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ABSTRACT
Heterogeneous graph neural networks (HGNNs) have achieved re-
markable development recently and exhibited superior performance
in various tasks. However, recently HGNNs have been shown to
have robustness weakness towards adversarial perturbations, which
brings critical pitfalls for real applications, e.g. node classification
and recommender systems. In particular, the transfer-based black-
box attack is the most practical method to attack unknown models
and poses a great threat to the reliability of HGNNs. In this work,
we take the first step to explore the transferability of adversarial
examples of HGNNs. Due to the overfitting of the source model,
the adversarial perturbations generated by traditional methods usu-
ally exhibit unpromising transferability. To address this problem
and boost adversarial transferability, we expect to seek common
vulnerable directions of different models to attack. Inspired by the
observation of the notable commonality of edge attention distribu-
tion between different HGNNs, we propose to guide the perturba-
tion generation toward disrupting edge attention distribution. This
edge attention-guided attack prioritizes the perturbation on edges
that are more likely to be given common attention by different
models, which benefits the transferability of adversarial perturba-
tions. Finally, we develop two edge attention-guided attack methods
towards heterogeneous relations tailored for HGNNs, called EA-
FGSM and EA-PGD. Extensive experiments on six representative
models and two datasets verify the effectiveness of our methods and
form an unprecedented transfer robustness benchmark for HGNNs.
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1 INTRODUCTION
Heterogeneous graph neural networks (HGNNs) have attracted
increasing attention in recent years due to their wide application in
the real world, e.g., recommender system [3, 14, 18, 22] and security
[5, 10, 11, 17]. Compared with homogeneous graph neural networks,
HGNNs are more appropriate to model the complex interactions in
these scenarios by extracting rich semantic information from the
graph with multiple relations. Up to now, there have been massive
works using HGNN-based models to achieve superior performance
of a series of tasks, e.g., node classification [12, 28, 32, 37], linking
prediction [19, 24] and recommendation [4, 6, 7, 31]. Although the
notable progress of HGNNs has been witnessed, recently it has
been found that they are vulnerable to adversarial perturbations
[38]. They set a gray-box setting in which they attack a surrogate
GCNmodel to generate perturbations for HGNNs.While in practice
attackers usually have rare information about target models, which
drives the exploration of black-box adversarial attacks. In general,
black-box attacks can be classified into two types according to the
mechanism attackers utilize: query-based attack and transfer-based
attack [26]. Query-based attacks estimate the gradient of unknown
models through queried information. However, the costly query in
reality makes this kind of attack hard to implement. By comparison,
the transfer-based attack is more practical, which depends on the
transferability of adversarial perturbations to achieve an efficient
attack. However, currently there’s little study on achieving such
transfer-based attacks on HGNNs, which threaten the practical
utilization of HGNN-based applications such as e-commerce[18, 23]
and cyber security[11, 40].
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To fill this blank, we propose the first work about the transfer-
able adversarial attack of HGNNs, focusing on the representative
node classification task (the method can be easily expanded to other
tasks, e.g., linking prediction and recommendation). In this work,
we concentrate on the structure-based attack, which only allows
adding or deleting edges. Aiming to boost the transferability of
obtained perturbation, we try to explore some common charac-
teristics shared by different HGNNs. We acquire inspiration from
the intuition that different HGNNs take the same graph as input
and may rely on some common key message-passing pathways to
make the prediction. For example, in the movie classification task,
an edge with a famous comedy actor usually forms an important
pathway because it contains clear semantics for the movie type,
and such edges are expected to be commonly useful for different
HGNNs. Based on this we make a reasonable hypothesis that differ-
ent HGNNs might share similar attention on a subset of edges. We
further verify this assumption by analyzing edge attention distribu-
tion similarity between different HGNNs, confirming the existence
of considerable overlap as shown in Figure 2.

The similarity between different HGNNs on edge attention in-
spires us to use the model’s edge attention to guide the generation
of adversarial perturbations. Besides, noting that there’s similarity
in all types of edges, we propose to conduct the attack on het-
erogeneous relations to search for the commonly relied edges in-
stead of attacking the single edge type in [38]. Taking ohgbn-imdb
dataset as an example, different HGNNs show similarity both in
relation movie-actor and movie-director. In this case, perturbing
heterogeneous relations is expected to achieve better transferabil-
ity. Furthermore, to filter the model-specific noise and get reliable
gradients, we utilize the integrated gradient of multiple sampled
graphs for the final perturbation generation. Finally, we integrate
these designs and develop two efficient transferable attack methods
for HGNNs, called EA-FGSM and EA-PGD, respectively. Extensive
experiments demonstrate the effectiveness of the two proposed
methods in boosting adversarial transferability between HGNNs.

In summary, our main contributions are as follows:

• We are the first to systematically evaluate the transferability of ad-
versarial examples for HGNNs. We further conduct an extensive
study of the transferability of different perturbation generation
methods applied to representative models, and form a transfer
robustness benchmark for HGNNs.

• We propose a novel strategy to improve the transferability of
adversarial perturbations for HGNNs. We discover the common-
ality of edge attention distribution between different HGNNs and
introduce this characteristic to guide the perturbation generation,
which helps mitigate overfitting to the source model.

• We develop two efficient transferable attack generation meth-
ods called EA-FGSM and EA-PGD special for HGNNs. Exten-
sive experiments demonstrate the improvement of transferability
achieved by our methods.

2 RELATEDWORK
Heterogeneous graph neural network. Different from normal
GNNs, HGNNs are designed to deal with the heterogeneity of graph
data and extract abundant semantics for representation learning.
According to the treatment of the graph heterogeneity, HGNNs can

be roughly divided into two categories: HGNNs based on one-hop
neighbor aggregation which are similar to traditional GNNs and
HGNNs based on meta-path neighbor aggregation [39]. HGNNs
based on one-hop neighbor aggregation introduce type-specific con-
volution in themessage-passing procedure and the aggregation only
considers one-hop neighbors. For example, RGCN [24] deals with
graph heterogeneity by using relation-specific weight matrices and
aggregating one-hop messages. Another type of HGNNs is based
on hand-crafted meta-paths, which describe certain composite re-
lations between nodes. In this kind of HGNNs, the aggregation is
implemented in neighbors linked by meta-path. For example, HAN
[32] utilizes node-level attention and semantic-level attention to
fuse information from different meta-paths.
Adversarial attack on graph neural network. Recently, numer-
ous studies focusing on adversarial attacks [20, 27, 29, 34, 36, 42] and
defense [15, 30, 41] on homogeneous graph neural networks were
proposed. According to attackers’ knowledge, they can be roughly
classified into two categories: white-box attacks and black-box at-
tacks. As for white-box attack, Xu et al. [36] reformed the Projected
Gradient Descent (PGD) algorithm to make it applicable to discrete
graph data. In terms of black-box attack, Ma et al. [20] proposed a
reinforcement learning-based method that achieved attacking only
by rewiring edges instead of adding or deleting edges.

