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ABSTRACT
For walking pedestrians, when they are blocked by obstacles or
other pedestrians, they adjust their speeds and directions to avoid
colliding with them, which is called collision avoidance behavior.
This behavior is the most complex part of pedestrians’ walking
processes and its modeling and simulation are the keys to realis-
tic crowd simulation, which serves as the foundation for various
applications. However, most existing methods either lack the repre-
sentation power to accurately model the complex collision behavior
or do not model it explicitly, which leads to a poor level of real-
ism of the simulation. To realize realistic crowd simulation, we
propose to analyze, understand, and model the collision avoidance
behavior in a data-driven way. First, to automatically detect colli-
sion avoidance behavior for further analysis, we propose a domain
transformation algorithm that detects it by transforming the trajec-
tories in the spatial domain into a new domain where the behavior
is much more apparent and is thus easier to detect. The new do-
main also provides a new perspective for understanding collision
avoidance behavior. Second, since there are no mature metrics to
evaluate the level of realism, we propose a new evaluation metric
based on the least-effort theory, which evaluates the realism of col-
lision avoidance behavior by its physical and mental consumption.
This evaluation metric also provides the foundation of modeling.
Third, for realistic crowd simulation, we design a reinforcement
learning model. It trains agents with our proposed reward function
that models pedestrians’ intrinsic needs of “reducing effort con-
sumption” and thus can guide agents to behave realistically when
avoiding collisions. Extensive experiments show our model is 55.9%
and 52.5% more realistic in collision avoidance behavior than the
best baselines on two real-world datasets. We release our codes at
https://github.com/tsinghua-fib-lab/TECRL.
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1 INTRODUCTION
Crowd simulation is the process of simulating how pedestrians
move to avoid colliding with others or obstacles and reach their
destinations, which is widely used in emergency evacuation [22],
architectural design [3], traffic scheduling [15], etc. For example, for
emergency evacuation, simulating how pedestrians interact with
other pedestrians and obstacles helps us analyze the time consump-
tion of an evacuation plan and further optimize its design. For the
architectural design of public transport interchanges (e.g., railway
stations), the simulation helps to analyze the density of pedestri-
ans under given passenger throughput and further evaluates the
capacity of different architectural designs. All of these applications
depend on the realism of the crowd simulation. An unrealistic sim-
ulator can lead to poor optimization results and evaluation errors.

For personal safety and comfort, pedestrians tend to adjust their
velocities when they will collide with others or obstacles. While
at other times, they typically move straight toward their destina-
tions at uniform speeds [12]. As shown in Figure 1(a), the latter is
usually a simple uniform linear motion which is easy and trivial
to model, while the former is usually a complex variable motion
with more speed and direction adjustments and is hard to model.
The comparison of their “complexity” is shown as Figure 1(b, c):
when pedestrians are avoiding collisions, their behavior has larger
variances in acceleration and yaw rate compared to the behavior
moving toward destinations, where the acceleration and yaw rate
are the adjustments of speed and movement direction per unit of
time respectively and reflect the complexity of behavior. Therefore,
although the behavior of moving towards destinations generally
makes up the majority of pedestrians’ trajectories, accurately simu-
lating the collision avoidance behavior is the key to realistic crowd
simulation [16].

Many existing crowd simulation approaches rely on experts’
knowledge rather than real-world collision avoidance data to model
this behavior and evaluate these models based on subjective ob-
servation rather than objective metrics[6, 7, 10, 27], which poses
limitations on the level of realism in modeling the avoiding behav-
ior. On the other hand, recent advancements in trajectory predic-
tion models have shown promise in predicting pedestrians’ near-
future trajectories using neural networks and historical trajectory
data[1, 5, 13, 14, 24]. However, these models are not suitable for
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Figure 1: Demonstration of the complex motion dynamics in
the collision avoidance state.

simulating longer time ranges of several minutes or hours, which
are of greater importance in crowd simulation tasks, making them
perform poorly in crowd simulation tasks as well[29].

To realize realistic crowd simulation, we propose to analyze,
understand, and model the collision avoidance behavior in a data-
driven way. This is non-trivial because of three problems: (1) There
is no existing specific collision avoidance dataset that only con-
tains pedestrians’ avoiding behavior, and it’s hard to autonomously
annotate this behavior since pedestrians usually avoid collisions
by slightly adjusting their trajectories. (2) There are no existing
metrics to evaluate “the level of realism”, since it heavily relies on
human intuition. The metrics used in trajectory prediction such as
ADE/FDE are not suitable as well since they evaluate trajectories
by their similarity to the ground truth from the spatiotemporal per-
spective, which is, as we discussed in Secion 6, different from the
realism of collision avoidance behavior. (3) The collision avoidance
behavior is complex and hard to model directly: for a collision, there
usually exist multiple possible routes to avoid it, and pedestrians
randomly choose one of them according to their preferences, which
makes it hard to be effectively modeled with universal law.

In this work, we propose to understand and model the col-
lision avoidance behavior with a Domain Transformation-based
(DT-based) annotation algorithm for its detection, a Total Effort
Consumption (TEC) metric for its evaluation, and a Total Effort
Consumption-based Reinforcement Learning (TEC-RL) model for
realistic crowd simulation. Specifically, first, to automatically an-
notate the collision avoidance behavior for further analysis, we
propose a DT-based algorithm that detects it by transforming the
trajectories in the spatial domain into a collision domain where
this behavior becomes much more apparent and is thus easier to
annotate. Second, based on the least-effort theory [30], i.e. pedes-
trians choose routes with the least cost, we propose a TEC metric
derived from human physiology and human psychology to evaluate
the level of realism of a given collision avoidance process based
on its physical and mental consumption. We prove that this metric
can evaluate realism in a way that aligns with human intuition
through an experiment. Third, to model the collision avoidance
behavior, we design a TEC-based reinforcement learning model
with our proposed TEC-based reward function which models the
intrinsic needs of pedestrians and thus can guide agents to behave
realistically during collision avoidance.

