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Abstract

There has been rapid growth in biomedical literature, yet capturing the heterogeneity of
the bibliographic information of these articles remains relatively understudied. Although graph
mining research via heterogeneous graph neural networks has taken center stage, it remains
unclear whether these approaches capture the heterogeneity of the PubMed database, a vast
digital repository containing over 33 million articles. We introduce PubMed Graph Benchmark
(PGB), a new benchmark dataset for evaluating heterogeneous graph embeddings for biomedical
literature. The benchmark contains rich metadata including abstract, authors, citations, MeSH
terms, MeSH hierarchy, and some other information. The benchmark contains three different
evaluation tasks encompassing systematic reviews, node classification, and node clustering. In
PGB, we aggregate the metadata associated with the biomedical articles from PubMed into a
unified source and make the benchmark publicly available for any future works.

1 Introduction

Academic graphs generated from bibliographic data serve as an essential data source across many
different fields. Analysis of such graphs can be used for personalized article recommendations
[49], retrieval of relevant articles [6], understanding of trends in the field [2, 17], measuring aca-
demic influence and novelty [56], and identifying relevant academic communities [12]. PubMed
is an example of an academic graph that contains over 33 million citations and abstracts of
literature related to biomedicine and health fields as well as related disciplines such as life sci-
ences, behavioral sciences, chemical sciences, and bioengineering [11]. PubMed articles have
been used to perform numerous systematic reviews (SR) [16, 24, 43], evaluate biological pro-
cesses [28], identify protein-protein interactions [25], curate genes [47], and extract biological
networks [50]. To date, much of the work on PubMed literature has focused on mining the text.
However, the rich citation structure can be utilized to automate the SR process and provide
better representation than their textual counterparts [29].

For analysis of the academic graphs, low-dimensional representations, or embeddings, of
the graph’s nodes, serve as the fundamental analysis tool [10, 42, 52]. The idea is to learn a
compact representation of each node that preserves the structural information and properties
of the graph. The graph embedding can then be used for a variety of downstream tasks such
as node retrieval/recommendation [58], node classification [45], node clustering [37], and link
prediction [48]. In recent years, graph neural networks (GNNs) [5, 19, 27, 31, 39] have become
pervasive due to their impressive performances across various tasks. However, GNNs have been
predominantly studied in the homogeneous network setting, where there is only a single node
type and link-type [42, 51, 52]. Yet, an academic graph can contain multiple objects (nodes)
and link types (edges) including author information, venue information, and keywords. As such,
researchers are exploring extending GNNs to the heterogeneous information network (HIN) with
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Figure 1: Example of PubMed Article (a) and the partial MeSH hierarchy (b) that is
associated with the article. For article (a), the PubMed database contains pmid, title,
abstract, list of articles cited by, publication types, list of MeSH terms, and list of substances
(chemicals). The MeSh hierarchy (b) shows the categorization of the MeSH terms to a
broader concept.

multiple node types and edges, each with potentially different side information. Heterogeneous
GNNs have been proposed to incorporate the node and edge types [27, 46, 50, 53, 54].

Despite the development of such models, a recent paper demonstrated that in fact, the results
generated by these state-of-the-art heterogeneous GNNs were merely a mirage [33]. The lack
of consistent experimental setup and preprocessing of the data led to widely varying results.
In some cases, vanilla GNN models were better than their heterogeneous GNN counterparts.
As such, there have been recent developments toward developing benchmark graph datasets.
OGB was developed as a large-scale benchmark for a broad range of graph machine learning tasks
[23]. It encompasses various domains, including bibliographic data (i.e., arXiv and Microsoft
Academic Graph (MAG) [44]). The ogbn-arxiv and obgn-papers100M datasets focus on the
simple citation network using a homogeneous network representation whereas the obgn-mag
extracts a heterogeneous information network from MAG and contains four different node types
(papers, authors, institutions, and topics) along with their links. However, OGB is more geared
toward evaluating homogeneous GNNs rather than the heterogeneous GNNs.

HGB [33] was developed as a new medium-scale benchmark dataset that spanned 11 het-
erogeneous networks including two bibliographic datasets: (1) DBLP, a citation network of
computer science that contains four nodes (authors, papers, terms, and venues) and (2) ACM, a
citation network that spans papers from 5 conference venues that contains three nodes (authors,
papers, and subjects). HGB also contains a PubMed-based dataset involving a network of genes,
diseases, chemicals, and species extracted from the articles using Named Entity Recognition soft-
ware. However, the experimental studies of GNN models on HGB demonstrated substantially
better performance on DBLP and ACM datasets than on the PubMed dataset. This may not be
surprising as many general domain text mining models fail to generalize to biomedical literature
[3, 15, 16], motivating a more extensive study.

