convolutional layers, as presented in Fig. 2 (d).

The following remark clarifies the learning behavior of 1D-CNNs.

Remark 1. 1D-CNNs with the increase of depth tend to distract
the focus from the LFCs. TCE can utilize the change in focus scales,
which is defined by

𝑀𝑙 = 𝑣𝑙 − 𝑣𝑙−1,

to describe the internal factor of this tendency: 𝑙-th convolutional
layer with negative 𝑀𝑙 causes the 1D-CNN to lose focus on certain
frequency components, mainly the LFCs.

Remark 1 elucidates the inherent learning behavior of deeper

1D-CNNs, indicating the challenges in maintaining accuracy due

to their distraction from low frequencies. Specifically, with the

frequency centroid of TCE, we observe that LFCs significantly con-

tribute to the overall generalizability performance of 1D-CNNs in

TSC tasks, and that deeper 1D-CNNs exhibit stronger learning abil-

ity for LFCs. However, the accuracy degradation issue indicates that

deeper 1D-CNNs fail to capitalize on this superior ability, as they

distract from the focus on low frequencies that are crucial to their

performance. The observations form the basis of Remark 1. For

example, layer 3 in Fig. 2 (d) displays a narrowing range of captured

frequency features, which prevents them from fully exploiting the

generalizable low-frequency features, ultimately resulting in accu-

racy degradation. We refer to the convolutional layer with negative

𝑀𝑙 as the disturbing convolution. The aforementioned conclusions

will be further substantiated in Sec. 6 through empirical studies

conducted using real-world data.
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5 REGULATORY FRAMEWORK
To leverage our findings of 1D-CNNs’ learning behavior to a prac-

tical application, we propose a regulatory framework to rectify the

suboptimal learning behavior and alleviate the accuracy degrada-

tion by enabling the network to selectively bypass the specified

disturbing convolutions.

Gating mechanism. We first introduce our gating mechanism

to skip over any specified convolutional layers. As shown in Fig.

3, the gating mechanism adds a switch structure to the original

network making each convolutional layer have two different states:

skipped or preserved. In the gating mechanism, the input of (𝑙 + 1)-
th convolutional layer is redefined as

X′
𝑙+1 = 𝑔𝑙 × ReLU(F 𝑐𝑜𝑛𝑣

𝑙
(F 𝑡𝑟

𝑙
(X′

𝑙
))) + (1 − 𝑔𝑙 ) × X′

𝑙
, (5)

where ReLU(·) is the activation function, 𝑔𝑙 ∈ {0, 1} is the gating
factor. 𝑔𝑙 = 0 means that 𝑙-th convolutional layer is skipped, 𝑔𝑙 = 1

means that 𝑙-th convolutional layer is preserved. However, the chan-

nel dimension of X′
𝑙
may not match the input channel dimension

of 𝑙-th convolution in the gating mechanism. Therefore, F 𝑡𝑟
𝑙

(·) is
used to enable X′

𝑙
applied in F 𝑐𝑜𝑛𝑣

𝑙
(·) with consistent dimension.

If the channel dimensions are matched, F 𝑡𝑟
𝑙

(X′
𝑙
) = X′

𝑙
, otherwise,

F 𝑡𝑟
𝑙

(X′
𝑙
) = ReLU(W′

𝑙
⊛X′

𝑙
), whereW′

𝑙
is the weight of an 𝑙-length

convolution to realize the channel transformation.

The overall framework. Remark 1 naturally motivates us to pro-

pose a gating solution to bypass disturbing convolutions. We uti-

lize M = {𝑀1, ..., 𝑀𝐿} in TCE to determine the gating factor g =

{𝑔1, ..., 𝑔𝐿} with the following steps. 1) Identify all disturbing convo-
lutions with the negative𝑀𝑙 . 2) Sort these disturbing convolutions

according to𝑀𝑙 in ascending order. 3) Select the first P disturbing

convolutions to form the setM∗
as the object set that will be skipped

over. 4) Assign 𝑔𝑙 = 0 for elements inM∗
and 𝑔𝑙 = 1 for elements

inM −M∗
. By incorporating TCE and the gating mechanism, we

propose a plug-and-play regulatory framework that enables the

network to selectively bypass the specified disturbing convolutions

with the gating factor g.
After implementing our regulatory framework during the 𝛼-th

epoch of the training process, the refined regulated network is then

applied in the remaining training process and the testing process.