We highlight our contributions as follows:
• To the best of our knowledge, we propose to systematically an-
alyze, understand, and model the collision avoidance behavior
in a data-driven way to realize realistic crowd simulation for the
first time.

• We propose a DT-based algorithm to automatedly annotate colli-
sion avoidance behavior, which provides a data basis for achiev-
ing more realistic modeling of the avoidance process. Experi-
ments on two real-world datasets show the high accuracy of our
annotation algorithm.

• We propose a TEC metric to evaluate the level of realism of
the collision avoidance behavior for the first time and prove its
ability to evaluate in a way that aligns with human intuition,
which makes it possible to evaluate the crowd simulation model
quantitatively.

• We design a TEC-RL crowd simulator with realistic collision
avoidance behavior based on our proposed TEC-based reward
function. Extensive experiments on two real-world datasets prove
the superior performance of our model in behavioral realism
compared to other state-of-the-art methods. Specifically, our
model is 55.9% and 52.5% more realistic in collision avoidance
behavior than the best baselines on two real-world datasets.

2 PRELIMINARIES
2.1 Crowd Simulation Concepts
In this study, we use 𝒑𝑖 and 𝒗𝑖 to denote the current position and
velocity of pedestrian 𝑖 . At each step of the simulation, we update
their 𝒗𝑖 in a manner that allows them to reach their destinations
by following routes typically chosen by real humans. Similar to the
majority of research conducted on microscopic crowd simulation
in the past decade[26], we simplify the pedestrians in the crowd as
disk-shaped particles, simplify the environment in which the crowd
moves as a planar surface with polygonal obstacles, and simulate
each timestep (or frame) to represent 0.1 seconds.

Additionally, in this paper, we use the term “velocity” 𝒗 to repre-
sent a vector characterized by both magnitude and direction, while
the term “speed” 𝑣 = ∥𝒗∥ is used to denote the magnitude of the
velocity vector and is thus a scalar.

2.2 Collision Avoidance Concepts
Many modern crowd simulation models utilize the Distance of Clos-
est Approach (DCA) and Time to Closest Approach (TTCA) to predict
future collisions between pedestrians or between a pedestrian and
an obstacle [25]. These two values are depicted in Figure 2, and can
be computed by solving the following simple quadratic equations:

𝐷𝑖 𝑗 (𝑡) = max
{

𝒑𝑖 + 𝒗𝑖𝑡 − 𝒑 𝑗 − 𝒗 𝑗 𝑡



 − (𝑅𝑖 + 𝑅 𝑗 ), 0
}
, (1)

DCA𝑖 𝑗 = min0≤𝑡≤𝑇clip𝐷𝑖 𝑗 (𝑡), (2)
TTCA𝑖 𝑗 = argmin0≤𝑡≤𝑇clip𝐷𝑖 𝑗 (𝑡), (3)

where 𝑅𝑖 +𝑅 𝑗 is the sum radius of pedestrian 𝑖 and 𝑗 , 𝐷𝑖 𝑗 (𝑡) is their
distance after time 𝑡 , and 𝑇clip is used to prevent infinity. Note that
if they will collide in the near future, the DCA is zero and TTCA is
the time-to-collision.

DCA = ΔΔ
TTCA = Δ

Δ

Figure 2: A demonstration of DCA and TTCA
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3 MODELLING COLLISION AVOIDANCE
BEHAVIOR IN A DATA-DRIVENWAY

Collision avoidance behavior plays a crucial role in achieving realis-
tic crowd simulation, given its inherent complexity. However, due to
the lack of specialized collision avoidance datasets and established
metrics for evaluating its realism, existing works have relied on
expert intuition rather than real-world data to model this behavior,
and evaluation of these models has largely been subjective[6, 7, 10].
To address these gaps, we propose a Domain Transformation-based
(DT-based) annotation algorithm that automatically annotates colli-
sion avoidance behavior in real-world datasets and introduce a Total
Effort Consumption (TEC) metric to evaluate the level of realism in
a manner that aligns with human intuition.

3.1 DT-based Annotation Algorithm
3.1.1 DT-based Annotation Algorithm. Although discerning
collision-avoidance processes in the spatial domain can be chal-
lenging, we have observed that the values of the Distance of Closest
Approach (DCA) and Time to Closest Approach (TTAC) exhibit dis-
tinct behavior during such processes. Figure 3(a) illustrates this
phenomenon. Row (1) shows two different collision avoidance pro-
cesses, where the focal person (red) avoids another person (yellow)
approaching from opposite and lateral directions. Row (2) depicts
the corresponding changes in TTCA and DCA values, creating a tra-
jectory in the TTCA-DCA plane, which we refer to as the Collision
Domain. Interestingly, despite the spatial differences depicted in
Row (1), they exhibit similarity in Row (2), or the collision domain.
This is not a coincidence. We have found that during a collision
avoidance process, the trajectory in the collision domain consis-
tently transitions from a position near the horizontal axis to the
vertical axis.

This finding becomes apparent when considering the physical
meaning of TTCA and DCA. Figure 3(b) illustrates this concept. At
the time 𝑡0, a small TTCA and zero DCA indicate that a collision is
imminent, prompting the focal person (red) to take evasive action.
At the time 𝑡1, a sufficiently largeDCA suggests that the focal person
will not get too close to the others, thereby, reducing the risk of
collision. Finally, at the time 𝑡2, a large DCA and zero TTCA indicate
that these two individuals have reached their closest proximity and
will start moving away from each other in the future.