Unlike existing heterogeneous bibliographic benchmarks, PubMed contains rich metadata
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beyond the citation structure. Figure 1(a) shows an example of a PubMed article1. In addition
to the author, venue, and citation information that is commonly found in most bibliographic
data, each PubMed article contains data regarding the Chemical Substances within the article,
the type of article that characterizes the nature of the information or the type of research support
received, and Medical Subject Headings (MeSH) terms which identify the broader concepts in
the data. The categorical information of chemical substances and publication types are not
found in DBLP, ACM, or MAG. Moreover, there are over 30,000 terms in the MeSH vocabulary,
which exceeds the Computing Classification System (CCS) hierarchical ontology found in ACM.
Furthermore, the terms follow a hierarchical taxonomy2 (see Figure 1(b) for an example MeSH
tree for some terms in the example), yet also have the unique property that a term can belong
to one or more trees, unlike CCS. Capturing this hierarchical structure can potentially improve
the representation; however, the data in PubMed is incomplete as author disambiguation and
hierarchical taxonomy are not available in the metadata.

We present PGB, a new benchmark dataset of over 30 million PubMed articles for evaluating
heterogeneous graph embeddings for biomedical literature. It leverages the citations and author
disambiguation capabilities of Semantic Scholar while also layering in the rich metadata that is
offered in PubMed including the MeSH Terms, Chemical List, and Publication Type. PGB also
layers in the MeSH hierarchical structure for all the terms associated with the articles, which
previous benchmarks do not support. PGB provides 3 different tasks to evaluate the quality
of the graph embeddings that span node classification, node clustering, and abstract screening
for 21 SR tasks. The latter task is different than the existing node-level and edge-level tasks
provided in OGB and HGB in that the same node can have different labels depending on the SR
content. By providing a high-quality and large-scale heterogeneous bibliographic network with
three different graph tasks and their associated evaluation metrics, we can measure progress in
a consistent and reproducible fashion.

In addition to building PGB, we perform extensive benchmark experiments for the dataset
using current state-of-the-art graph embedding methods including 2 homogeneous GNNs and 3
heterogeneous graph embedding models. Through the experiments, we highlight two research
challenges associated with generating embeddings for PubMed. First is the lack of scalability
for many existing GNNs as many of the state-of-the-art models were incapable of processing the
entire graph. Second is the inability to capture the heterogeneity of the network as the models fail
to achieve comparable performance to other bibliographic networks. Our experimental results
illustrate the need for developing new scalable heterogeneous GNN models that are capable of
handling the rich metadata in PubMed, which is unlike any existing bibliographic data.

2 Background

Bibliographic data is used in various tasks, for example, word embedding using the title and
abstract, network embedding using the citation, and author network. Thus, many works have
worked on constructing a benchmark for bibliographic data such as OGB [23], HGB [33], and
S2ORC [32]. Here we briefly describe the three related academic paper benchmark datasets and
their limitations.

OGB [23] is a large-scale benchmark for graph machine learning tasks. It encompasses a
variety of domains such as social networks, biological networks, molecular graphs, and knowledge
graphs. OGB also has bibliographic data, for example, ogbn-arxiv and ogbn-papers100M are
citation networks that are extracted from arxiv and MAG, respectively. Notably, both of these
are homogeneous networks with paper nodes and links that represent the citation. OGB also
has a heterogeneous academic network, ogbn-mag, which is extracted from MAG. The ogbn-mag
dataset contains 4 different node types (i.e., papers, authors, institutions, and topics) along with
their relations. However, OGB focuses on benchmarking graph machine learning methods on
the large-scale homogeneous network.

1 Article can be found at https://pubmed.ncbi.nlm.nih.gov/12429942/.

2 https://www.nlm.nih.gov/mesh/intro_trees.html
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Table 1: Comparison of existing bibliographic datasets with N denoting nodes, NT denoting
node types, ET denoting edge types and HIER denoting a hierarchical structure on at least
one of the nodes.

# N # NT # ET HIER

PGB 54,974,182 5 7 ✓

ogbn-mag 1,939,743 4 4 ✗

ogbn-arxiv 169,343 1 1 ✗

ogbn-papers100M 111,059,956 1 1 ✗

HGB-DBLP 26,128 4 6 ✗

HGB-ACM 10,942 4 6 ✗

HGB [33] provided 11 medium-scale graph benchmark datasets for node classification, link
prediction, and knowledge-aware recommendation. For node classification, it contains DBLP,
IMDB, ACM, and Freebase [8] datasets and for link prediction, Amazon, LastFM, and PubMed
datasets. The PubMed benchmark is the subset of a previously generated network of genes,
diseases, chemicals, and species filtered by domain experts [50]. Furthermore, the PubMed
dataset does not reflect the bibliographic data directly. Instead, for HGB, DBLP, and ACM
datasets serve as the lone benchmarks for the bibliographic network. However, both datasets
lack rich metadata that can be helpful for learning node embeddings. Moreover, the benchmarks
assume a single label for each node, whereas labels can change depending on the context.