Specifically, the regulatory framework divides the entire training

process of an original network into two stages. During the first 𝛼

epochs, we train the original network as usual, and run once above

steps on the last batch of training samples at the end of 𝛼-th epoch

to calculate the gating factor g. During the remaining epochs, we

train the regulated network after skipping disturbing convolutions,

loading the corresponding parameters of the original network at

the beginning of (𝛼 +1)-th epoch. These two stages will not change

the number of original training epochs, and the regulated network

that has fewer parameters and requires less computation can also

benefit from spending less training time. We apply the regulated

network to the testing process, which can effectively alleviate the

negative effects of disturbing convolutions as well as can reduce the

consumption of memory and computational overhead. Addition-

ally, in Sec. 6.7, we offer observations and insights regarding the

selection of two hyperparameters within the regulatory framework,

i.e., 𝛼 and P.

Layer 1 Layer 2Layer 2 Layer 4Layer 4Layer 3

Input

...Fl
tr(·)

Figure 3: Illustration of gatingmechanism. Layer 3 is skipped
over. F 𝑡𝑟

𝑙
(·) can ensure the consistent channel dimension.

6 EXPERIMENT
6.1 Experimental Details
6.1.1 Datasets. To verify the generality of our findings, we conduct
experiments on a wide range of datasets

1
. The details of each kind

of dataset are as follows.

• 128 UTSC Datasets. A collection of 128 UTSC datasets is

sourced from the UCR archive [8]. These datasets encompass

various domains (e.g., health monitoring, remote sensing and

speech recognition) and exhibit distinct characteristics in

terms of size and length.

• 31 MTSC Datasets. 1) 30 MTSC datasets from the UEA

archive [3] encompass diverse application domains (e.g., ECG

and motion classification) and differ in terms of the num-

ber of channels, size, and length. 2) One large-scale MTSC

dataset from the UCI archive [2], namely the Human Activity

Recognition (HAR) dataset, consists of 10,299 instances with

6 categories and 9 channel variates. The processing of this

HAR dataset follows the same approach as described in [20].

To verify the learning behavior of 1D-CNNs proposed by TCE, we

focus on two UTSC tasks (CricketX and FaceAll) from the UCR

archive, as well as two MTSC tasks (SelfRegulationSCP1 and HAR)

from the UEA/UCI archives. These datasets represent various types

of data (e.g., motion, image, and health), and range in size from

268 to 10,299 instances. Importantly, these four datasets share a

common spectral property inherent in time series signals, where

low frequencies dominate the spectrum. To be specific, we have

employed Eq. 4 to calculate the instance-wise and variable-wise

frequency centroids for all datasets within the aforementioned

three archives, encompassing 128 UTSC datasets and 31 MTSC

datasets. The ratio of the calculated frequency centroids in relation

to their respective maximum frequency exhibits an average value

of 0.26, with a corresponding variance of 0.01. The proximity of

this average ratio to zero suggests that lower frequencies carry a

substantial amount of energy and important information in the

majority of time series signals. Thus, we select the four datasets

whose ratio values closely align with the aforementioned average

value. This selection indicates that these four datasets effectively

represent typical frequency patterns encountered in various types

of time series data. By focusing on these datasets, we can intuitively

explore the learning behavior of 1D-CNNs on LFCs and significantly

enhance the generalizability of our experimental findings.Moreover,

all datasets of the three archives (including 128 UTSC datasets and

31 MTSC datasets) will be applied to evaluate the performance of

our regulatory framework.

1
Datasets and the descriptions are at http://timeseriesclassification.com and http://

archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones.

http://timeseriesclassification.com
http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
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6.1.2 Experiment setup. To verify the effectiveness of TCE as a

general exploration method for 1D-CNNs, we conduct experiments

using three competitive 1D-CNN backbones, following the recent

empirical surveys on TSC methods [26, 38]. Specifically, FCN [38],

ResNet [38] and InceptionTime [18] are applied to UTSC tasks, and

ResNet [26] and InceptionTime [26] are applied to MTSC tasks.