Taking inspiration from this observation, we propose the defi-
nition of three regions in the collision domain: The orange region,
referred to as the collision-impending region (I), indicates that two
individuals will get too close or potentially collide in the near fu-
ture. The blue region, referred to as the collision-free region (F ),
suggests that two individuals are moving away from each other,
eliminating the risk of collision. The red region, referred to as the
collision-occurred region (C), represents the scenario where the two
individuals have already come into close proximity or have collided
with each other. These three regions can be formulated as follows:

I = {(TTCA,DCA) |TTCA < Tmax,DCA < Dmax},
F = {(TTCA,DCA) |TTCA = 0,DCA ≥ Dmax},
C = {(TTCA,DCA) |TTCA = 0,DCA < Dmax},

(b)(a)
TTCA/[ ]

DC
A/

[
]

0

12

0

1

2

ℱ ℐ

Figure 3: Comparison between trajectories in the spatial do-
main and collision domain. (a) Real-world trajectories, where
the black disks mark every 10 simulation steps (i.e. 1 second).
(b) Three regions in the collision domain.

where𝑇max represents the avoidance lead time, which is the tempo-
ral response range of pedestrians to future collisions. 𝐷max repre-
sents social distancing, which is the distance people tolerate others
encroaching on their side.

With the collision domain and the three regions defined above,
we describe our Domain Transformation-based (DT-based) annota-
tion algorithm as follows: In order to detect an individual’s avoid-
ance behavior towards another person, we transform their trajecto-
ries from the spatial domain into the collision domain. We annotate
the process as a collision avoidance process when the transformed
trajectory remains within the I region for a continuous duration
of 𝑇reac seconds, followed by a continuous stay in the F region
for an additional duration of 𝑇reac seconds. Here, 𝑇reac = 300ms
represents the human’s reaction time. Moreover, the avoidance
process is terminated if the other person moves out of the focal
person’s field of view. We also exclude avoidance processes that are
shorter than 0.4 seconds and processes involving acquaintances.
Acquaintances are defined as people who spend more than 70% of
their time within a distance of 5 meters.

3.1.2 Evaluation of the DT-based Annotation Algorithm. To
comprehensively evaluate the performance of our annotation algo-
rithm, we consider two levels: the event level and the time-range
level. At the event level, we assess whether the algorithm can detect
avoidance behavior between two individuals and use the 𝐹1 score
to measure its performance in this aspect. At the time-range level,
we evaluate the difference in the time series (i.e., start-stop time)
between the algorithm’s predictions and the ground truth. For its
evaluation, we employ the affiliation metric [8], which extends the
𝐹1 score for time series problems. To establish the ground truth, we
manually marked 58 collision avoidance processes with a total dura-
tion of 266 seconds on the GC dataset and 51 processes with a total
duration of 236 seconds on the ETH/UCY dataset. To determine
the optimal values of 𝑇max and 𝐷max, we conducted a grid-search
optimization experiment on two datasets to maximize the sum of
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(a) F1 in GC Dataset
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Figure 4: The 𝐹1 score against 𝐷max and 𝑇max on two datasets.
The peak points are marked with red triangles.

GC ETH/UCY

Event Level
Precision 91.23% 91.11%
Recall 89.66% 82.00%
F1-Score 90.43% 86.32%

Time-Range Level
Precision (A) 96.08% 95.21%
Recall (A) 98.66% 99.63%
F1-Score (A) 97.35% 97.37%

Table 1: The evaluation results of our annotation algorithm,
where the postfix (A) represents the affiliation metrics [8].

the 𝐹1 scores at the two evaluation levels, as depicted in Figure 4.
Based on the results, we selected 𝑇max = 3.5 s and 𝐷max = 0.45m.
These values indicate that pedestrians react to collisions occurring
within 3.5 seconds and maintain a social distancing of 0.45 meters
from others, which aligns with the statistical results reported by
Parrillo et al. [17].

The performance of our annotation algorithm is presented in
Table 1, where “True” samples are those collision-avoidance exists
and “Positive” samples are that detected. The result demonstrates
its high accuracy in automatically annotating avoidance processes
at both the event and the time-range level.

3.2 Total Effort Consumption: A New Metric to
Evaluate the Level of Realism

An appropriate evaluation metric is a foundation for effective mod-
eling. However, there are no mature evaluating metrics for the
realism of collision avoidance behavior. Most of the widely used
metrics, such as the mean absolute error, evaluate trajectories by
their similarities with the ground truth. However, the spatiotempo-
ral similarity is different from the behavioral realism. For example,
a trajectory that moves along the edge of an obstacle is similar to
a trajectory that runs into the obstacle from the spatiotemporal
perspective, but the latter is much more unrealistic because of the
collisions with the obstacle. To solve this problem, we invent the
Total Effort Consumption (TEC) metric, which evaluates the realism
of behavior by its physical and mental consumption and does not
rely on the ground truth, based on the least-effort theory [30].

When avoiding collisions, pedestrians have to adjust speed and
direction, which consumes extra effort both physiologically and
psychologically. Specifically, the speed adjustments require work
performed, which costs physiological consumption. The direction
adjustments make pedestrians deviate from destinations, which is

against their will to reach the destinations and thus costs psycho-
logical consumption [2]. While on the other hand, the least-effort
theory proposed by Zipf et al. [30] suggests that pedestrians tend
to choose the route that costs the least effort, which inspires us
that we can use the total effort consumption to evaluate the realism
of a collision avoidance process. We suggest defining the effort
as a weighted sum of three terms, including energy consumption
that reflects the instantaneous motion states, process work that
reflects the change of motion states, and mental effort that reflects
the destination states.