The S2ORC [32] corpus is a large-scale academic paper corpus that is constructed using
the data from the Semantic Scholar literature corpus [1]. Articles in Semantic Scholar are
derived from numerous sources which are obtained directly from publishers such as MAG, arXiv,
PubMed, and crawled from the open Internet. Semantic Scholar clusters these papers based
on title similarity and DOI overlap, resulting in an initial set of approximately 200M paper
clusters. Using the Semantic Scholar literature corpus, S2ORC aggregated the metadata of
articles and cleaned the data to select canonical metadata using external sources such as IEEE
and DBLP. Although S2ORC contains biomedical literature, it mainly focuses on the common
metadata that exists across all the articles. Since publication types, MeSH terms, and chemical
substances are only present in biomedical literature, such metadata is not included in the dataset.
Thus, developing embeddings that reflect the heterogeneity of the PubMed database requires
additional integration. Table 1 summarizes the statistics of the existing bibliographic datasets.

3 PubMed Graph Benchmark (PGB)

In this section, we introduce the framework to construct PGB, shown in Figure 2, and the
format of the data, the evaluation tasks, and the license information.

3.1 Paper Collection

PGB is constructed based on the S2ORC corpus [32] as it contains more complete citation
information than PubMed. However, there exist cases where the abstract only exists in the
Semantic Scholar database but not in the PubMed database. Since PGB targets the biomedical
literature, we initially extract articles that contain a PubMed ID (PMID) from S2ORC.

3.2 Metadata

The PGB contains 13 metadata fields, which are shown in Table 2. Here we detail the integrated
fields from S2ORC and various PubMed data sources.
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Figure 2: Framework overview of the PGB.

3.2.1 PubMed Extraction

The S2ORC corpus only contains basic metadata of each PubMed paper (e.g., title, abstract,
authors, year, and venue). In biomedical literature, unlike general academic articles, there is
important metadata that can serve an important role such as Medical Subject Headings (MeSH)
terms and publication types. Additional partial information can be found in PubMed (see Figure
1). To extract more detailed information related to each article, we query information from the
Entrez API3 using the PMID.

The metadata contains “Chemical List”, “Publication Type”, and “MeSH Terms”. The
chemical list provides the registry number of specific chemical substances assigned by the Chem-
ical Abstracts Service and the names of the chemical substances. The publication type identifies
the type of article indexed for MEDLINE and characterizes the nature of the information, how
it is conveyed, and the type of research support received. For example, an article can have a
publication type of Review, Letter, Retracted Publication, Research Support, N.I.H., or Clinical
Conference. Finally, MeSH terms are used to characterize the content of the articles. MeSH
terms are recorded with the information whether they are the major topic or not. The major
MeSH terms denote that those are the most significant topics of the paper whereas the non-
major MeSH terms are used to identify concepts that have also been discussed in the item but
are not the primary topics. For the articles identified from our paper collection process, we in-
tegrate the names of the chemical substances, the publication type, and both major and minor
MeSH terms.

3.2.2 Citation Extraction

While the PubMed database contains rich information on biomedical literature, it contains
few information about the citations. However, S2ORC corpus extracted the citations from
the collected PDF or LaTeX files on top of the Semantic Scholar literature corpus. Thus, to
construct PGB, we first use the citation information from the S2ORC. This includes both in
and out citations which refer to whether the paper is cited by another paper or the paper cites
another paper. We convert all the Semantic Scholar IDs into PMIDs and remove papers that are
not included in the PubMed database4. We note that there are cases where Semantic Scholar
does not contain all the citations. Thus we also extract citations from the Entrez API to include
papers that do not exist in the Semantic Scholar database but exist in PubMed. The metadata
associated with the PMIDs of the newly identified papers is then retrieved to ensure consistency
of the article information. In this fashion, the articles in PGB are not a pure subset of S2ORC.

3 https://www.ncbi.nlm.nih.gov/books/NBK25501/

4 While this can potentially harm or bias the embedding, we did this to maintain consistency in the article

information in PGB.
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Table 2: List of metadata, the field name and the associated type for PGB.

Field Description Field name Field type Explanation

PMID pmid str Pubmed ID
Title title str Title of the paper
Abstract abstract str Abstract of the paper
Authors authors List[Dict] list of authors
Year year int Published year
Venue venue str Venue of the paper
Publication Type publication type str Type of the article
Chemical List chemicals List Name of the chemical substances
MeSH Terms mesh List[Dict] List of MeSH terms
Inbound Citation in citation List List of PMID that cites the paper
Outbound Citation out citation List References of the paper
Has Inbound Citation has inbound citations Boolean Validator for inbound citation
Has Outbound Citation has outbound citations Boolean Validator for outbound citation

3.2.3 MeSH Terms Hierarchy

One important feature of MeSH terms is the hierarchical ontology of the terms. MeSH terms
can be categorized into broader MeSH terms that support the categorization of the articles,
as depicted in Figure 1(b). The categories of different hierarchy levels reveal the similarity at
coarser/fine-grained granularities. As shown in Figure 1(b), MeSH terms that are assigned to
the article can share the same parents or can be in a different sub-tree. When comparing two
articles, if they do not have the same MeSH terms but MeSH terms with the same parents
(or within the same sub-tree), then the two articles are potentially closely related. Therefore,
knowing the hierarchy can play an important role in identifying similar articles.