For FCN’s adaptation to MTSC tasks, we adjust its input channel

count to align with the number of input sample channels. Resid-

ual/Convolutional blocks are sequenced in ResNet and Inception-

Time, while FCN comprises convolutional layers. Network depth is

indicated by the number of blocks or layers. Models are trained by

the Adam optimizer [21] with learning rate set to be from 10
−6

to

10
−3
. Consistent with the original papers, we adopt cross-entropy

loss as the loss function, employ a batch size of 16, conduct training

for 1500 epochs, and initialize weights through Xavier initialization

[14]. Our code can be found at this link
2
.

To identify networks that suffer from significant accuracy degra-

dation issues, we conduct a comparative analysis between deeper

1D-CNNs and shallower 1D-CNNs. If the accuracy of a deeper

network is found to be at least 5% lower than that of a shallower

network, we classify the deeper network as experiencing accuracy

degradation. To corroborate the insights provided by TCE regarding

accuracy degradation in deeper 1D-CNNs, we focus our in-depth

investigation on ResNet with a depth of 5, referred to as deeper
ResNet. These networks consistently exhibit accuracy degradation

issues across four representative datasets, as depicted in Fig. 1. In

our regulatory framework, we set 𝛼 = 100 and P = 2. The regulator

is then applied to all three backbone networks, aiming to assess

the generality and effectiveness of the regulatory framework in

addressing the accuracy degradation observed in deeper 1D-CNNs.

Finally, we conduct a sensitivity analysis to explore the impact of

different settings for the two hyperparameters, 𝛼 and P, which are

unique to the regulatory framework, on the classification accuracy.

6.1.3 Grad-CAM criteria. In the next experimental analysis, with

Gradient-weighted Class Activation Mapping (Grad-CAM) [31], we

identify the contribution of each temporal region to the network’s

output class 𝑦 for a given time series instance U. We first compute

the gradient of the score 𝜆𝑦 (before the softmax) for the class𝑦, con-

cerning 𝑐𝐿-th channel output ReLU(o𝑐𝐿
𝐿
) of the last convolutional

layer: 𝜕𝜆𝑦/ReLU(o𝑐𝐿
𝐿
). Then, calculate the importance weights of

𝑐𝐿-th channel output in the last convolutional layer by

𝛼𝜆
𝑦

𝑐𝐿
=

1

𝐻𝐿

∑︁𝐻𝐿

𝑡=1

𝜕𝜆𝑦

𝜕ReLU(o𝑐𝐿,𝑡
𝐿

)
. (6)

Finally, a weighted combination is performed followed by a ReLU

activation:

E𝜆
𝑦

= ReLU

(∑︁𝐶𝐿

𝑐𝐿=1
𝛼𝜆

𝑦

𝑐𝐿
ReLU(o𝑐𝐿

𝐿
)
)
, (7)

where E𝜆
𝑦 ∈ R𝑇 is the Grad-CAM contribution and 𝐸𝜆

𝑦

𝑡 is the acti-

vation value for class 𝑦 at time 𝑡 , which expresses the contribution

of input at time 𝑡 for the output class in instance U. Therefore,
with Grad-CAM, we can identify the contribution of each temporal

region to the output classification.

2
https://github.com/jrzhang33/TCE

Figure 4: Traning and test loss curves of deeper ResNet on
four TSC datasets.

Figure 5: The training and test accuracies of ResNet at dif-
ferent depths on LFCs and HFCs. The accuracy curves of
LFCs and HFCs are displayed in blue and red respectively.
Solid lines and dotted lines denote training and test accuracy
curves respectively.

6.2 Absence of Overfitting.
To investigate the accuracy degradation observed in the deeper

ResNet, we first monitor the loss curve of this network to rule out

the possibility of overfitting as the cause. Fig. 4 depicts the training

and test loss curves for the deeper ResNet on the four datasets, con-

sistently demonstrating a downward trend. This consistent decline

in the curves suggests that deeper ResNet does not overfit to high-

frequency noise, and as such, overfitting is not the fundamental

factor contributing to the accuracy degradation.

6.3 Learning Ability for LFCs.
In order to explore the generalization performance of the networks

on different frequency components, we conduct a quantitative anal-

ysis using the frequency centroid of TCE. This involves filtering

out specific frequency components in four datasets individually

3
. In Fig. 5, a clear result is observed that as the network depth

increases, the difference between the training and test accuracy is

consistently noticeable when learning HFCs. However, in the case

of LFCs, the difference is less prominent and tends to decrease even

3
We utilize FFT to transform the input time series into the frequency domain, setting

the amplitudes of LFCs/HFCs to zero. Subsequently, we apply the inverse FFT to obtain

time-domain signals containing only HFCs/LFCs.

https://github.com/jrzhang33/TCE
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Figure 6: The required training epochs for ResNets with dif-
ferent depths to achieve the target loss on LFCs.