3.2.1 Energy Consumption. Liu et al. [11] discovered a relation-
ship between the power consumption of a walking human and its
kinetic energy and rotational energy. Specifically, for a given route
𝑠 , the energy consumption can be expressed as follows:

𝐸𝑠 =

∫ 𝑇𝑠

0
(𝑚𝑒𝑠 + 𝑒𝑑𝑚 |𝑣 (𝑡) |2 + 𝑒𝑟 (

1
2
𝑚𝑅2) |𝑣 (𝑡)/𝑟 |2) d𝑡, (4)

Here, 𝑇𝑠 represents the duration of the route, 𝑒𝑠 , 𝑒𝑑 , and 𝑒𝑟 are
coefficients associated with the pedestrian’s physical characteristics
(e.g., height and weight). The average values for these coefficients
are 𝑒𝑠 = 2.23 J

kg·s , 𝑒𝑑 = 1.26 1s , and 𝑒𝑟 = 2.00 1s . Additionally,𝑚 and 𝑅
denote the pedestrian’s mass and radius, while 𝑣 and 𝑟 correspond
to the pedestrian’s current speed and turning radius, respectively.

3.2.2 Process Work. In addition to the instantaneous motion
state, the modification of motion states should also be considered.
For example, a trajectory with frequent or violent speed modifi-
cation is usually considered less realistic than a trajectory with
roughly constant speed. Therefore, we introduce the process work
term to detect the abnormal modifications of motion states. Accord-
ing to Newtonian mechanics, for a pedestrian whose velocity is
𝒗 (𝑡), the work performed during a process 𝑠 is

𝑊𝑠 =

∫ 𝑇𝑠

0
|𝑃 (𝑡) | d𝑡 =

∫ 𝑇𝑠

0

����𝑚 d𝒗 (𝑡)
d𝑡

· 𝒗 (𝑡)
���� d𝑡 . (5)

where d𝒗 (𝑡 )
d𝑡 is the velocity derivative, which is associated with the

modification of velocity.

3.2.3 Mental Effort. Apart from the motion states, the destina-
tions’ states are also indispensable. Therefore, we introduce the
mental effort term proposed by Bongiorno et al. [2], which describes
the psychological cost of deviating from destinations. The mental
effort comes from the human navigation mechanism. Specifically,
when pedestrians move toward their destinations, they don’t need
to pay attention to destinations’ locations. But when they move
deviating from their destinations at an angle, they need to care
about these and thus cost extra mental effort. The idea above is
formulated as follows:

𝑀𝑠 =

∫ 𝐿𝑠

0
|⟨𝒗 (𝑡), 𝒅−𝒑(𝑡)⟩| d𝑙 =

∫ 𝑇𝑠

0
|⟨𝒗 (𝑡), 𝒅−𝒑(𝑡)⟩| |𝑣 (𝑡) | d𝑡, (6)

where ⟨·, ·⟩ is the angle between two vectores, 𝒅 is the destination,
and 𝒑(𝑡) is the position at time 𝑡 .

3.2.4 TEC Metric. With the three terms introduced above, we
define the TEC metric as a weighted sum of them:

TEC𝑠 = 𝜆𝐸𝐸𝑠 + 𝜆𝑊𝑊𝑠 + 𝜆𝑀𝑀𝑠 , (7)
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where 𝜆𝐸 , 𝜆𝑊 , and 𝜆𝑀 are positive weighting coefficients. Since the
three terms are all positive, TEC is constantly positive. Therefore, a
high TEC implies some kind of unrealism in the trajectory, such as
abnormally large speed, frequent velocity modification, and largely
deviating from destinations. We choose the weighting coefficients
𝜆𝐸 , 𝜆𝑊 , and 𝜆𝑀 to make the three terms have the same weight
in the evaluation. Specifically, we choose them to normalize these
three terms on the real-world dataset R:

𝜆𝐸 =
1
3
· 1
E𝑠∈R𝐸𝑠

, 𝜆𝑊 =
1
3
· 1
E𝑠∈R𝑊𝑠

, 𝜆𝑀 =
1
3
· 1
E𝑠∈R𝑀𝑠

, (8)

We observe that the values of these three coefficients vary among
different datasets, but their ratios remain roughly consistent across
various datasets. As presented in Table 2, the approximate ratio
is 𝜆𝐸 : 𝜆𝑊 : 𝜆𝑀 = 10−3 : 10−2 : 1. This finding implies that
pedestrians in different scenarios make similar trade-offs between
energy consumption, applied work, and mental effort.

𝜆𝐸 𝜆𝑊 𝜆𝑀

GC Dataset 4.73 × 10−4 3.30 × 10−3 6.17 × 10−1
ETH/UCY Dataset 4.78 × 10−4 5.13 × 10−3 3.83 × 10−1

Table 2: Values of Three Coefficients in Different Datasets.

To verify the validity of the TEC metric, i.e. whether it can
measure the level of realism of a given trajectory as a human expert
does, we conduct an experts’ ranking experiment, and the results
are presented in Section 5.2.

4 MODELING COLLISION AVOIDANCE
To achieve realistic crowd simulation, we take the Total Effort Con-
sumption (TEC) metric as the optimization objective to minimize, as
it serves as an indicator of trajectory realism. However, since TEC
is not a function but a “function of function” (i.e., functional), this
problem can be classified as a complex functional optimization prob-
lem. To tackle this challenge, we employ Reinforcement Learning
(RL) techniques, which are inherently solving functional optimiza-
tion problems. In our proposed approach, we define the negative
TEC as the reward in RL and develop a crowd simulator called Total
Effort Consumption-based Reinforcement Learning (TEC-RL). This
framework enables us to generate trajectories with minimal TEC,
leading to the generation of realistic collision avoidance behavior
in crowd simulation.

4.1 Collision Detection Mechanism
Most existing reinforcement learning methods optimize the combi-
nation of two objectives, reaching destinations and avoiding colli-
sions. However, an optimization with these two different objectives
is a multi-objective optimization problem which is proven difficult
to solve [19], and the hand-designed combination form is hard to
describe the latent ground truth reward function. Therefore, we
transform one of the objectives, avoiding collisions, into a con-
straint through a collision detection mechanism, and thus make our
optimization a single-objective optimization problem. Specifically,
we consider agents’ collision entities, so they cannot pass through
others or obstacles, but stop when they collide with them. As a
result, agents can learn to avoid collisions from the experiences

that, when they collide with obstacles, they stop, get less reward
because of the abnormal sudden change of velocity, and are unable
to approach destinations. Additionally, this mechanism is closer to
nature: considering a baby learning to walk, it finds that when it
collides with an obstacle, it stops and hurts, and is blocked to reach
its destination. By accumulating this experience, the baby can learn
to avoid collisions in walking, and so as our models.