Unfortunately, the Entrez API does not include the MeSH terms hierarchy. Thus, we also
extract the MeSH terms hierarchy dataset5 to identify the position of the MeSH terms associated
with each article. The MeSH terms hierarchy dataset only contains the MeSH terms shown in
Figure 1(b). However, the tree numbers help reveal the hierarchical structure. For example, the
MeSH terms “Chromosome Segregation” with tree number G04.144.220.220.625 and “Mitosis”
with tree number G04.144.220.220.781 demonstrate that they share the same parent, “Cell Cycle”
with tree number G04.144.220.220. Thus, we integrate the tree number for each MeSH term
using the MeSH terms hierarchy into PGB.

3.3 Data Format and Statistics

Each article in PGB is stored using the JSON file format. Table 2 summarizes the field name
and the field type that are used to store PGB. The “authors” field contains 4 subfields, “first”,
“middle”, “last”, and “suffix”. For the chemical list and the MeSH terms, we exclude the ids
and only included the name because the name itself is already unique. For the MeSH terms, we
use 3 subfields to convey which MeSH terms are major or minor, The subfield “name” refers to
the name of the MeSH terms, the subfield “is major” is set to a true/false value to identify the
major MeSH terms, and the subfield “tree number” is the MeSH hierarchy information. There
can exist multiple major MeSH terms for each article. We also included fields for validating
whether the inbound and outbound citation exists in the benchmark. The fields are named
“has outbound citations” and “has inbound citations”, and the value is set to be either true or
false. This helps users easily identify the presence of citation information without parsing the
list of citations.

The statistics of PGB are shown in Table 3. It contains 30,872,730 biomedical literature,

5 https://www.nlm.nih.gov/databases/download/mesh.html
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Table 3: Statistics of PGB (30,872,730 articles).

Name Total # Missing (%) Avg per article

Authors 30,397,681 1.54 4.11
Articles w/ MeSH terms 26,883,163 12.92 9.32
Articles w/ chemical list 14,565,380 52.82 1.82
Articles w/ publication type 30,685,975 0.60 1.73
Articles w/ inbound citations 16,488,646 46.59 6.51
Articles w/ outbound citations 7,781,767 74.79 6.51

and all the articles have PMID, title, abstract, year, venue, and at least one author. However,
there exist cases in which any one of the fields is missing which denote that the information
does not exist in both PubMed and S2ORC. 46.59% of articles do not have an inbound citation,
and 74.49% of articles do not have outbound citations. Table 3 also shows the average number
of MeSH terms, chemicals, and inbound and outbound citations. Due to the large size of the
benchmark (∼60GB), PGB is split into 10 partitions where each partition is compressed as a
zip file.

3.4 Evaluation Tasks

The metadata in PGB contains all necessary information to construct a homogeneous or hetero-
geneous network. There are 5 node types (Paper, Author, M eSH terms, V enue, and publication
Type) and 7 edge types (P-P, P-A, A-A, P-M, P-V, P-T, M-M). The constructed heterogeneous
network can be used for node classification to determine the topic of articles, link prediction for
citation recommendation, and SR for abstract/full-text screening. We provide three evaluation
tasks using PGB. Two of the tasks (node classification and clustering) follow a similar protocol
to the tasks in existing benchmark datasets. The third task is new and specific to the biomedical
nature of PGB.

3.4.1 Node Classification and Clustering

We evaluated the network embedding methods on node classification and node clustering tasks.
These tasks are prevalent in existing graph benchmark datasets such as OGB and HGB. For
both tasks, we use the labels provided by Namata et al. [36] which consists of PubMed papers
about diabetes. Articles are labeled with 3 classes, ‘Diabetes Mellitus, Experimental’, ‘Diabetes
Mellitus Type 1’, and ‘Diabetes Mellitus Type 2’. The dataset encompasses 19,717 articles,
61,587 authors, and 4,081 MeSH terms. However, the original dataset only contains 2 edge
types, paper-author, and paper-MeSH terms. We expand this dataset to include one more node
(publication type) and two edge types, paper-paper, and paper-publication type.

Evaluation Metrics. For the node classification task, we adopt micro and macro F1-score as
the evaluation metrics as it is a multi-classification task (i.e., 3 classes). To assess the quality of
the clusters, we use normalized mutual information (NMI) and adjusted rand index (ARI). For
the number of clusters, we follow the number of classes used for the node classification task. The
supplemental material contains detailed information regarding the calculation of these metrics.

