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ABSTRACT
Graph domain adaptation models are widely adopted in cross-
network learning tasks to transfer labeling or structural knowledge.
Currently, there mainly exist two limitations in evaluating graph
domain adaptation models. On one side, they are primarily tested
for the specific cross-network node classification task, leaving tasks
at edge-level and graph-level largely under-explored. Moreover,
they are primarily examined in limited scenarios, such as social
networks or citation networks, needing more validation in richer
scenarios. As comprehensively assessing models could enhance
model practicality in real-world applications, we propose a bench-
mark known as OpenGDA. It provides abundant pre-processed and
unified datasets for different types of tasks (node, edge, graph).
They originate from diverse scenarios, covering web information
systems, urban systems and natural systems. Furthermore, it inte-
grates state-of-the-art models with standardized and end-to-end
pipelines. Overall, OpenGDA provides a user-friendly, scalable and
reproducible benchmark for evaluating graph domain adaptation
models. The benchmark experiments highlight the challenges of
applying GDA models to real-world applications with consistent
good performance, and they potentially provide insights to future
research. As an emerging project, OpenGDA will be regularly up-
dated with new datasets and models. It could be accessed from
https://github.com/Skyorca/OpenGDA.
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1 INTRODUCTION
Real-world graph data often faces the problem of limited labels and
sparse structures, which will degrade the performance of graph
models [3, 14]. To mitigate such problems and improve task perfor-
mance, researchers establish cross-network learning tasks for lever-
aging relevant source graphs to transfer abundant labeling or struc-
tural knowledge to target graphs [6, 22]. As source and target graphs
may originate from correlated yet distinct domains, such as road
networks frommultiple regions, there exist both node feature distri-
bution shift and graph structure shift between them [24]. Therefore,
graph domain adaptation(GDA) has been proposed to overcome dis-
tribution shifts and effectively transfer knowledge [4, 10, 21, 25, 29–
31]. Inspired by conventional domain adaptation methods [1, 8, 23],
GDA adapts such technique to graphs by taking the unique proper-
ties of graph-structured data into account. As an emerging area of
research, GDA has the potential to boost graph learning tasks in
various real-world applications [13, 15, 16, 19, 26, 28].

Experimentally assessing GDA models is essential to understand
their competencies. However, previous studies mainly have two
limitations in evaluation, that is, the limited type of task and the in-
sufficient quantity of scenarios. On one side, most GDA models are
only tested for the specific cross-network node classification task,
leaving tasks at edge-level and graph-level largely under-explored.
Furthermore, they are primarily tested in limited scenarios, such as
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social networks or citation networks, needing more validation of
model’s ability in diverse scenarios. These limitations largely stem
from the challenges associated with collecting suitable datasets for
different types of tasks, which meet the requisite criteria for GDA.
These requirements dictate that each dataset should 1) comprises a
group of relevant graphs originating from similar yet different do-
mains and 2) ensures the feature spaces and label spaces of graphs
are consistent with each other [18, 32]. As GDA is crucial to tackling
cross-network learning tasks, it is necessary to comprehensively
verify model capability by testing them in diverse scenarios for
different types of tasks.

Figure 1: (a): OpenGDA provides diverse datasets, various
types of tasks and standardized models. (b): Examples for
cross-network learning tasks on node-level, edge-level and
graph-level.

To address such limitations, we propose a systematic graph do-
main adaptation benchmark in this work, known as OpenGDA. As
design principles, we strive to 1) provide abundant datasets from
diverse scenarios with different cross-network learning tasks; and
2) integrate SOTA GDA models to encourage a fair and compre-
hensive comparison. Specifically, OpenGDA currently provides four
node-level datasets, three edge-level datasets and two graph-level
datasets covering diverse scenarios, including web information
systems, urban systems and natural systems. These datasets are
collected from open-source research projects. Overall, OpenGDA
provides 70+ cross-network learning tasks. The details of datasets
are summarized in Table 1. Apart from tasks and datasets,OpenGDA
also pre-implements six SOTA GDA models [4, 24, 25, 29–31] and
some baseline models based on graph neural network (GNN). It is
worth mentioning that we adopt PyTorch and PyTorch Geomet-
ric(PyG) [7] to standardize the overall model pipeline. Consequently,
OpenGDA is highly unified and customizable, supporting customiz-
ing new datasets or models. The experimental results based on
OpenGDA highlight the challenges of applying GDA models to real-
world applications with steady good performance and may provide
insights to guide future research. OpenGDA will be regularly up-
dated with new datasets and models. Generally, the contributions
of this work are summarized as follows.