4.2 TEC-based Reinforcement Learning
Algorithm

In this work, we simulate pedestrians’ movements by iteratively
generating their velocities (i.e., norms and directions) at the next
step based on their observations (i.e., positions and velocities of
other pedestrians, obstacles, and destinations) at the current step,
which is a Markov decision process which can be characterized by
the state space S, the action space A, the reward function 𝑅, the
transition function 𝑃 and the discount factor 𝛾 .

Self

vi

Destination
D

θD

rD

∆vD vi

φD

Obstacle(s)

θj

φjrj

∆vj

= , 1, 1, Δ 1 , 1, … , , , Δ , , , , Δ ,

Figure 5: Demonstration of the state space.
State Space As shown in Figure 5, for an agent 𝐴𝑖 , the obser-

vation state includes three parts: the self, the obstacles, and the
destination. The self’s state of 𝐴𝑖 is its current speed ∥𝒗𝑖 ∥. The
obstacles’ states include the nearest 𝑁 = 20 obstacles within 𝐴𝑖 ’s
field of view, and one of them, such as the state of the obstacle 𝐴 𝑗 ,
is a tuple 𝑠 𝑗 = (𝑟 𝑗 , 𝜃 𝑗 , ∥Δ𝒗 𝑗 ∥, 𝜑 𝑗 ), where 𝑟 𝑗 is their center-to-edge
distance, 𝜃 𝑗 is the orientation of 𝐴 𝑗 with respect to 𝐴𝑖 , Δ𝒗 𝑗 is their
relative velocity, and 𝜑 𝑗 is the angle between their relative velocity
and relative position. For the destination’s states, we similarly use
a tuple 𝑠𝐷 = (𝑟𝐷 , 𝜃𝐷 , ∥Δ𝒗𝐷 ∥, 𝜑𝐷 ), treating the destination 𝐷 as a
point with zero velocity.

Action Space: Agent’s action is its velocity, i.e. the speed and
direction change at the next step. Note that the actual velocities may
be smaller than the agents’ chosen ones when collisions occur. We
generate actions by sampling from a Gaussian mixture model [18],
a weighted sum of 𝐾 = 3 Gaussian distributions.

Reward Function: The reward function evaluates the action
under given observations. Inspired by the TEC metric we proposed
in Section 3.2, we use the effort consumption of an action as its
cost function (i.e., the negative of the reward function). Neverthe-
less, we find that since the cost function, TEC, is always positive,
agents prefer keeping still rather than moving to destinations to
minimize their effort consumption. Therefore, we change the angle
difference term |⟨𝒗, 𝒅 − 𝒑⟩| in Equation (6) to its negative cosine
−𝜋 cos ⟨𝒗, 𝒅 − 𝒑⟩, which enables agents to get positive rewards by
getting close to their destinations, rather than getting penalties
when they deviate from destinations. Although we can also solve
this by giving extra rewards for agents reaching destinations, it is a
task with sparse rewards and thus harder to train than this negative
cosine scheme.

Transition Function: Our simulator operates deterministically,
and the transition function is thus a deterministic function rather
than a random distribution. Given the agents’ current positions
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Statistics GC ETH/UCY

Avg. duration of CAB (s) 2.76 2.40
Avg. speed of CAB (m/s) 1.25 1.42
Avg. percent of CAB in whole trajectory 19.8% 22.4%
Pedestrian density (1/𝑚2) 0.094 0.058

Table 3: The basic statistics of the datasets, where CABmeans
collision avoidance behavior.

and the velocities they choose for the next step, we calculate their
subsequent positions using the equation 𝒑 (𝑡+1) = 𝒑 (𝑡 ) + 𝒗 (𝑡+1)Δ𝑡 .
If any collisions occur, we adjust 𝒑 (𝑡+1) to resolve them.

Discount Factor: In RL, the agents are trained to optimize the
cumulative reward

∑
𝑡 𝛾
𝑡𝑅𝑡 , where 𝑅𝑡 is the reward of a single step

𝑡 , and 𝛾 is the discount factor. Since we use the effort consumption
of a single step as the negative reward, by choosing a discount
factor near 1, the cumulative reward approximates the negative
total effort consumption of the trajectory, and the optimization
object thus approximates the least total effort consumption.

To find the optimal policy, we use an actor-critic algorithm:
we first extract features from the states of self, destination, and
obstacles. Then, for each obstacle, we generate a weight from its
feature and sum the obstacles’ features up with these weights,
which enables ourmodel to deal with obstacles in arbitrary numbers.
Finally, we concatenate the features together as the actor and critic’s
input. The critic generates a predicted accumulated reward. The
actor generates a Gaussian mixture model and samples it to get the
action at the next step. The policy is shared by all agents. We train
the actor and critic with Proximal Policy Optimization [21]. See our
code and Appendix Section A for more details.

5 EVALUATION AND EXPERIMENTS
We perform two experiments. The first experiment aims to investi-
gate whether our TEC metric can assess the realism level of a given
trajectory in a manner consistent with human intuition. The second
experiment focuses on evaluating the performance of our TEC-RL
model, specifically, examining its ability to generate trajectories
with realistic collision avoidance behavior.

5.1 Experiment Setup
5.1.1 Datasets. To evaluate our model, we use two real-world
datasets, including the GC and ETH/UCY. Their basic statistics
about the collision avoidance process are shown in Table 3, and the
details are shown as follows:
GC Dataset1: GC is a large pedestrians’ trajectories dataset con-
taining 12684 trajectories from a public transport interchange. For
the GC dataset, we select five minutes with rich collision avoidance,
use one for evaluation, and split the remaining into 3:1 for the
training and validation of baselines that use supervised learning.
ETH/UCY Dataset2: ETH/UCY is a dataset containing 528 tra-
jectories from an outdoor scene. We select all 216 seconds, use 54
seconds for evaluation, and split the remaining into 2:1 for the
training and validation of baselines that use supervised learning.