3.4.2 Systematic Review

Systematic reviews (SRs) are essential knowledge translation tools focused on bridging the
research-to-practice gap across a wide range of domains. In health research, SRs aims to identify,
evaluate, and summarize the findings of all individual studies (which typically describe clinical
trial results) relevant to a clinical question, thereby making the available evidence more accessible
[13, 20, 21]. SRs serve as the basis for evidence-based medicine.
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Figure 3: A simplified illustration of the SR screening process using “Statins” from Cohen
dataset [16].

Figure 3 shows an illustration of the SR screening process. The first step is to retrieve
the initial list of articles using the combination of keywords and MeSH terms related to the
topic (3465 articles from the figure). Once the initial list is retrieved, reviewers go over the
title and abstract screening to get rid of irrelevant articles (95% of the articles). Finally, the
reviewers go over the full-text for articles passing the title and abstract screening phase to
collect the relevant articles to the topic (2.45% of articles). However, the broad searches yield
imprecise search results (e.g., ¡2% relevant documents) and result in a labor-intensive process.
Current estimates for conducting an SR is 67 weeks from registration to publication [9]. Clearly,
this process is neither unsustainable nor scalable, especially given the exponential growth of
biomedical literature [4]. We currently integrate three different SR datasets: the popular, and
publicly available dataset provided by Cohen et al. [16], SWIFT-Review [22] and CLEFT-TAR
[26].

The Cohen et al. dataset6 was the first SR dataset publicly released and was based on com-
paring 15 classes of drugs to treat specific conditions [16]. The evidence reports were completed
by three evidence-based practice centers in Oregon, Southern California, and the Research Tri-
angle Institute / University of North Carolina. The staff at these centers created search queries
to identify randomized controlled trials by combining the health conditions and interventions.
Another set of datasets is 3 sets provided by SWIFT-Review [22].7 The dataset was generated by
the National Toxicology Program (NTP) Office of Health Assessment and Translation (OHAT).
The last set is provided by CLEF 2019 e-Health TAR Lab [26] (Task 2)8 which focuses on re-
trieving relevant studies from during the abstract and title screening phase of conducting an SR.
From the CLEF-TAR dataset, we randomly selected 3 sets which are the CD012661 topic from
Prognosis, the CD008803 topic from DTA, and the CD005139 topic from Intervention. The title
of the topic CD012661 is “Development of type 2 diabetes mellitus in people with intermediate
hyperglycemia” [38]. The title of the topic CD008803 is “Optic nerve head and fibre layer imag-
ing for diagnosing glaucoma”[34]. The title of the topic CD005139 is “Anti-vascular endothelial
growth factor for neovascular age-related macular degeneration” [40].

Each article, identified using the PMID, was triaged using a two-step process. First, the
abstract is reviewed to determine if it meets the inclusion criteria of the SR. If the criteria
are met, the full text of the article is then reviewed to determine if the evidence should be
summarized in the SR. PGB targets the abstract screening process where most of the articles
are excluded. Table 4 summarizes the statistics for each SR topic. The abstract (abs) denotes
whether the article passed the title/abstract screening phase. It is notable that the number
of articles included after the abstract screening varies from 1.44% to 32.48%, demonstrating a
relatively large degree of imbalance across the SR topics.

Evaluation Metrics. Cohen et al. [16] introduced a measure work saved over sampling (WSS)
which measures the work saved over random sampling for a given level of recall. Several works

6 https://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.html

7 https://systematicreviewsjournal.biomedcentral.com/articles/10.1186/s13643-016-0263-z#Sec30

8 https://github.com/CLEF-TAR/tar
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Table 4: Statistics of all datasets used. Abs refers to the number of articles passing the
abstract triage statuses and % shows the percentage.

SR Abs Total %

Cohen-ACEInhibitors 183 2544 7.23
Cohen-ADHD 84 851 9.87
Cohen-Antihistamines 92 310 29.67
Cohen-AtypicalAntipsychotics 363 1120 32.41
Cohen-BetaBlockers 302 2072 14.57
Cohen-CalciumChannelBlocker 279 1218 22.90
Cohen-Estrogens 80 368 21.74
Cohen-NSAIDs 88 393 22.39
Cohen-Opioids 48 1915 2.51
Cohen-OralHypoglycemics 139 503 27.63
Cohen-ProtonPumpInhibitors 238 1333 17.85
Cohen-SkeletalMuscleRelaxants 34 1643 2.56
Cohen-Statins 173 3465 4.99
Cohen-Triptans 218 671 32.48
Cohen-UrinaryIncontinence 78 327 23.85

SWIFT-Transgenerational 765 48638 1.57
SWIFT-PFOS-PFOA 95 6331 1.50
SWIFT-BPA 111 7700 1.44

CLEF-Prognosis-CD012661 192 3367 5.70
CLEF-DTA-CD008803 99 5220 1.89
CLEF-Intervention-CD005139 112 5392 2.07

also evaluated using the area under the receiver operating curve (AUC) for predicting whether
or not the abstract was screened or not to report the results [15, 35]. For the purpose of this
report, we report both AUC and WSS scores.