• To the best of our knowledge, OpenGDA is the first bench-
mark for evaluating GDA models comprehensively.

• OpenGDA provides abundant datasets, aiming to assess the
capability of GDA models to handle different cross-network

learning tasks in diverse scenarios. These datasets are col-
lected, pre-processed and standardized for the convenience
of researchers.

• OpenGDA provides standard pipelines for integrating new
GDA models for validation. Overall, the benchmark experi-
ments based on pre-integrated datasets and models provide
insights for future research developments.

2 RELATEDWORK
Graph domain adaptation utilizes both source and target graphs
for training and tests model mainly on target graphs. Generally,
both methods adopt deep graph models, such as GNN, to integrate
node feature distribution shift and graph structure shift together
as node embedding distribution shit. It could be classified into
discrepancy-based methods [4, 10, 21, 24, 25, 29] and disentangle-
based methods [2, 30]. Discrepancy-based methods compute such
distribution shit via discrepancy measurement and gradually re-
duce it with supervision loss. For disentangle-based methods, they
generally disentangle node embeddings into domain-invariant and
domain-relevant parts. Consequently, the knowledge from source
graphs could be transferred when both domain-invariant embed-
dings and source classification patterns are well learned. Although
researchers have developed various SOTA GDA models, they have
not been thoroughly compared with each other.

Currently, many benchmarks have been developed for graph
learning tasks. Three main categories of them include 1) Bench-
marks for general graphmachine learning, such as OpenGraph
Benchmark [11] and Benchmarking-GNNs [5], 2) Benchmarks for
out-of-distribution on graphs, such as GOOD [9], and 3) Bench-
marks for self-supervised learning on graphs, such as DIG [27].
However, it is not trivial to directly establish cross-network learn-
ing tasks for GDA models from these benchmarks. Firstly, they
mainly split train and test data from the same domain. Moreover,
it is hard to guarantee that the provided datasets from similar do-
mains share consistent feature-space and label-space. Therefore, it
is necessary to establish a benchmark for evaluating GDA models
for cross-network learning tasks.

3 BENCHMARK DESIGN
Generally, designing OpenGDA involves two key stages. The first
is preparing abundant datasets from diverse scenarios, which sat-
isfy the settings for GDA. Initially, we collect popular datasets in
previous studies by task type. As most raw datasets have distinct
properties and inconsistent formats, we pre-process and unify these
datasets, providing user-friendly graph objects. They are compatible
with PyTorch and PyG. In addition, we identify potential datasets
for evaluating GDAmodels from other research areas, such as graph
out-of-distribution. As they may not entirely meet GDA settings,
we carry out additional pre-processing concerning node features
and labels. The format of these datasets is also unified with graph
objects.

After the preparation of datasets, we standardize the overall
pipeline for each model, including data interface, model architec-
ture and training/evaluation. Figure 2 illustrates the standardized
pipeline.Data interface: As discussed above, datasets are provided
with unified graph objects, each consisting of a node feature matrix,

5397



OpenGDA: Graph Domain Adaptation Benchmark for Cross-network Learning CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

Table 1: Details of tasks and currently-available datasets provided by OpenGDA. #Domains indicates the number of domains
covered in the dataset, and #Tasks refers to the number of corresponding cross-network learning tasks built between domains.
Dataset statistics, such as #Feat, illustrate the statistics for each domain, and we use ’-’ to connect minimum and maximum
values when statistic varies across domains.