1https://www.dropbox.com/s/7y90xsxq0l0yv8d/cvpr2015_
pedestrianWalkingPathDataset.rar
2https://paperswithcode.com/dataset/ucy,https://paperswithcode.com/dataset/eth

5.1.2 Metrics. We utilize four metrics in two types to evaluate
the performance of our model.
Total Effort Consumption (TEC) measures behavioral realism
and has been discussed in Section 3.2.
#Collision calculates the mean of the total number of frames in
which a pedestrian collides with other objects while in motion.
Average Displacement Error (ADE) calculates the mean Eu-
clidean distance difference between each predicted position and
each ground-truth position. This metric evaluates trajectories in
the spatiotemporal perspective and is widely used in trajectory
prediction research[13, 14, 29].
Final Displacement Error (FDE) calculates the Euclidean distance
difference between the final predicted position and the final ground-
truth position, which is a spatiotemporal metric as well and is often
used in conjunction with the ADE metric.

5.1.3 Baseline Methods. We compare our model with six state-
of-the-art models, including four crowd simulation models and two
trajectory prediction models, where the former models collision
avoidance behavior explicitly while the latter does not. we discuss
their difference detailedly in Section 6.
Social Force Model (SFM)[6] models the interaction between
pedestrians as repulsive forces. It is the most widely-used crowd
simulation model and is extensively adopted by various commercial
crowd simulation software, including MassMotion3, VISSIM4, and
AnyLogic5. In this work, we calibrate the parameters used by SFM
to minimize the occurrences of collision and blockages, where a
group of people obstruct each other and remain stationary.
Machine-Learning-Aided Physical Model (MLAPM)[29] is an
improvement on SFM obtained by conducting symbolic regression
on the trained neural network.
Crowd Simulation Reinforcement Learning (CSRL)[10] is an
RL model with a hand-engineered reward function. It gives rewards
for agents approaching destinations and gives penalties for agents
colliding with others or moving/turning too fast.
Heterogeneous Crowds using Parametric RL (HOP-RL)[7] is
similar to CSRL, but adds extra penalties for impending collisions.
Social Spatio-Temporal Graph Convolutional Neural Net-
work (Social-STGCNN)6[14] is a supervised learning model which
predicts trajectories with a GCN. We predict 1 step based on the
historical 8 steps and rollout to generate the whole trajectory.
Predicted Endpoint Conditioned Network (PECNet)7[13] is a
supervised learning model considering destinations. It first predicts
destinations and then future trajectories. For a fair comparison, we
skip the first step and use the real destination directly.

5.1.4 Experiment Settings and Reproducibility. In our ex-
periments, we employ metrics for collision-avoiding trajectories
instead of entire trajectories. Specifically, we initially identify all
collisions in real-world datasets using our domain transformation-
based annotation algorithm. Subsequently, we simulate the process
by which a pedestrian avoids colliding with another pedestrian,
starting from their initial states and continuing until the former

3https://www.arup.com/services/digital/massmotion
4https://www.myptv.com/en/mobility-software/ptv-vissim
5https://www.anylogic.com/
6https://github.com/abduallahmohamed/Social-STGCNN
7https://github.com/HarshayuGirase/Human-Path-Prediction
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Figure 6: Human experts’ ranking experiment, where c.a. means collision avoidance.

GC Dataset ETH/UCY Dataset Synthetic Scenario

precision recall 𝐹1-score precision recall 𝐹1-score precision recall 𝐹1-score

Classical Metric
#Collision 0.858 0.225 0.356 0.891 0.342 0.494 0.684 0.066 0.120
MAE 0.867 0.757 0.808 0.845 0.733 0.785 - - -

Our Metric

TEC 0.959 0.910 0.934 0.969 0.940 0.954 0.952 0.942 0.947
TEC without EC 0.949 0.893 0.920 0.959 0.924 0.941 0.823 0.796 0.809
TEC without PW 0.944 0.884 0.913 0.932 0.878 0.904 0.931 0.919 0.925
TEC without ME 0.920 0.844 0.880 0.948 0.904 0.926 0.902 0.886 0.894

Table 4: The consistent degree between the ranking results of the experts and the different metrics. Note that since there are no
ground truth trajectories in synthetic scenarios, the result corresponding to MAE is omitted.

successfully avoids the latter or reaches a time limit of 100 steps.
We then calculate metrics based on the trajectory followed by the
pedestrian who is avoiding the collision. Further implementation
details can be found in Appendix Section A.

5.2 Experts’ Ranking Experiment
To assess whether our proposed Total Effort Consumption (TEC)
metric can evaluate the level of realism of a given trajectory in a
way that is consistent with human intuition, we conduct an ex-
perts’ ranking experiment as Figure 6 illustrates. We selected 600
collision avoidance processes from two real-world datasets, as well
as one synthetic scenario featuring a 5m × 5m square with 10
randomly generated obstacles. Then, we generated multiple avoid-
ing processes using the starting frames of these selected processes
as initial states, visualized them as GIF animations (as shown in
Step 4’s screenshot), and enlisted experts who are familiar with
real-world human walking behavior to rank them based on their
level of realism. Lastly, we conducted a comparison between the
ranking results obtained from the experts and the ranking provided
by our TEC metric to get their consistency. This comparison was
carried out using the precision/recall metric: We break the ranking
results of 𝐾 animations into

(𝐾
2
)
pairs, considering those “human

expert indicates the former as more realistic than the latter” as
true samples and those “TEC metric indicates the former as more
realistic than the latter” as positive samples.