Despite the considerable progress made in adversarial attacks
on homogeneous graph neural networks (e.g. GCN), the adversarial
robustness of HGNNs still remains unclear and less explored. Re-
cently, Zhang et al. [38] paid attention to the robustness of HGNNs
and summarized two causes leading to the weak robustness of
HGNNs: perturbation enlargement effect and soft attention mech-
anism. However, the adversarial perturbation was generated by
attacking a surrogate homogeneous GCN model, which overlooked
the heterogeneity of the graph data and restricted the generaliza-
tion of obtained perturbation. Besides, the number of perturbed
edges was too large to serve as a practical perturbation in real ap-
plications. Aiming to craft more practical adversarial perturbations
of HGNNs, in this work we set a more challenging black-box attack
scenario and take the first step toward exploring the transfer-based
adversarial attack on HGNNs.

3 PRELIMINARIES
3.1 Heterogeneous Graph
A heterogeneous graph, defined as G = (V, E), consists of an
object set V and an edge set E. G is also associated with a node
type mapping function 𝜙 : V → A and an edge type mapping
function𝜓 : E → R. A and R denote the predefined sets of node
types and edge types, where |A| + |R| > 2. For each type 𝑟 ∈ R,
𝑨𝑟 represents the corresponding binary adjacency matrix.

3.2 Heterogeneous Graph Neural Network
HGNNs are proposed to handle the complex structure and rich
semantic information in the heterogeneous graph. In terms of the
model design, it is flexible to conduct the message passing and ag-
gregation, leading to a large design space [39]. Despite the diversity
of model design, all existing HGNNs take the same heterogeneous
graphs and features as input and can be summarized and formulated
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Figure 1: Illustration of the whole attack process on the local source model. The attack is driven by disrupting both the
model prediction and the original edge attention of heterogeneous relations. In order to get reliable gradients and weaken
model-specific noise, the final gradient for determination is obtained by integrating the gradient of multiple sampled graphs.

as follows:
𝑓𝐻𝐺𝑁𝑁 (𝑨𝑅1 ,𝑨𝑅2 , ...,𝑨𝑅𝑙 ;𝑿 ), (1)

where 𝑅1, 𝑅2, ..., 𝑅𝑙 ∈ R denote 𝑙 different types of edges in the
heterogeneous graph and 𝑨𝑅1 ,𝑨𝑅2 , ...,𝑨𝑅𝑙 are corresponding ad-
jacency matrix, 𝑿 represents original node features. Taking ACM
citation graph as an example, there are three types of nodes (Author
(A), Paper (P), Subject (S)), and two types of edges (P-A and P-S).
The input adjacency matrices of HGNNs are 𝑨𝑅1 ∈ R𝑁𝑃 ×𝑁𝐴 and
𝑨𝑅2 ∈ R𝑁𝑃 ×𝑁𝑆 , where 𝑁𝑃 , 𝑁𝐴, 𝑁𝑆 denotes the number of papers,
authors and subjects, respectively.

3.3 Structure-based adversarial attack on GNNs
Structure-based adversarial attack only allows to add or delete
edges from the original graph to mislead the model. Here we intro-
duce a Boolean perturbation indicating matrix 𝑺 ∈ {0, 1}𝑚×𝑛 with
the same size as the original adjacency matrix. The element in 𝑺
represents whether the corresponding edge is modified(added or
removed): 𝑠𝑖 𝑗 = 1 indicates the edge (𝑖, 𝑗) is modified and 𝑠𝑖 𝑗 = 0
means no modification. Given the adjacency matrix 𝑨, its supple-
ment is calculated by 𝑨 = 1 − 𝑨, where 1 ∈ R𝑚×𝑛 represents
the matrix whose elements are all one. Then a perturbed graph
topology 𝑨′ against 𝑨 is given by:

𝑨′ = 𝑨 + 𝑪 ⊙ 𝑺, 𝑪 = 𝑨 −𝑨, (2)

where ⊙ denotes the element-wise product operation. The positive
entry of 𝑪 denotes the edge that can be added to the graph 𝑨, and
the negative entry denotes the edge that can be removed from 𝑨.
Now we formalize the concept of structure-based attack on GNNs:
finding 𝑺 satisfying pre-defined perturbation constraints (e.g. ≤ 5%
of the total number of edges) in Eq. (2) to mislead GNNs.

4 TRANSFERABLE STRUCTURE-BASED
ATTACK ON HGNNS

Under the setup of transfer attacks, attackers can only access the
information of a source model to generate adversarial perturbation.
Similar to existing findings in transfer attacks on images [16, 35]
which shows limited transferability due to overfitting to the source
model, transfer attacks on HGNNs also suffer from this issue.

To tackle this problem, we assume that the key to boosting trans-
ferability is to search for the common characteristic of different
HGNNs. Following this motivation, we discover that there exists
a non-negligible similarity of edge attention distribution between
different HGNNs through a comprehensive analysis (Section 4.1).
Then we exploit this common characteristic of diverse HGNNs
and propose to introduce the model’s attention on edges to guide
the search of adversarial perturbations on heterogeneous relations
(Section 4.2). In order to further enhance the transferability, we
conduct random sampling and use the integrated gradient to update
the perturbation, which could further suppress the model-specific
noise. Based on these designs, we develop two efficient attack meth-
ods called EA-FGSM (short for Edge Attention-guided FGSM) and
EA-PGD (short for Edge Attention-guided PGD), which effectively
improve the transferability of the adversarial perturbation (Section
4.3). Figure 1 shows the illustration of the whole attack process.