3.5 Code and Data License Information

The entire data is released and publicly available on Zenodo.9 We open-source the code to
reconstruct the benchmark in a GitHub repository.10. The GitHub repository also contains the
train, validation, and test splits for the three evaluation tasks. We hope that by releasing the
code publicly, the community can contribute to the maintenance of the benchmark dataset (i.e.,
updating the graph or adding new tasks).

PGB is released under the CC BY-NC 4.0 license and for non-commercial use. PGB is
constructed using the PubMed Entrez API and S2ORC. S2ORC is non-commercial use and
released under the same license (CC BY-NC 4.0 license). The PubMed Entrez API does not
require a signed license agreement to download publicly accessible data. However, we note
that the associated PubMed metadata (i.e., MeSH terms, Chemical list, and publication type)
in PGB may not reflect the most current data available on PubMed. The data can be re-
updated using the Github repository assuming no major changes in the type and format of the
machine-readable data. The usage guidelines and registration for the API key are detailed in the
electronic book chapter11. Note that potential publication bias or other ethical considerations
may need to be considered further.

9 https://zenodo.org/record/6406776#.YqrOKnbMKUk

10 https://github.com/ewhlee/PGB

11 https://www.ncbi.nlm.nih.gov/books/NBK25497/#chapter2.Usage_Guidelines_and_Requiremen
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4 Experiments

In this section, we discuss the experimental settings for the evaluation tasks.

4.1 Experimental Design

For the Systematic Review task, we construct 3 different subsets of PGB for computational
reasons. We trace the inbound and outbound citations up to 2-hops from the original articles
to construct 3 subnetworks of approximately 1.2M, 3.4M, and 1.8M articles, respectively for the
Cohen, SWIFT, and CLEF-TAR datasets. In each subnetwork, we randomly split the graph
into train-validation-test by sampling articles within each SR task using a 50%-25%-25% ratio.
We create 3 train-validation-test trials for each subnetwork. For all the baselines, we used a
g4dn AWS instance with NVIDIA T4 GPU.

4.2 Baseline Models and Hyperparameters

We evaluate various 6 different models that include document embedding, homogeneous network
embedding, heterogeneous embedding, and knowledge graph embedding models.

• SPECTER [14]: The SPECTER is an embedding model that learns the representation
of a document by computing the embeddings using a SciBERT model [7] pre-trained on
relatedness signals derived from the citation graph. We use the embeddings for SPECTER
provided by Semantic Scholar API.12 The Semantic Scholar API allows a paper search by
using the PubMed ID to retrieve the Semantic Scholar ID. Using this Semantic Scholar
ID, we retrieve the SPECTER embeddings of each document.

• LINE [41]: LINE is a conventional homogeneous network embedding method that uses first-
and second-proximity. LINE uses the joint probability between two nodes.13 We set the
number of dimensions to 128 for both first- and second-proximity. The final embedding is
the concatenation of 2 proximities. As LINE is an unsupervised model, we add a soft-max
layer on top of the final embeddings.

• GCN [27]: GCN is a graph convolutional network embedding model designed for a homo-
geneous network.14 GCN is trained in a supervised setting using the SR task. We use the
500-dimension TF-IDF weighted word vector provided by Namata et al. [36] as the node
feature.

• HAKE [57]: HAKE is a hierarchical-aware knowledge graph embedding model which is
not a GNN-based model but a translational distance model which describes relations as
translations from one node to the other.15 It uses radial coordinates to embed entities at
different levels of the hierarchy and uses angular coordinates to distinguish entities at the
same level of the hierarchy. HAKE uses the link-prediction task to learn the embeddings,
and thus it is an unsupervised model. For the supervised tasks, we add a soft-max layer
on top of the embeddings. We try [500, 1000] for the dimension size and select 1000 as the
validated parameter.

• GAHNE [30]: GAHNE is a model to learn representations for HIN.16 It converts the
network into a series of homogeneous sub-networks to capture semantic information. An
aggregation mechanism then fuses the sub-networks with supplemental information from
the whole network. Using the validation set, we process a grid search using [0.01, 0.005,
0.001] for the learning rate, [0.0005, 0.001] for the L2 penalty, and [64, 128, 256] for the
dimension size. The validated parameters we used are a learning rate of 0.005, a dropout

12 https://www.semanticscholar.org/product/api

13 https://github.com/DeepGraphLearning/graphvite.

14 https://github.com/tkipf/gcn.

15 https://github.com/MIRALab-USTC/KGE-HAKE.