Figure 7: The average frequency centroid of feature maps for
each convolutional block in deeper ResNet. The frequency
centroids within each dataset are scaled to the range [0, 1].

further. This observation suggests that 1D-CNNs struggle to gener-

alize well on HFCs, even with increased depth. Thus, the learning

behavior on HFCs has a limited impact on the overall performance

of deeper networks. Conversely, LFCs significantly contribute to the
generalization performance of 1D-CNNs in TSC tasks, and deeper

networks are better equipped to leverage and generalize LFCs. This

underscores that the deeper networks’ learning on LFCs plays a

crucial role in determining their overall performance on TSC tasks.

To further assess the learning ability of deeper networks on LFCs,

we define that 1) the learning speed of CNN is faster if the loss of the

network decreases to a target loss with fewer training epochs, and

2) the learning ability of CNN is stronger if the network generalizes

well and learns faster. Fig. 6 shows the learning speed of ResNet at

different depths on LFCs. The results show that ResNet with more

blocks achieves the target training loss with fewer epochs, which

demonstrates that deeper networks have faster learning speeds for

LFCs. Combined with the good generalization on LFCs as shown

in Fig. 5, we can conclude that deeper 1D-CNNs exhibit stronger
learning ability for LFCs in time series data.

6.4 Analysis on Learning Behavior.
In this subsection, we will find out why such stronger learning

ability for highly generalizable LFCs has not improved the perfor-

mances of the deeper ResNet. First, we explore the learning direc-

tion of deeper ResNet in the frequency domain. Fig. 7 showcases

the frequency centroid of all feature maps in each convolutional

Figure 8: Accuracy of deeper ResNet on four datasets with
different proportions of LFCs added to HFCs.
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Figure 9: Grad-CAM of shallower and deeper ResNets on
FaceAll instances in class 3.

block of the deeper ResNet. The results clearly demonstrate that

the deeper layers exhibit significantly elevated frequency centroids,

indicating a more pronounced activation of high-frequency en-

ergy. This analysis suggests that as the time series data progresses

through successive layers, the network progressively focuses its

attention on capturing higher frequency components. The visual

representation of this evolving frequency centroid is presented in

Fig. 2 (d), which distinctly highlights the shift in focus of deeper

convolutional layers towards higher frequencies. Thus, there is a

tendency for the deeper layers to overlook the presence of LFCs

that are crucial to the network’s performance in TSC tasks.

In light of this observation, we further concentrate on exploring

the deeper ResNet’s learning behavior on LFCs. To be specific,

from TCE’s frequency centroid towards the lower frequency, we

gradually add (5%, 10%, 15%, 20%, 25%) proportion of the LFCs to

HFCs
4
. As shown in Fig. 8, when adding LFCs to HFCs of four

datasets, the test accuracy does not gradually improve as expected,

even lower than the initial accuracy on HFCs alone. In particular, in

the SelfRegulationSCP1 dataset, the performance of deeper ResNet

is continuously damaged by additional LFCs. These results suggest

that the deeper ResNet is unable to fully leverage its learning ability

to generalize the low frequencies, which are restored from signals

4
We restore the amplitude of LFCs with various proportions from the frequency

centroid of a frequency-domain signal that solely consists of HFCs. Subsequently, the

time-domain signal with the desired proportions of LFCs can be obtained by applying

the inverse FFT to that frequency-domain signal.
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Figure 10: Visualization and analysis on every block of deeper
ResNet. (a) The changes in focus scales between blocks, nor-
malized to the [0, 1] range. Negative changes are highlighted
in bold, with the most negative change for each dataset
framed in red. (b) Accuracy (%) of networks after skipping
each block, with the best results for each dataset highlighted
in bold and framed in red.

containing HFCs. Therefore, Fig. 8 demonstrates that the presence

of significant HFCs can impede the deeper ResNet from leveraging

the generalization of the low-frequency information. In other words,

the deeper ResNet’s focus on capturing LFCs of original signals

is disturbed by the existence of HFCs, preventing it from taking

advantage of its learning ability for LFCs.