4.1 Edge Attention Distribution Similarity
Analysis

We assume that the key to boost adversarial transferability is to
guide the search of perturbations toward the common vulnerable
directions of both the source and target models. Considering that
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all HGNNs take the same graph as input and might consistently
rely on some critical message-passing pathways to make true pre-
dictions. Thus it is reasonable to hypothesize that different HGNNs
share similar attention on a subset of edges. In order to verify this
assumption, we conduct an analysis of edge attention similarity
between different HGNNs in this section.

Inspired by the Grad-CAM [25] widely used in assessing the
model’s attention on different image regions by gradients, we intro-
duce a gradient-based method to measure the model’s attention on
different edges for HGNNs. Intuitively, gradients could characterize
how edge changes will affect the model prediction and serve as the
proxy of attention. Formally, for a given HGNN model 𝑓𝐻𝐺𝑁𝑁 , the
attention on edges with relation 𝑟 is formulated as:

𝑨𝒕𝒕𝒏(𝑓𝐻𝐺𝑁𝑁 ;𝑨𝑟 ) = 𝑔 (
𝜕L𝐶𝐸 (𝑓𝐻𝐺𝑁𝑁 (𝑨𝑅1 , ...,𝑨𝑅𝑙

;𝑿 ), 𝑐 )
𝜕𝑨𝑟

) ⊙ 𝑨𝑟 ,

(3)
where ⊙ represents the element-wise product, L𝐶𝐸 is the cross-

entropy loss used for node classification, 𝑐 is the true label, and 𝑔 is
the function defined as:

𝑔(𝑥) =
{0 𝑖 𝑓 𝑥 > 0,
𝑥 𝑖 𝑓 𝑥 ≤ 0.

(4)

In the attention matrix calculated by Eq. (3), the negative value
means deleting this edge will lead to the increase of loss value
and worsen the model performance. The minimum negative value
corresponds to themost influential edge for the overall performance.
Here we only reserve the negative value so that we can focus
on attacking those useful edges. Based on this measurement, we
analyze the cosine edge attention similarity (1 means identical edge
attention and 0 means totally different edge attention) between six
typical HGNNs (HAN, RGCN, GTN, SimpleHGN, HGT and MHNF)
for different relations of two datasets. The result is shown in Figure
2 and we summarize the findings as follows:

• Considerable similarity of edge attention distribution be-
tween diverse HGNNs. From the visualization result it can be
found that HGNNs indeed share some commonality on edge at-
tention distribution, for example, in ohgbn-acm dataset, HGNNs
show notable similarity in terms of paper-author relation and
the highest similarity reaches 0.67. Besides, we find that meta-
path-based models (HAN, GTN, MHNF) show consistently high
similarity between each other, probably due to the similar seman-
tic information encoded by the used meta-paths.

• The edges with similar attention are heterogeneous. The
results also indicate that in each relation there are edges with
common attention. This finding also implies that only perturbing
edges with a fixed relation is inadequate for transfer attacks. It is
expected to boost the adversarial transferability by introducing
heterogeneous perturbations.

4.2 Edge Attention-guided Attack Loss
Given that different HGNNs share similar edge attention, perturba-
tions on the edge attention distribution may effectively transfer to
other models. Therefore, together with dropping the overall per-
formance, we expect the perturbation could also disrupt the edge
attention distribution. We achieve this goal by adding a loss term
𝐿𝑎𝑡𝑡𝑛 to guide the perturbation generation, for the relation 𝑟 ∈ R,

the loss term is formulated as follows:

L𝑟
𝑎𝑡𝑡𝑛 = ∥𝑨𝒕𝒕𝒏(𝑓𝐻𝐺𝑁𝑁 ;𝑨𝑟 ) −𝑨𝒕𝒕𝒏(𝑓𝐻𝐺𝑁𝑁 ;𝑨′

𝑟 )∥2, (5)

where𝑨𝑟 is the original input adjacencymatrix, and𝑨′
𝑟 is perturbed

matrix. The final loss L combines the attention disruption loss
𝐿𝑎𝑡𝑡𝑛 and a CW-type loss similar to Carlini-Wagner (CW) attacks
for misleading image classifiers [2]:

L𝐶𝑊 =
∑︁
𝑖∈V

max{𝑍𝑖,𝑐 −max
𝑦𝑖≠𝑐

𝑍𝑖,𝑦𝑖 ,−𝜅}, (6)

L = L𝐶𝑊 − 𝜆
∑︁
𝑟 ∈R

L𝑟
𝑎𝑡𝑡𝑛, (7)

where 𝑍𝑖,𝑐 denotes the probability of assigning node 𝑖 to class 𝑐 , 𝜅
(set as 0 here) is a confidential level of making wrong predictions, 𝜆
controls the ratio of the two loss terms. The objective of the attack
is to minimize the attack loss L, where the first term will mislead
the final decision of the model and the second term will destroy the
attention distribution on critical edges.

4.3 Edge Attention-guided Perturbation
Generation

Similar to what’s mentioned in Section 3.3, here we introduce the
perturbation indicating matrix of different relations 𝑺𝑅1 , 𝑺𝑅2 , ..., 𝑺𝑅𝑙
into the model input, and we reformulate HGNNs as follows during
the attack process:

𝑓𝐻𝐺𝑁𝑁 (𝑨𝑅1 ,𝑨𝑅2 , ...,𝑨𝑅𝑙 ; 𝑺𝑅1 , 𝑺𝑅2 , ..., 𝑺𝑅𝑙 ;𝑿 ) . (8)

Given the proposed attack loss in Eq. (7), we now formulate the
perturbation generation as the following optimization problem:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑺𝑅1 ,𝑺𝑅2 ,...,𝑺𝑅𝑙

L(𝑨𝑅1 ,𝑨𝑅2 , ...,𝑨𝑅𝑙 ; 𝑺𝑅1 , 𝑺𝑅2 , ..., 𝑺𝑅𝑙 ;𝑿 ), (9)

where ∥𝑺𝑅1 ∥1 + ∥𝑺𝑅2 ∥1 + ... + ∥𝑺𝑅𝑙 ∥1 ≤ Δ.
The above optimization is actually a combinatorial optimization

problem because 𝑺 is a Boolean matrix where the elements are
restricted in {0, 1}. In order to achieve the objective in Eq. (9),
here we develop two perturbation generation methods specially for
attacking HGNNs, called EA-FGSM and EA-PGD, respectively.