Except for our TEC metric, we also evaluate the validity of the
#Collision, Mean Absolute Error (MAE), and three ablation versions
of our TEC metric in the same way. The result is shown in Table 4.
Our TEC metric performs better than other metrics, especially the
widely used MAE metric. The #Collision metric has a low recall

rate because it cannot compare the level of realism between two
trajectories that neither has a collision. The three ablation versions
that ablate the Energy Consumption (EC), Process Work (PW), and
Mental Effort (ME) terms respectively perform worse than the TEC
metric, which proves that all three terms are effective.

5.3 Overall Performance Comparison
To examine the performance of our model, we compare our TEC-
RL with six state-of-the-art baselines in different types on two
datasets. Table 5 shows the comparing results for four metrics,
including two behavioral realism metrics (TEC, #Collision) and two
spatiotemporal similarity metrics (ADE/FDE). We summarize our
key observations and insights as follows:

The Superior Performance of TEC-RL: The TEC-RL model
outperforms all state-of-the-art baselines across all metrics. In terms
of behavioral realism, TEC-RL achieves a significant relative per-
formance improvement of 55.9% and 51.1% on the GC dataset, as
well as 52.5% and 73.1% on the ETH/UCY dataset. Additionally, in
terms of spatiotemporal similarity, TEC-RL achieves a relative per-
formance gain of 16.84% and 26.75% on the GC dataset, as well as
4.10% and 6.19% on the ETH/UCY dataset. These findings provide
compelling evidence for the efficacy of our proposed model.

Analyses on the Performance of Trajectory Prediction
Baselines: All trajectory prediction baselines perform worse than
the crowd simulation baselines. This distinction comes from the
fundamental differences in objectives and temporal scales between
the crowd simulation task and the trajectory prediction task, which
we discussed in Section 6. Zhang et al. give a deeper discussion
about the limited performance of trajectory prediction models, such
as Social-LSTM[1], SGAN[5], STGCNN[14], etc., when applied to
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GC Dataset ETH/UCY Dataset

TEC #Collision ADE FDE TEC #Collision ADE FDE

CS Models

SFM [6] 2.921 0.317 1.860 3.034 4.379 0.420 2.426 3.035
MLAPM [29] 2.896 0.321 1.823 2.987 4.337 0.295 2.245 3.047
CSRL [10] 3.520 0.647 1.996 3.297 3.756 0.485 2.370 3.436
HOP-RL [7] 4.101 0.647 3.208 5.026 3.698 0.182 2.801 4.022

TP Models
STGCNN [14] 63.30 2.502 7.420 15.30 297.1 3.930 7.846 16.30
PECNet [13] 10.45 4.383 4.869 10.94 6.191 1.903 5.709 12.39

Ours TEC-RL
1.277 0.155 1.516 2.188 1.755 0.049 2.153 2.847

(+55.9%) (+51.1%) (+16.84%) (+26.75%) (+52.5%) (+73.1%) (+4.10%) (+6.19%)
Table 5: The performance evaluation results on two datasets. (CS - Crowd Simulation, TP - Trajectory Prediction)

GC Dataset ETH/UCY Dataset

TEC #Coll. TEC #Coll.

w/o Collision Detection 2.702 7.119 3.210 4.378
w/o Energy Consumption 3.853 0.144 3.883 0.059
w/o Process Work 2.768 3.132 2.486 0.923
w/o Mental Effort ∞ - ∞ -

TEC-RL 1.277 0.155 1.755 0.049

Table 6: Ablation Study

the crowd simulation tasks, and provide evidence to substantiate
that their error tends to accumulate during the rollout process[29].

Analyses on the Performance of Spatiotemporal Similar-
ity: It’s notable that although we design our model focusing on
behavioral realism, it performs well in terms of spatiotemporal sim-
ilarity (ADE/FDE) compared to other baselines. This success can be
attributed to our data-driven research approach. Specifically, the
reward function used to train TEC-RL is derived from data analysis
and calibrated on real-world datasets. In contrast, other crowd simu-
lation baselines rely on knowledge-driven approaches, which limits
their ability to leverage real-world data to improve spatiotemporal
similarity. For trajectory prediction baselines, although they are
data-driven as well, they are not well-suited for long-term crowd
simulation tasks and thus perform poorly as well.

The Generalizability of the Hyperparameter Calculation
Method: Hyperparameters 𝜆𝐸 , 𝜆𝑊 , 𝜆𝑀 calculated by Equation 8
exhibit different values across two datasets (see Table 2). Nonethe-
less, they all yield remarkable performances. This substantiates the
generalizability of the hyperparameter computation method.

5.4 Ablation Study
We further examined how different parts in our model, including
the three terms in our reward function and the collision detection
mechanism, contribute to the performance. The result is shown
in Table 6, where the w/o Collision Detection is the model trained
in a simulator without collision detection mechanism, w/o Energy
Consumption, w/o process Work and w/o Mental Effort are the mod-
els trained with a reward function that set 𝜆𝐸 , 𝜆𝑊 and 𝜆𝑀 to 0
respectively. We have four observations from the ablation results:

NoRedundantComponents: Removing any component causes
a performance decrease compared with our TEC-RL model, which
shows that all of the components are effective.
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Figure 7: A case study in a bidirectional corridor scenario

The Critical Role of the Mental Effort Term: We find that
when the mental effort term is removed, agents lose the rewards
they get by getting close to their destinations and thus learn to stay
still to minimize their effort consumption. Since they cannot move
at all, we mark the TEC as ∞.

The Components Guiding Agents to Avoid Collisions: Re-
moving the collision detection mechanism or the process work term
in the reward function causes #Collision increase, which suggests
that these two components work together to guide agents to avoid
collisions. Specifically, the collision detection mechanism converts
the collision into a sharp velocity change, and the process work
term further converts it to extra effort in the reward function.