Finally, to furnish a more convincing substantiation of the dis-

traction on capturing LFCs, we use Grad-CAM scores to compare

the discriminative region difference between shallower ResNet with

one convolutional block and deeper ResNet, which shows worse

performances on FaceAll instances in class 3. As indicated in Fig.

9, shallower and deeper ResNets highlight different discriminative

frequency features that contribute most to the predicting results.

The shallower ResNet focuses on discriminative regions with slight

fluctuations, while the deeper ResNet is limited to regions with

shorter wavelengths or rapid oscillations. Therefore, the deeper net-

work has shifted its focus towards fitting challenging HFCs, which

confuses the extraction of generalizable low-frequency patterns,

damaging the performance. By synthesizing these two analyses,

we confirm the Remark 1, that is, deeper 1D-CNNs distract the focus
from low frequencies leading to the accuracy degradation issue, even
though they exhibit strong learning ability for LFCs.

6.5 Analysis on Disturbing Convolution
We visualize the changes in focus scales (i.e., 𝑀𝑙 ) and color the

convolutional block with negative𝑀𝑙 (i,e., disturbing convolution)

blue in deeper ResNets. From the results of each deeper ResNet

for these four datasets in Fig. 10(a), the presence of blue blocks is

notably apparent, especially in the SelfRegulationSCP1 dataset. In

accordance with the analysis of distraction on LFCs in Fig. 8, there

are convolutional blocks with negative𝑀𝑙 in deeper ResNet, which

has been previously illustrated to suffer from accuracy degradation

due to the loss of expression on LFCs.

Then, to confirm the relationship between disturbing convo-

lution and the accuracy degradation, we skip each block in turn

respectively by the gating mechanism and compare their accura-

cies in Fig. 10(b). We find that the accuracy of every network after

Figure 11: Accuracy of deeper ResNet on four datasets with
different proportions of LFCs added to HFCs, after skipping
the specified disturbing convolution.

skipping the blue convolutional block with focus scale reduction

consistently surpasses that of bypassing other blocks. This indi-

cates that the convolutional block with a reduced focus scale has a

more negative impact on accuracy, confirming that it possesses a

narrower frequency response range. By bypassing the disturbing

convolutions with the most negative changes in focus scales, the ac-

curacies of CricketX, FaceAll, SelfRegulationSCP1, and HAR exhibit

the greatest improvements. The improvements are 8.86%, 3.90%,

6.60%, and 4.97% compared to Fig. 1 respectively, which reveals that

the disturbing convolution is the cause of accuracy degradation

and skipping it can mitigate this issue.

Finally, we bypass up to two disturbing convolutions and repeat

the experiment where we add 5% to 25% proportion of the LFCs.

As demonstrated in Fig. 11, when adding LFCs to HFCs, the ac-

curacies gradually improve. The result holds that deeper ResNet

can refocus on the LFCs by skipping disturbing convolutions, and

its learning ability for LFCs can be effectively leveraged for accu-

racy improvement. It also points out that the added LFCs contain

valuable information for classification and skipping over disturbing

convolutions can correct the suboptimal learning behavior. Con-

sequently, these results verify TCE’s insight that the disturbing
convolution is the potential driving factor for the accuracy degrada-
tion phenomenon caused by distraction on LFCs, and skipping over it
can alleviate this issue.

6.6 Performances of Our Regulatory
Framework

Our regulatory framework is applied to FCN, ResNet, and Inception-

Time (IT) to verify its performance. For quantitative evaluation, as

done in [10, 12], we conduct the pairwise posthoc analysis [6] that

statistically ranks different models according to their accuracies

over all datasets. We add the analysis of parameters (Params) and

floating point operations (FLOPs) as the measure of computational

efficiency. We visualize the results by the critical difference (CD)

diagram [11] with Holm’s 𝛼 (5%) [17]. The diagram illustrates the

average ranking of each classifier. The thick horizontal lines con-

nect a group of networks that do not exhibit a significant difference

in accuracy or computational efficiency. We repeatedly train each

classifier with three different seeds and report the median results.
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Figure 12: CDdiagrams comparing the performance of deeper
1D-CNNs with or without our regulatory framework (i.e.,
Regulator) in terms of (a) Accuracy, (b) Params and (c) FLOPs.