4.3.1 Perturbation Generation through EA-FGSM. Fast Gradient
Sign Method (FGSM) [8] attacks the model by conducting gradient
update along the direction of the sign of gradients of loss func-
tion w.r.t pixels of images, which takes a single step to determine
the perturbation direction. The similar idea has been borrowed in
attacking GNNs. For example, in order to attack HGNNs, Zhang
et al. [38] attacked a homogeneous surrogated model (GCN) by
changing the edge with the largest gradient of the loss function in
each iteration. However, they conduct the attack for every node
and cause a massive magnitude of perturbations, which does not
meet the unnoticeable requirement of adversarial examples. What’s
more, their attack limits the attack on single relation of the graph
resulting in poor transferability. We correct the attack setup and
design an improved edge attention-guided attack method towards
heterogeneous relations, which is called EA-FGSM.

The main idea of EA-FGSM is to change the edge with the most
significant effect on the loss function for all relations in each itera-
tion. Different from existing FGSM-based attack [38], we take an
integrated gradient strategy to enhance the attack. Specifically, in
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Figure 2: Similarity of edge attention patterns for different types of relations between different HGNNs on ohgbn-acm(relation:
paper-author(PA), paper-subject(PS)) and ohgbn-imdb(relation: movie-actor(MA), movie-director(MD)).

each iteration, we first conduct a graph sampling for each relation
𝑟 , which is formulated as:

𝑨𝑟 = 𝑨𝑟 ⊙ 𝑴𝑘
𝑟 ,𝑴

𝑘
𝑟 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑝), (10)

where 𝑴𝑘
𝑟 is the 𝑘𝑡ℎ binary mask matrix with the same size as 𝑨𝑟 ,

𝑝 controls the sampling rate. Then we calculate the gradient of the
loss function in Eq. (7) w.r.t. the perturbation indicating matrix 𝑺𝑟 :

𝑮𝑺𝑟 =
𝜕L(𝑨𝑅1 ,𝑨𝑅2 , ...,𝑨𝑅𝑙 ; 𝑺𝑅1 , 𝑺𝑅2 , ..., 𝑺𝑅𝑙 ;𝑿 )

𝜕𝑺𝑟
. (11)

Considering that different HGNNs will pay model-specific attention
on some edges to better fit themselves to the data domain. In order
to get reliable gradients and weaken the aforementioned model-
specific noise, we aggregate the gradients of 𝐾 sampled graphs
and perturb the edge 𝑒∗𝑟𝑚 with the minimum gradient (the negative
gradient with maximum absolute value) in all relations, where 𝑟𝑚 is
the edge type of 𝑒∗𝑟𝑚 . After repeating the above process for Δ times,
we can obtain the perturbed adjacency matrix of each relation. The
pseudo-code of EA-FGSM is shown in Algorithm 1.

4.3.2 Perturbation Generation through EA-PGD. Different from
FGSM method, projected gradient descent (PGD) [21] has been
proven to be a more powerful attack. As for the attack on GNNs,
Xu et al. [36] proposed a PGD-based attack achieving state-of-the-
art attack performance on homogeneous GNNs. To make it fit for
attacking HGNNs and boosting adversarial transferability, we re-
fine it by introducing heterogeneous relation-oriented and edge
attention-guided attacks. Different from EA-FGSM, EA-PGD gen-
erates the perturbation indicating matrix 𝑺 by iterative updating
instead of picking the perturbed edge one by one discretely.

In order to solve the optimization problem in Eq. (9), here we
relax the elements in 𝑆 from discrete set {0, 1} to continuous range
[0, 1]. However, when implementing the method we find there’s
a great gap between the attack performance of continuous 𝑺 and
discrete form. To alleviate this problem we add another loss term
to guide the value in 𝑺 to move towards 0 or 1. Intuitively, the
gap will be significant if the obtained 𝑺 has many elements near
0.5 because it is not satisfying whether it is given 0 or 1. In this
situation, making the value far away from 0.5 could help narrow
the gap, and the attack loss finally used for EA-PGD is:

L = 𝐿𝐶𝑊 − 𝜆𝐿𝑎𝑡𝑡𝑛 − ∥𝑺 − 0.5 ∗ 1∥2, (12)

where 1 is the matrix whose elements are all one. After obtaining
the integrated gradient 𝑮𝑟 of the above loss function, the continu-
ous perturbation indicating matrix can be obtained by iteratively

Algorithm 1 Perturbation generation using EA-FGSM

Input:Trainedmodel 𝑓𝐻𝐺𝑁𝑁 (𝑨𝑅1 ,𝑨𝑅2 , ...,𝑨𝑅𝑙 ; 𝑺𝑅1 , 𝑺𝑅2 , ..., 𝑺𝑅𝑙 ;𝑿 ),
original adjacency matrix of different relations 𝑨𝑅1 ,𝑨𝑅2 , ...,𝑨𝑅𝑙 ,
the budge of perturbations Δ, perturbation indicating matrix
𝑺𝑅1 , 𝑺𝑅2 , ..., 𝑺𝑅𝑙 , sampling number K
Output: Modified adjacency matrix of different relations
𝑨

′
𝑅1
,𝑨

′
𝑅2
, ...,𝑨

′
𝑅𝑙

𝑁𝑐ℎ𝑎𝑛𝑔𝑒 = 0
while 𝑁𝑐ℎ𝑎𝑛𝑔𝑒 ≤ Δ do

Reset 𝑺𝑅1 , 𝑺𝑅2 , ..., 𝑺𝑅𝑙 all to zero-matrix
Initial: 𝑮𝑅1 , 𝑮𝑅2 , ..., 𝑮𝑅𝑙 = 0
for k=1 to K do
for each relation 𝑟 in R do