Task Level Task Type Dataset #Domains #Tasks #Feat #Label #Nodes #Edges #Graphs

Node-level node classification

Citation1 [21] 3 6 6775 5 5484 - 9360 8130-15602 1
Twitch [20] 6 30 3170 1 1912-9498 31299 - 112667 1
Blog [21] 2 2 8189 6 2300-2896 33471-53836 1

Airport [24] 3 6 8 4 131-1190 1038-13599 1

Edge-level
link prediction

Amazon Review [24] 4 8 5000 1 8568 - 95248 51190-353942 1
Citation2 [25] 2 2 7537 1 5578-7410 7341-11135 1

link classification PPI [29] 5 20 256 2 4286-8369 55668-207461 1

Graph-level graph classification
IMDB-REDDIT [17] 2 2 136 1 19773-859254 96531-995508 1000-2000

LetterHigh-LetterLow [17] 2 2 2 15 10507-10522 14092-20250 2250

adjacency matrix, label matrix and other related properties. They
are loaded via a data-loader, which is shared across datasets and
tasks. Model architecture: We establish models upon standard
PyTorch modules and PyG GNN layers. In addition, they follow the
same forward-propagation process, in which they take both source
and target domains as input and then compute two primary losses
(i.e., supervision loss and domain discrepancy loss). Training/E-
valuation: We employ standard PyTorch backward propagation
for training and define a suite of universal evaluation functions
for diverse tasks. Consequently, OpenGDA is user-friendly and sup-
ports either conducting experiments on pre-implemented elements
or integrating new datasets and models.

Figure 2: The standardized pipeline of OpenGDA.

The OpenGDA package is designed to make the pipeline of Fig-
ure 2 easily accessible to researchers, and the package framework
is demonstrated in Figure 3. Firstly, the pre-processed datasets are
organized in different paths depending on their task categories,
yet they share a common data-loader. Besides, as different types of
tasks may require different forward-propagation or training pro-
cesses, each modelM is implemented via three variants accordingly
(i.e., M_n, M_l and M_g ). For example, a unique property of edge-
level task is that some datasets contain bipartite graphs, such as
Amazon Review dataset. Therefore, the model should separately
consider two categories of nodes for domain adaptation, leading
to a different forward-propagation process compared to node-level
and graph-level tasks. In general, the package is implemented with
comprehensive file structures and code structures. It has a user-
friendly workflow and could scale well with the addition of new
models and datasets.

Figure 3: The framework of OpenGDA package. The data
module includes a data-loader and three folders to store pre-
processed datasets based on task type. The model module
includes GDA models, each having three variants and the
corresponding training manuscript. The evaluation module
includes a suite of metric functions.

4 EXPERIMENTAL STUDIES
We conduct experiments to comprehensively evaluate GDA models
based on OpenGDA. Our aim is to validate GDA models across
various tasks and datasets and gain insights for future research in
this field.

Without loss of generality, we select four widely adopted GDA
models from two categories with naive GCN [12] baseline for eval-
uation in this work. Subsequently, we select tasks from node-level,
edge-level and graph-level, each containing two datasets covering
diverse scenarios. For node-level and edge-level tasks, one domain
(source or target) comprises one graph, while it contains a group of
graphs in graph-level tasks. We build cross-network learning tasks
with one source domain and one target domain. In particular, we
employ global mean pooling to compute graph embedding in graph-
level tasks. During training, labeling information in target domain
is not available in node-level and graph-level tasks. For evaluation,
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Table 2: Node classification accuracy on Airport and Citation1 dataset. U, B and E are short for USA, Brazil and Europe in
Airport dataset, while A, D and C are short for Acmv9, Dblpv7 and Citationv1 in Citation1 dataset.

Airport Citation1
U→B U→E B→U B→E E→U E→B A→D D→A A→C C→A C→D D→C

GCN 0.427 0.436 0.454 0.481 0.458 0.465 0.623 0.578 0.675 0.635 0.666 0.654
UDAGCN 0.607 0.488 0.497 0.510 0.434 0.477 0.684 0.623 0.728 0.663 0.712 0.645
AdaGCN 0.466 0.434 0.501 0.486 0.456 0.561 0.687 0.663 0.701 0.643 0.709 0.702
ASN 0.519 0.469 0.498 0.494 0.466 0.595 0.709 0.703 0.732 0.658 0.732 0.734
GRADE 0.550 0.457 0.497 0.506 0.463 0.588 0.701 0.660 0.736 0.687 0.722 0.687