Fig. 12 presents their average ranks over all datasets with the

pairwise statistical differences. We observe that existing 1D-CNNs

equipped with our regulatory framework exhibit better average

ranks across all indicators (i.e. Accuracy, Params, and FLOPs) than

their non-equipped counterparts, and the performance differences

in terms of parameters and FLOPs are statistically significant. There-

fore, our regulatory framework enables existing 1D-CNNs to sig-

nificantly reduce the consumption of memory and computation

resources while maintaining comparable or even higher accuracy.

The successful application supports that TCE can provide hints for

enhancing the performance of 1D-CNNs on TSC tasks.

6.7 Sensitivity Analysis of Our Regulatory
Framework

We perform a comparative analysis to evaluate the accuracy of the

default configuration in relation to two different hyperparameters

choices within our regulatory framework: 𝛼 and P. The hyperpa-

rameter 𝛼 represents the epoch of network regulation, while P
corresponds to the maximum number of disturbing convolutional

layers that can be skipped.

Fig. 13 (a) shows the impact of the hyperparameter 𝛼 on the

accuracy of the regulator. The results indicate that for the major-

ity of 𝛼 values, the achieved accuracy remains relatively stable

and does not deviate significantly from the best accuracy attained

when 𝛼 = 100. A marked discrepancy in performance emerges only

when 𝛼 exceeds the threshold of 800. These findings suggest that

the influence of the disturbing convolution stabilizes after approxi-

mately 100 epochs of network training, signifying a gradual loss of

focus on LFCs by 1D-CNNs. By promptly applying our regulatory

framework at this critical epoch, we effectively correct this subop-

timal learning behavior, leading to enhanced network performance.

When 𝛼 ≥ 800, the performance improvement becomes impeded

due to training saturation. This saturation effect indicates that the

network has reached a plateau in its learning behavior, and further

increases in the value of 𝛼 do not yield substantial accuracy im-

provements. Thus, setting 𝛼 to a value within a reasonable range,

such as 100, proves sufficient to achieve performance gains while

avoiding unnecessary training overhead.

12 345

Shallow ResNet 4.1786

ResNet+Regulator(=1) 3.0000

ResNet+Regulator(=4) 2.6786

2.5357 ResNet+Regulator(=2)
2.6071 ResNet+Regulator(=3)

Figure 13: CD diagrams comparing accuracy for different (a)
𝛼 and (b) P values on deeper ResNet with our regulator.

Fig. 13 (b) presents the effect of all the desirable values for an-

other hyperparameter P (ranging from 1 to 4) on accuracy. In this

comparative experiment, a shallow ResNet (depth = 2) without the

regulatory framework is included for reference. As observed in Fig.

13 (b), there are no significant differences in performance when P
takes values from 1 to 4. In contrast, the shallow ResNet without

the regulator consistently exhibits the lowest performance in this

case. These findings first indicate that the regulatory framework

possesses robust adaptability to different settings of P. Particularly,

setting P to 2 yields optimal results as it strikes a fine balance

between leveraging the learning abilities of deep networks and

mitigating the adverse effects of convolutions. Furthermore, the

inferior performance of the shallow ResNet underscores the dif-

ficulty in adapting to diverse time-series data due to its limited

learning ability and inherent learning behavior. This underscores

the importance of integrating TCE’s insights into the regulation of

1D-CNNs, which not only preserves the enhanced ability of deep

1D-CNNs but also promotes sustained positive learning behavior.

7 CONCLUSION
In this work, we empirically investigate the learning behavior of

1D-CNNs on TSC tasks. From accuracy degradation, we point out

that deeper CNNs tend to distract the focus from LFCs and the

disturbing convolution is the driving factor. To apply our findings

in practice, we propose a regulatory framework to alleviate this

issue. Through comprehensive experiments, we verify our findings

and the effectiveness of our framework. It is worth mentioning

that the goal of our work is to investigate the learning behavior of

deep 1D-CNNs for TSC tasks and uncover the underlying causes of

the bottleneck in these models. By sharing our findings with the

community, we hope to open up new possibilities in the design

of powerful TSC networks and the advancement of theoretical

understanding of 1D-CNNs.While the verification of TCE’s insights

in alternative network structures (e.g., Graph Neural Networks) is

still ongoing, it has exhibited great potential in exploring a variety

of fascinating topics related to 1D-CNNs in the context of TSC

tasks. For instance, it can assist in identifying useful frequency

bands for guiding the learning of convolutional layers. Overall, it

is our aspiration that the TCE can provide profound insights to the

community as they move forward with their future work.
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