16 https:github.com/seanlxh/GAHNE.
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Table 5: Network embedding result of 3 trials. The best score for each node classification
and clustering is bolded and the second highest is underlined.

Baseline Macro-F1 Micro-F1 NMI ARI

LINE 36.47 39.67 6.56 5.38
GCN 42.13 43.19 6.98 5.96
HAKE 48.71 50.85 10.73 10.11
GAHNE 50.44 53.54 13.86 13.52

ie-HGCN 50.37 53.37 13.71 13.27

of 0.5, an L2 penalty of 0.001, and a dimension of 128. GAHNE is a supervised model and
the model is trained using the labels from SR topics.

• ie-HGCN [53]: ie-HGCN is a GCN-based HIN embedding model that evaluates all possible
meta-paths and projects the representations of different types of neighbor objects into a
common semantic space using object- and type-level aggregation.17 We use the supervised,
cross-entropy loss to learn the weights of the model. We set the number of layers to be 5
and using the validation set, we tried [(128, 64, 32, 16), (156, 128, 64, 32)] as the dimension
size. The validated parameters used in the results are 5 layers, with the dimensions of input,
128, 64, 32, and 16. We use the same node feature as GCN.

LINE and HAKE are unsupervised models, and the other 3 GNN baselines are semi-supervised
models. For the Systematic Review task, for the homogeneous network, we only use the citation
information to construct the network. For HAKE, we use 3 node types (Paper, M eSH terms,
publication Type) with 4 edge types (P-P, P-M, M-M, P-T). For the other 2 heterogeneous
networks, we use 4 node types (Paper, V enue, M eSH terms, publication Type) with 4 edge
types (P-P, P-V, P-M, and P-T)

We use the code and perform a parameter search around the neighborhood of suggested
parameters provided by the original paper. We briefly describe the final parameters used and
provide a link to the implementation. For each of the implementations, we kept separate envi-
ronment files to ensure that the required Python packages were installed and the correct version
as outlined in the code. The validation set is used to tune the hyperparameters for GAHNE
and ie-HGCN.

5 Evaluations

In this section, we discuss the performance of the various models using the subset of PGB.

5.1 Node Classification and Clustering

The results of the performance for node classification (macro and micro F1-score) and clustering
(NMI and ARI) are shown in Table 5 with the best results bolded and the second best results
underlined. The heterogeneous network embedding models (HAKE, GAHNE, and ie-HGCN)
outperform the homogeneous network embedding models (LINE and GCN), illustrating that
modeling the multiple node types and link types is beneficial. Both GAHNE and ie-HGCN
have similar scores across all four metrics. The difference between LINE and GCN shows the
importance of using the word information as GCN uses the TF-IDF weighted word vectors for
the node feature on top of the citation network while LINE only uses the citation network.
Unfortunately, a major limitation of existing heterogeneous network embedding models is the
memory footprint. We tried other heterogeneous network embedding models such as GTN [54],
HetGNN [55], and MAGNN [18], but the models ran out of memory.

17 https://github.com/kepsail/ie-HGCN/.
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Table 6: SR statistics and average AUC results across the 3 trials for the various models.
The best score is bolded and the second highest is underlined.