𝑨𝑟 = 𝑨𝑟 ⊙𝑴𝑘
𝑟 // Graph sampling for each relation

end for
for each relation 𝑟 in R do

𝑮𝑟 = 𝑮𝑟 + 𝑮𝑺𝑟 // Integrate gradient
end for

end for
Select the edge 𝑒∗𝑟𝑚 of type 𝑟𝑚 with minimum value in
{𝑮𝑅1 , 𝑮𝑅2 , ..., 𝑮𝑅𝑙 }
𝑨𝑟𝑚 = 𝑨𝑟𝑚 + 𝑒∗𝑟𝑚 // Perturb the edge 𝑒∗𝑟𝑚
𝑁𝑐ℎ𝑎𝑛𝑔𝑒 = 𝑁𝑐ℎ𝑎𝑛𝑔𝑒 + 1

end while
return 𝑨𝑅1 ,𝑨𝑅2 , ...,𝑨𝑅𝑙

projected gradient descent:

𝑺 (𝑡 )𝑟 = Π[𝑺 (𝑡−1)𝑟 − 𝜂𝑡𝑮𝑟 ], (13)

where𝜂𝑡 is learning rate,Π denotes the projection operation forcing
the perturbed edge number no more than the predefined budge
Δ𝑅1 ,Δ𝑅2 , ...,Δ𝑅𝑙 , the closed-form solution has been given in [36]:

Π[𝑺] =
{
𝑃[0,1] [𝑺 − 𝜇1] 𝑖 𝑓 𝜇 > 0 𝑎𝑛𝑑 ∥𝑃[0,1] [𝑺 − 𝜇1] ∥1 = 𝜖,
𝑃[0,1] [𝑺] 𝑖 𝑓 ∥𝑃[0,1] [𝑺] ∥1 ≤ 𝜖. (14)

where 𝑃[0,1] [𝑥] denotes the operation clamping the value in 𝑥 to
[0, 1], 𝜇 could be solved by the bisection method [1]. After get-
ting the continuous form of 𝑺 , the next goal is to recover a binary
solution from it. Since the element in 𝑺 can be interpreted as a
probability, the binary element 𝑠∗

𝑖 𝑗
can be determined by a Bernoulli
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Algorithm 2 Perturbation generation using EA-PGD

Input:Trainedmodel 𝑓𝐻𝐺𝑁𝑁 (𝑨𝑅1 ,𝑨𝑅2 , ...,𝑨𝑅𝑙 ; 𝑺𝑅1 , 𝑺𝑅2 , ..., 𝑺𝑅𝑙 ;𝑿 ),
original adjacency matrix of different types𝑨𝑅1 ,𝑨𝑅2 , ...,𝑨𝑅𝑙 , the
maximum number of perturbations Δ𝑅1 ,Δ𝑅2 , ...,Δ𝑅𝑙 , sampling
number K, perturb indicating matrix 𝑺 (0)

𝑅1
, 𝑺 (0)

𝑅2
, ..., 𝑺 (0)

𝑅𝑙
, learning

rate 𝜂𝑡 and iterations 𝑇
Output: Modified adjacency matrix of different types
𝑨

′
𝑅1
,𝑨

′
𝑅2
, ...,𝑨

′
𝑅𝑙

for 𝑡 = 1, 2, ...,𝑇 do
Initial: 𝑮𝑅1 , 𝑮𝑅2 , ..., 𝑮𝑅𝑙 = 0
for k=1 to K do
for each relation 𝑟 in R do

𝑨𝑟 = 𝑨𝑟 ⊙𝑴𝑘
𝑟 // Graph sampling for each relation

end for
for each relation 𝑟 in R do

𝑮𝑟 = 𝑮𝑟 + 𝑮𝑺𝑟 // Integrate gradient
end for

end for
for each relation 𝑟 in R do

𝑮𝑟 =
𝑮𝑟

∥𝑮𝑟 ∥
𝑺 (𝑡 )𝑟 = Π[𝑺 (𝑡−1)𝑟 − 𝜂𝑡𝑮𝑟 ]

end for
end for
Conduct Bernoulli sampling on 𝑺 (𝑡 )

𝑅1
, 𝑺 (𝑡 )

𝑅2
, ..., 𝑺 (𝑡 )

𝑅𝑙
to get binary

matrix 𝑺∗
𝑅1
, 𝑺∗

𝑅2
, ..., 𝑺∗

𝑅𝑙

Calculate 𝑨
′
𝑅1
,𝑨

′
𝑅2
, ...,𝑨

′
𝑅𝑙

according to Eq. (2).
return 𝑨

′
𝑅1
,𝑨

′
𝑅2
, ...,𝑨

′
𝑅𝑙

sampling:

𝑠∗𝑖 𝑗 =
{1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑠𝑖 𝑗 ,

0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑠𝑖 𝑗 .
(15)

Finally, the perturbed adjacency matrix of each relation could be
calculated according to Eq. (2). The pseudo-code of EA-PGD is
shown in Algorithm 2.

4.4 Time Complexity Analysis
In this section, we analyze the time complexity of our proposed
EA-FGSM and EA-PGD. Our method conducts an extra calculation
of the attention matrix in the loss function, while the introduced
computational time can be overlooked because it just needs to take
the backpropagation once to get the attention matrix in each step.
EA-FGSM needs 𝐾 steps to get integrated gradients for 𝑙 relations
repeating Δ times and the complexity is𝑂 (𝑙𝐾Δ). In the experiment
we control Δ as only 5% of the total number of edges and 𝐾 as 5
to reduce the required computation. By comparison, EA-PGD only
iterates 𝑇 (set as 200) steps to generate all perturbed edges, which
is more efficient with complexity 𝑂 (𝑙𝐾𝑇 ).

5 EXPERIMENTS
5.1 Experimental Settings
Datasets. We evaluate the transfer attack performance on two
benchmark datasets of heterogeneous graph for node classification

Table 1: Statistics of the dataset.

Dataset Relations(A-B) # of A # of B # of A-B Train Val Test

ohgbn-acm Paper-Author 3025 5912 9936 600 300 2125Paper-Subject 3025 57 3025

ohgbn-imdb Movie-Actor 4661 5841 13983 300 300 2339Movie-Director 4661 2270 4661

task [9]: (1) ohgbn-acm for paper classification including 3 node
types: paper (P), author (A) and subject (S). (2)ohgbn-imdb for
movie classification including 3 node types: movie (M), actor (A)
and director (D). The detailed information is shown in Table 1.
HGNNs.We evaluate the transfer attack performance on six widely-
used models: HAN [32], RGCN [24], GTN [37], SimpleHGN [19],
HGT [12] and MHNF [28]. We concentrate on evasion attack which
conducts attack after model training and carefully tune the hyper-
parameters and choose the best model as the attack target.
Attack methods. Since there’s no direct attack method specially
for HGNNs, here we form two kinds of baselines for comparison:
• Attack on homogeneous relation. We implement three meth-
ods of attacking the single type of edges of HGNNs. For ohgbn-
acm we choose to attack the relation paper-author and attack
movie-actor relation for ohgbn-imdb. DICE [33] is implemented
by adding or deleting edges randomly. FGSM is the attack method
used in [38] for HGNNs, which attacks one specified edge type
by picking the edge with maximum absolute gradient one by one.
For a fair comparison, we refine the method to directly attack
HGNNs instead of the surrogate GCN model. PGD [36] uses the
projected gradient descent method to learn the perturbation in-
dicating matrix and samples to get the discrete perturbed graph.