The Role of the Energy Consumption Term: When the en-
ergy consumption term is removed, the trained agents move at
abnormally fast speeds but are still able to avoid collisions, which
is because the term is related to only the instantaneous motion
states but not their change. Therefore, the energy consumption
term serves a role to make the pedestrian’s speed more realistic.

5.5 Case Study
To further validate the realism of our model’s collision avoidance
behavior, we conducted a case study as depicted in Figure 7. The
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Figure 8: Comparison of the Kernel Density Estimation (KDE)
of speed, turning radius, and instantaneous power.

scenario is based on the BO experiment of the HERMES Project con-
ducted by Keip et al. [9]. In this scenario, pedestrians (represented
by ellipses of different colors) are given instructions to navigate
through a bidirectional corridor and leave from their assigned sides
(either left or right, indicated by corresponding colored dots).

Figure 7(a) shows trajectories of real-world humans recorded by
Keip et al., while Figures 7(b) and 7(c) display the simulated trajec-
tories generated by our model and the Social Force Model (SFM),
respectively. In our model, agents are equipped with the capability
to proactively avoid collisions with pedestrians approaching from
the opposite direction, which is similar to real-world trajectories.
In contrast, SFM produces trajectories that exhibit unrealistic be-
havior: The orange and green agents on the right-hand side fail to
avoid each other in advance, leading to a situation where they have
to make sudden turns to prevent a collision.

To provide a comprehensive comparison, we analyzed the speed,
turning radius, and instantaneous power in collision avoidance pro-
cesses. Their distributions are depicted in Figure 8. The simulation
results obtained from our TEC-RL model demonstrate distributions
that closely resemble real-world data, while the SFM exhibits lower
speeds, smaller turning radii, and higher instantaneous power com-
pared to real-world trajectories, indicating its lack of realism.

6 RELATEDWORK
Crowd simulation simulates how pedestrians move from their initial
states to their designated destinations following patterns typically
observed in human behavior[29]. The modeling of collision avoid-
ance behavior is the most crucial part due to its complexity. Most of
the crowd simulation models focus on simulating this behavior[26].
For example, force-based models such as Social Force[6] model the
tendency of pedestrians to maintain a distance from each other
as repulsive forces, which is widely used and processes many
variations[23]. Velocity-based models such as Velocity Obstacle[4]
directly calculate the velocity without the risk of collision. Agent-
based models that adopted RL such as CSRL[10] and HOP-RL[7]
guide agents to avoid collisions by penalizing them when a colli-
sion occurs. However, due to the lack of specific collision avoidance
datasets and appropriate metrics for evaluating the level of realism,
the modeling of this behavior heavily relies on expert observation
and intuition rather than real-world data. The evaluation of these
models is predominantly subjective, relying on qualitative observa-
tions rather than quantitative objective metrics. This restricts the
performance of these models.

Trajectory prediction is another task raised these years that seems
similar to crowd simulation, which utilizes neural networks to pre-
dict the future trajectories of pedestrians based on their historical

trajectory data[1, 5, 13, 14]. However, trajectory prediction primar-
ily serves the purpose of supporting autonomous driving systems
rather than urban planning that crowd simulation concerns, which
makes it inherently different from crowd simulation. Specifically,
trajectory prediction focuses on short-term predictions within a few
seconds and aims to achieve spatiotemporal similarity between the
predicted trajectories and the ground-truth trajectories. In contrast,
crowd simulation is concerned with a broader time range, and its
primary objective is to generate realistic trajectories that align with
human intuition[20, 27]. The difference between spatiotemporal
similarity and realism can be seen from such an extreme example:
Let’s assume a real pedestrian is faced with an obstacle ahead and
chooses to bypass it from the left. We have two models, A and
B, simulating this process. Model A, symmetrically to the ground
truth, chooses to bypass the obstacle from the right; while model
B first approaches the obstacle, then makes a left turn of 90◦ and
navigates along its edge. It is evident that the result produced by
model A is more realistic than that of model B. However, a metric
of spatiotemporal similarity such as ADE would suggest model B
is better since its trajectory is closer to the ground truth, which
contradicts human intuition. With the differences discussed above,
trajectory prediction models perform poorly when being adopted
to crowd simulation tasks[29].

7 CONCLUSION
In this work, we propose to understand and model collision avoid-
ance behavior in a data-driven way. Specifically, we propose a
Domain Transformation-based annotation algorithm to provide the
data basis, a Total Effort Consumption metric for its evaluation, and
a Total Effort Consumption-based Reinforcement Learning model for
crowd simulation with realistic collision avoidance behavior. In
our future work, we shall consider the heterogeneity in pedestrian
behavior, akin to Yuan et al. [28].

ACKNOWLEDGMENTS
This work was supported in part by the National Key Research
and Development Program of China under 2022YFF0606904, the
National Natural Science Foundation of China under U21B2036,
U20B2060, and Beijing National Research Center for Information
Science and Technology (BNRist).

A APPENDIX FOR REPRODUCIBILITY
We train the model in a 20𝑚 × 20𝑚 region with 𝑁 = 3 agents and
𝑁𝑂 = 3 obstacles. In an epoch, we randomly initialize agents’ and
obstacles’ positions and simulate no longer than 200 steps until any
agent reaches its destination. After collecting 6000 steps, we update
the model 64 times with the learning rate 10−5. We multiply the
entropy regularity coefficient 𝑙2 by 0.1 for every 64 × 10000 update
and finish the training after 64×50000 updates. The feature extractor,
weights generator, actor, and critic we mentioned in Section 4.2
are all multilayer perceptrons with ReLU activation functions. We
implement all the models and baselines with PyTorch on a server
with a Ryzen 2990WX CPU and an NVIDIA GeForce RTX 2080 GPU.
The training can be finished in 5000 episodes, taking about half an
hour. The trained simulator can simulate scenarios with hundreds of
pedestrians in real time. See our codes https://github.com/tsinghua-
fib-lab/TECRL for more details.
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