Table 3: Link prediction results on Amazon Review-nonoverlapping dataset, where users are disjoint between domains.

cd→music music→cd book→movie movie→book
Hits@10 MRR@10 NDCG@10 Hits@10 MRR@10 NDCG@10 Hits@10 MRR@10 NDCG@10 Hits@10 MRR@10 NDCG@10

GCN 0.158 0.052 0.076 0.273 0.119 0.153 0.339 0.150 0.192 0.094 0.044 0.056
UDAGCN 0.376 0.155 0.206 0.255 0.102 0.136 0.369 0.149 0.197 0.194 0.103 0.124
AdaGCN 0.274 0.137 0.170 0.280 0.125 0.159 0.337 0.131 0.177 0.184 0.097 0.118
ASN 0.380 0.155 0.207 0.285 0.131 0.165 0.348 0.157 0.199 0.539 0.136 0.227

GRADE 0.207 0.081 0.110 0.251 0.108 0.139 0.406 0.204 0.247 0.078 0.026 0.037

Table 4: Link Prediction results on Citation2 dataset

acm→dblp dblp→acm
Hits@10 MRR@10 NDCG@10 Hits@10 MRR@10 NDCG@10

GCN 0.818 0.661 0.699 0.184 0.073 0.098
UDAGCN 0.853 0.675 0.716 0.258 0.108 0.141
AdaGCN 0.533 0.401 0.432 0.145 0.045 0.068
ASN 0.849 0.672 0.712 0.245 0.103 0.134
GRADE 0.823 0.665 0.703 0.185 0.070 0.096

we adopt hit ratio (Hits@k), mean reciprocal rank (MRR@k), and
normalized discounted cumulative gain (NDCG@k) where k equals
10 in edge-level tasks and classification accuracy for other tasks. All
models follow the same hyper-parameter settings which could be
referred from Github repo. The corresponding experimental results
are shown in Table 2-5.

Overall, we observe two forms of inconsistency from numerical
results. 1) Scenario-inconsistency, which indicates the model
may fail to consistently perform well across datasets from vari-
ous scenarios in specific tasks. For example, in edge-level tasks,
UDAGCN tends to perform worse than ASN on Amazon Review
dataset, but the situation is reversed on Citation2 dataset. 2) Task-
inconsistency, which means the model may fail to consistently
perform well across different types of tasks. For example, AdaGCN
performs averagely in egde-level tasks, but its performance im-
proves significantly in node-level and graph-level tasks. These in-
consistencies make it difficult to predict the performance of GDA
models in real-world applications. Moreover, GDA models only
slightly outperform GCN baseline in some tasks and scenarios. Such
observations underscore the necessity for further enhancement of
the practical applicability of GDA models. In addition to establish-
ing benchmarks for comprehensive evaluation, such as OpenGDA,
more theoretical studies should be conducted for thoroughly un-
derstanding and utilizing intrinsic graph structural properties and
domain adaptation mechanisms.

Table 5: Graph classification accuracy on IMDB-REDDIT and
Letter dataset. I, R, L and H are short for domain names.

GCN UDAGCN AdaGCN ASN GRADE
I→R 0.537 0.564 0.568 0.589 0.565
R→I 0.519 0.526 0.503 0.552 0.524
L→H 0.121 0.106 0.107 0.097 0.089
H→L 0.092 0.093 0.136 0.124 0.132

5 CONCLUSION
To enable a comprehensive evaluation of graph domain adapta-
tion models for cross-network learning tasks, we develop a graph
domain adaptation benchmark, OpenGDA. Currently, it provides
standard datasets from various scenarios and tasks covering differ-
ent types, together with standardized model pipelines. Generally,
it offers user-friendly access to researchers for conducting experi-
ments with pre-implemented elements and customizing additional
datasets or models. The experimental studies from real-world sce-
narios highlight the difficulties in achieving consistent good per-
formance for existing GDA models. Altogether, OpenGDA presents
fruitful opportunities for future research, including digging into
GDA theory and continuing to improve practicality. It is worth
mentioning that OpenGDA is a growing project. We plan to inte-
grate more datasets, tasks and methods as GDA is an emerging line
of research. We also expect to keep improving package scalability
and enhancing user experience.
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