• Attack on heterogeneous relations. For a fair comparison, we
have refined FGSM and PGD to attack multiple types of edges.
Specifically, the difference between EA-FGSM and EA-PGD is
there’s no edge attention guidance and integrated gradient.

Parameter settings. In the experiments, our attack goal is to
decrease the overall performance of all test nodes, the budge of
the perturbation Δ is set as 5% of the total number of all types of
edges, which is widely used in the attack for GNNs [13, 36]. The
sampling number 𝐾 for integrating gradient is 5 and the sampling
rate 𝑝 is 0.9 to avoid the dramatic change of the original graph
structure. The coefficient 𝜆 in the loss function is 10. For EA-PGD,
we have tried a lot of settings for perturbation budge of different
relations Δ𝑅1 ,Δ𝑅2 , ...,Δ𝑅𝑙 and choose Δ𝑃−𝐴/Δ𝑃−𝑆 = 4/1 for ohgbn-
acm and Δ𝑀−𝐴/Δ𝑀−𝐷 = 1/1 for ohgbn-imdb with the best attack
performance. The learning rate 𝜂𝑡 = 1/

√
𝑡 and iterations 𝑇 = 200.

5.2 Comparison of Transferability
The performance of transfer attack on the two datasets is shown in
Table 2 and Table 3. We conduct white-box attack on six models in
turn and take the obtained perturbed graph as input of the other five
models to test the adversarial transferability. Here we report Micro-
F1 as the metric of HGNN performance for the node classification
task. From the result we have the following observations:
• Our proposed methods consistently achieve better adver-
sarial transferability in all experiments. Statistically, our
method (the better one in EA-FGSM and EA-PGD) gets 70.87%
improvement on average compared with the best homogeneous
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Table 2: Results (Micro-F1) of transfer attacks on ohgbn-acm dataset between six models. The first column shows source models
and the first row lists target models. The attack methods are classified according to perturbing homogeneous or heterogeneous
edges. The best results are highlighted in bold. () indicates white-box attack where the target model is the source model, not
belonging to transfer attack.

Attack HAN RGCN GTN SimpleHGN HGT MHNF
Attack type No perturbation 0.9035 0.9219 0.9092 0.9144 0.9021 0.9144

DICE (0.8416) 0.8826 0.8831 0.8912 0.8947 0.8925
PGD (0.8326) 0.8769 0.8823 0.8920 0.8914 0.8895Homogeneous
FGSM (0.8574) 0.8794 0.8859 0.8953 0.8913 0.8944
PGD (0.7860) 0.8682 0.8826 0.8901 0.8905 0.8813
FGSM (0.7980) 0.8691 0.8771 0.8884 0.8866 0.8767
EA-PGD (0.7871) 0.8575 0.8753 0.8874 0.8873 0.8749

HAN

Heterogeneous
EA-FGSM (0.7949) 0.8517 0.8721 0.8737 0.8724 0.8701
DICE 0.8546 (0.8435) 0.8937 0.8348 0.8711 0.8326
PGD 0.8521 (0.8448) 0.8952 0.8367 0.8684 0.8287Homogeneous
FGSM 0.8467 (0.8455) 0.8942 0.8376 0.8744 0.8412
PGD 0.8245 (0.7748) 0.8932 0.8267 0.8684 0.8287
FGSM 0.8273 (0.7921) 0.8889 0.8123 0.8663 0.8264
EA-PGD 0.8028 (0.7813) 0.8826 0.8032 0.8536 0.8169

RGCN

Heterogeneous
EA-FGSM 0.7929 (0.7975) 0.8776 0.7741 0.8451 0.8112
DICE 0.8433 0.8768 (0.8019) 0.8820 0.8927 0.8814
PGD 0.8425 0.8749 (0.7837) 0.8802 0.8935 0.8802Homogeneous
FGSM 0.8301 0.8810 (0.8015) 0.8838 0.8952 0.8779
PGD 0.8168 0.8765 (0.7601) 0.8795 0.8910 0.8651
FGSM 0.8082 0.8701 (0.7675) 0.8739 0.8908 0.8668
EA-PGD 0.8012 0.8679 (0.7687) 0.8703 0.8843 0.8543

GTN

Heterogeneous
EA-FGSM 0.7816 0.8664 (0.7618) 0.8607 0.8823 0.8498
DICE 0.8469 0.8530 0.8556 (0.8329) 0.8502 0.8450
PGD 0.8479 0.8528 0.8579 (0.8273) 0.8480 0.8437Homogeneous
FGSM 0.8487 0.8403 0.8504 (0.8394) 0.8417 0.8435
PGD 0.8547 0.8389 0.8478 (0.8017) 0.8406 0.8380
FGSM 0.8346 0.8359 0.8464 (0.8145) 0.8415 0.8362
EA-PGD 0.8480 0.8293 0.8402 (0.8076) 0.8314 0.8329

SimpleHGN

Heterogeneous
EA-FGSM 0.8296 0.8169 0.8324 (0.8201) 0.8202 0.8202
DICE 0.8815 0.8769 0.8926 0.8937 (0.8440) 0.8867
PGD 0.8810 0.8798 0.8925 0.8945 (0.8438) 0.8846Homogeneous
FGSM 0.8839 0.8766 0.8939 0.8940 (0.8479) 0.8858
PGD 0.8801 0.8715 0.8826 0.8803 (0.8287) 0.8775
FGSM 0.8786 0.8659 0.8838 0.8809 (0.8273) 0.8729
EA-PGD 0.8684 0.8651 0.8791 0.8669 (0.8252) 0.8658

HGT

Heterogeneous
EA-FGSM 0.8677 0.8587 0.8771 0.8640 (0.8245) 0.8607
DICE 0.8498 0.8945 0.8627 0.8820 0.8969 (0.8572)
PGD 0.8456 0.8935 0.8614 0.8748 0.8974 (0.8438)Homogeneous
FGSM 0.8408 0.8874 0.8654 0.8775 0.8953 (0.8591)
PGD 0.8321 0.8746 0.8422 0.8560 0.8912 (0.8277)
FGSM 0.8277 0.8757 0.8508 0.8682 0.8889 (0.8224)
EA-PGD 0.8258 0.8729 0.8318 0.8457 0.8869 (0.8322)

MHNF

Heterogeneous
EA-FGSM 0.8225 0.8700 0.8277 0.8390 0.8831 (0.8525)

attack methods on ohgbn-acm and 50.85% on ohgbn-imdb in
terms of drop of Micro-F1. Compared with the best heteroge-
neous attack methods, we get 32.21% improvement on average
for ohgbn-acm and 14.86% for ohgbn-imdb. The overall result
demonstrates the effectiveness of our proposed methods.

• The performance of transfer attack shows notable corre-
lation with edge attention similarity. Intuitively, the pertur-
bation is more likely to transfer when the source model and
target model share many similarities. Here the edge attention
similarities between HGNNs is basically in line with this rule.

For example, the perturbation obtained by attacking RGCN and
SimpleHGN shows better transferability on attacking MHNF for
ohgbn-acm dataset, which matches the similarity analysis shown
in Figure 2.

• EA-FGSM exhibits better performance than EA-PGD in
general. From the results of transfer attack, EA-FGSM outper-
forms EA-PGD in most cases. We assume that the crux might
still be the gap between continuous and discrete forms of pertur-
bation in EA-PGD. According to our observation, the continuous
perturbation indicating matrix 𝑺 during attack generation shows
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Table 3: Results (Micro-F1) of transfer attacks between sixmodels on ohgbn-imdb dataset. The first column shows sourcemodels,
and the first row lists target models. The attack methods are classified into two types according to perturbing homogeneous
or heterogeneous edges. The best results are highlighted in bold. () indicates white-box attack where the target model is the
source model, not belonging to transfer attack.

Attack HAN RGCN GTN SimpleHGN HGT MHNF
Attack type No perturbation 0.6084 0.6032 0.5950 0.6109 0.5767 0.6191

DICE (0.5114) 0.5546 0.5515 0.5984 0.5560 0.5894
PGD (0.5079) 0.5504 0.5498 0.5956 0.5512 0.5879Homogeneous
FGSM (0.5109) 0.5489 0.5455 0.5904 0.5485 0.5840
PGD (0.5018) 0.5480 0.5220 0.5848 0.5476 0.5583
FGSM (0.4699) 0.5412 0.5277 0.5852 0.5476 0.5601
EA-PGD (0.4938) 0.5429 0.5198 0.5823 0.5459 0.5528

HAN

Heterogeneous
EA-FGSM (0.4666) 0.5352 0.5118 0.5809 0.5428 0.5515
DICE 0.5695 (0.5045) 0.5560 0.5512 0.5421 0.5522
PGD 0.5678 (0.5027) 0.5539 0.5478 0.5396 0.5475Homogeneous
FGSM 0.5669 (0.5070) 0.5459 0.5426 0.5314 0.5476
PGD 0.5581 (0.4859) 0.5361 0.5570 0.5228 0.5412
FGSM 0.5369 (0.4528) 0.5288 0.5407 0.5221 0.5337
EA-PGD 0.5503 (0.5002) 0.5302 0.5438 0.5204 0.5366

RGCN

Heterogeneous
EA-FGSM 0.5316 (0.4776) 0.5268 0.5201 0.5133 0.5231
DICE 0.5628 0.5729 (0.4314) 0.5856 0.5513 0.5176
PGD 0.5616 0.5702 (0.4208) 0.5870 0.5516 0.5137Homogeneous
FGSM 0.5579 0.5673 (0.4288) 0.5828 0.5485 0.5042
PGD 0.5398 0.5653 (0.4204) 0.5910 0.5408 0.5054
FGSM 0.5352 0.5622 (0.4215) 0.5891 0.5416 0.5027
EA-PGD 0.5315 0.5631 (0.4189) 0.5868 0.5389 0.4976

GTN

Heterogeneous
EA-FGSM 0.5254 0.5526 (0.4190) 0.5735 0.5352 0.4925
DICE 0.5602 0.5746 0.5581 (0.5217) 0.5446 0.5725
PGD 0.5576 0.5721 0.5517 (0.5037) 0.5410 0.5701Homogeneous
FGSM 0.5498 0.5687 0.5455 (0.5019) 0.5348 0.5639
PGD 0.5508 0.5689 0.5401 (0.4921) 0.5198 0.5486
FGSM 0.5468 0.5562 0.5382 (0.4382) 0.5185 0.5445
EA-PGD 0.5465 0.5587 0.5368 (0.4844) 0.5156 0.5455

SimpleHGN

Heterogeneous
EA-FGSM 0.5425 0.5584 0.5332 (0.4784) 0.5109 0.5408
DICE 0.5585 0.5894 0.5406 0.5619 (0.4712) 0.5539
PGD 0.5574 0.5856 0.5394 0.5568 (0.4875) 0.5502Homogeneous
FGSM 0.5528 0.5867 0.5370 0.5434 (0.5122) 0.5472
PGD 0.5440 0.5876 0.5387 0.5612 (0.3963) 0.5368
FGSM 0.5496 0.5844 0.5301 0.5630 (0.3386) 0.5349
EA-PGD 0.5405 0.5703 0.5276 0.5445 (0.3882) 0.5277

HGT

Heterogeneous
EA-FGSM 0.5396 0.5681 0.5228 0.5382 (0.4104) 0.5224
DICE 0.5821 0.5795 0.5123 0.5932 0.5598 (0.4972)
PGD 0.5812 0.5800 0.5079 0.5879 0.5576 (0.4827)Homogeneous
FGSM 0.5759 0.5720 0.5051 0.6000 0.5528 (0.4629)
PGD 0.5687 0.5465 0.5139 0.5519 0.5456 (0.4587)
FGSM 0.5626 0.5386 0.5002 0.5553 0.5369 (0.4291)
EA-PGD 0.5644 0.5384 0.5036 0.5467 0.5388 (0.4012)

MHNF

Heterogeneous
EA-FGSM 0.5546 0.5295 0.4947 0.5476 0.5291 (0.4340)

powerful attack ability. However, the final perturbation is the
discrete form of it through probabilistic sampling, whose attack
performance drops dramatically. We mitigate this problem by
adding an external term in the loss function while more treatment
might be needed to further improve EA-PGD.

5.3 Ablation Study
In our method, there are three key designs to promote adversar-
ial transferability: heterogeneous-relation attack, edge attention

guidance and integrated gradient. We assess their contribution re-
spectively through ablation studies focusing on EA-FGSM which
outperforms other methods. We compare the complete method of
EA-FGSM with the versions without the aforementioned compo-
nents and show the results in Table 4. Here we report the results of
transferring the perturbation by attacking RGCN to other models
as examples. From the result it can be seen that the full method
achieves the best performance, indicating that the three key designs
of our method collaborate well to boost the transferability.
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Table 4: Ablation study on transfer attack with RGCN as the
source model on two datasets.

Dataset Attack method HAN GTN SimpleHGN HGT MHNF

ohgbn-acm

EA-FGSM 0.7929 0.8776 0.7741 0.8451 0.8112
w/o het-relation attack 0.8368 0.8936 0.8295 0.8715 0.8375

w/o edge attention guidance 0.8120 0.8841 0.8006 0.8565 0.8216
w/o integrated gradient 0.8037 0.8802 0.7908 0.8577 0.8204

ohgbn-imdb

EA-FGSM 0.5316 0.5268 0.5201 0.5133 0.5231
w/o het-relation attack 0.5568 0.5404 0.5389 0.5278 0.5456

w/o edge attention guidance 0.5359 0.5286 0.5363 0.5216 0.5318
w/o integrated gradient 0.5378 0.5358 0.5335 0.5212 0.5357

1 3 5 7 9
K

0.78

0.80

0.82

0.84

0.86

0.88

M
ic

ro
-F

1

ohgbn-acm

HAN
GTN
SimpleHGN
HGT
MHNF

1 3 5 7 9
K

0.51

0.52

0.53

0.54

M
ic

ro
-F

1

ohgbn-imdb

HAN
GTN
SimpleHGN
HGT
MHNF

0 0.1 1 10 100

0.78

0.80

0.82

0.84

0.86

0.88

M
ic

ro
-F

1

ohgbn-acm

HAN
GTN
SimpleHGN
HGT
MHNF

0 0.1 1 10 1000.51

0.52

0.53

0.54

M
ic

ro
-F

1

ohgbn-imdb

HAN
GTN
SimpleHGN
HGT
MHNF

Figure 3: Study of the effect of 𝐾 and 𝜆 on transfer attack
performancewithRGCNas the sourcemodel on two datasets.

5.4 Hyper-parameter Study
Here we explore the effect of two important hyper-parameters in
our method: the number of integrated gradients 𝐾 and the coeffi-
cient 𝜆 controlling the ratio of loss terms. We focus on EA-FGSM
and use RGCN as the source model. The results are shown in Figure
3. We test the attack performance with 𝐾 ∈ [1, 3, 5, 7, 9]. It can be
observed that overall the transferability increases with more inte-
grated gradients due to the elimination of model-specific noise and
focus more on perturbing the edges with common attention. Noting
that there’s little attack performance gain after 𝐾 = 5, we choose
𝐾 = 5 as the final setting. As for 𝜆, we test the attack performance
with 𝜆 ∈ [0, 0.1, 1, 10, 100]. Overall the transfer attack performance
reaches the peak when 𝜆 is 10.

5.5 Case Study
For a more intuitive understanding, in this section we visualize a
real case from ohgbn-imdb dataset as shown in Figure 4 to explain
why our method achieves superior adversarial transferability. Here
we show the sub-graph around the movie-type node 𝑀11 and its
neighbor nodes including three actor-type nodes 𝐴11, 𝐴1037, 𝐴1947
and one director-type node 𝐷11. The number on edges is the atten-
tion value calculated as Eq. (3). The negative value with a larger ab-
solute value means more significant influence on the model predic-
tion. The case shows the perturbation generated by attacking HGT
and the transfer result on HAN, RGCN and SimpleHGN through
vanilla FGSM and EA-FGSM. It can be seen that vanilla FGSM only
concentrates on disrupting the edge with the largest influence on

Source model: HGT

Target model: SimpleHGNTarget model: RGCN

Target model: HAN

M11

A11
A1037

A1947

D11

00

-12.536

0

M11

A11
A1037

A1947

D11

00

-5.853

-4.309

M11

A11
A1037

A1947

D11

-2.7470

-10.441

-12.672

M11

A11
A1037

A1947

D11

-0.7110
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: perturbation of EA-FGSM

: perturbation of Vanilla-FGSM

Figure 4: A real example from ohgbn-imdb dataset to illus-
trate the effectiveness of our method to boost adversarial
transferability.

the performance of source model so it determines to delete the
edge linking to 𝐷11. However, this leads to overfitting of the source
model and fail to attack the target models. By comparison, EA-
FGSM searches the edge which additionally considers the attack on
the edge attention distribution. As a result, it chooses to perturb the
edge linking to 𝐴1947, which is validated to be more commonly vul-
nerable. The case study verifies that our method indeed prioritizes
perturbing the common vulnerable edges, verifying the effective-
ness to introduce edge attention to guide the perturbation search.

6 CONCLUSION
In this work we first shed light on the transferability of adversarial
perturbation on HGNNs, which is challenging due to the overfit-
ting of the source model. To address this problem, we propose to
implement the attack with the guidance of edge attention, driving
the resultant perturbations toward common vulnerable directions.
Following this we finally form two efficient structure-based attack
methods: EA-FGSM and EA-PGD. Numerous experiments demon-
strate the superiority of our methods on adversarial transferability.
This work provides a novel benchmark for transfer robustness of
HGNNs. In the future, we will consider attacks on models with
defense and other tasks, e.g., HGNN-based recommendation.
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