SR Topic SPECTER LINE GCN HAKE GAHNE ie-HGCN

Cohen-ACEInhibitors 0.677 0.580 0.592 0.677 0.731 0.740

Cohen-ADHD 0.567 0.548 0.577 0.599 0.600 0.607

Cohen-Antihistamines 0.505 0.493 0.509 0.521 0.558 0.542

Cohen-AtypicalAntipsychotics 0.638 0.555 0.597 0.648 0.708 0.699

Cohen-BetaBlockers 0.699 0.586 0.606 0.683 0.733 0.728

Cohen-CalciumChannelBlockers 0.601 0.594 0.608 0.621 0.654 0.651

Cohen-Estrogens 0.637 0.544 0.588 0.647 0.676 0.673

Cohen-NSAIDS 0.694 0.586 0.615 0.690 0.767 0.746

Cohen-Opiods 0.675 0.603 0.637 0.686 0.725 0.727

Cohen-OralHypoglycemics 0.535 0.512 0.529 0.533 0.567 0.557

Cohen-ProtonPumpInhibitors 0.674 0.604 0.626 0.681 0.731 0.729

Cohen-SkeletalMuscleRelaxants 0.688 0.605 0.632 0.687 0.724 0.733

Cohen-Statins 0.668 0.572 0.608 0.662 0.710 0.716

Cohen-Triptans 0.658 0.587 0.618 0.668 0.723 0.717

Cohen-UrinaryIncontinence 0.696 0.605 0.633 0.681 0.745 0.741

SWIFT-Transgenerational 0.695 0.637 0.667 0.684 0.741 0.761

SWIFT-PFOS-PFOA 0.671 0.634 0.657 0.695 0.721 0.728

SWIFT-BPA 0.632 0.563 0.604 0.645 0.725 0.729

CLEF-Prognosis-CD012661 0.678 0.593 0.628 0.647 0.671 0.691

CLEF-DTA-CD008803 0.619 0.598 0.628 0.643 0.681 0.691

CLEF-Intervention-CD005139 0.665 0.623 0.646 0.666 0.702 0.704

5.2 Systematic Review

All the results shown in this section use the subnetwork of each dataset (Cohen, SWIFT-Review,
and CLEF-TAR). We compare the performance of 1 language model and 5 network embedding
models on SR. The performance is reported in Table 6 in the average of AUC scores of 3 trials
for each SR task and in Table 7 in the average of WSS scores with the same setting. The best
results are bolded and the second-best results are underlined.

As shown in the tables, both of the results (AUC and WSS scores) of the heterogeneous
network embedding models (HAKE, GAHNE, and ie-HGCN) significantly outperform the ho-
mogeneous network embedding models (LINE and GCN). This suggests that not only the ci-
tation information but also other node types (venue, MeSH terms, and publication type) help
to improve the performance of the systematic review task. GAHNE and ie-HGCN outperform
HAKE as HAKE is an unsupervised model while others are semi-supervised models. However,
by comparing the performance with the homogeneous model, HAKE shows the importance
of the hierarchical information (MeSH hierarchy). The performance between GAHNE and ie-
HGCN is similar. The results suggest that ie-HGCN performs better when there are more
articles excluded from the abstract screening phase. For example, the “SWIFT-BPA” dataset
has a total of 7700 articles in the beginning but only 111 articles (1.44%) are selected. Whereas
ie-HGCN performs better in cases when fewer articles are selected, GAHNE performs better in
cases when more papers are selected. For example, “Cohen-AtypicalAntipsychotics” starts with
1120 articles, and 363 articles (32%) passed the screening.

By comparing with the language model (SPECTER), it shows similar results with HAKE.
In other words, SPECTER outperforms the homogeneous network embedding models (LINE
and GCN) which only uses the citation network but underperforms the heterogeneous network
embedding models (GAHNE and ie-HGCN). Although SPECTER is based on the transformer
language model, it uses the document-level relatedness from the citation graph. Thus, this
helps SPECTER to outperform the supervised homogeneous network embedding models. This
illustrates the importance of both the abstract and the citation graph in the systematic review
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Table 7: SR statistics and average WSS results across the 3 trials for the various models.
The best score is bolded and the second highest is underlined.

SRTopic SPECTER LINE GCN HAKE GAHNE ie-HGCN

Cohen-ACEInhibitors 0.388 0.343 0.364 0.385 0.472 0.489

Cohen-ADHD 0.274 0.247 0.253 0.277 0.343 0.344

Cohen-Antihistamines 0.111 0.042 0.079 0.109 0.168 0.137

Cohen-AtypicalAntipsychotics 0.092 0.059 0.066 0.087 0.111 0.102

Cohen-BetaBlockers 0.209 0.186 0.19 0.211 0.291 0.304

Cohen-CalciumChannelBlockers 0.21 0.173 0.194 0.208 0.221 0.242

Cohen-Estrogens 0.223 0.169 0.197 0.222 0.259 0.256

Cohen-NSAIDS 0.385 0.377 0.384 0.437 0.508 0.505

Cohen-Opiods 0.253 0.21 0.218 0.276 0.339 0.343

Cohen-OralHypoglycemics 0.111 0.057 0.065 0.102 0.133 0.128

Cohen-ProtonPumpInhibitors 0.233 0.194 0.204 0.249 0.287 0.283

Cohen-SkeletalMuscleRelaxants 0.198 0.143 0.165 0.204 0.239 0.246

Cohen-Statins 0.229 0.169 0.179 0.227 0.255 0.256

Cohen-Triptans 0.343 0.278 0.294 0.348 0.372 0.362

Cohen-UrinaryIncontinence 0.21 0.162 0.174 0.202 0.233 0.232

SWIFT-Transgenerational 0.202 0.111 0.155 0.191 0.253 0.277

SWIFT-PFOS-PFOA 0.241 0.195 0.203 0.258 0.378 0.383

SWIFT-BPA 0.354 0.258 0.287 0.376 0.441 0.441

CLEF-Prognosis-CD012661 0.207 0.152 0.164 0.205 0.252 0.248

CLEF-DTA-CD008803 0.302 0.219 0.222 0.297 0.341 0.337

CLEF-Intervention-CD005139 0.2 0.143 0.158 0.199 0.278 0.283

process. Yet, even integrating the text and citation together does not beat the rich contextual
information found in the venue, MeSH terms, and publication type.

6 Discussions and Limitations

Besides the baselines which are all embedding models, we also use a majority class classifier for
the SR task. The AUC score for using the majority class classifier is 0.5 for all SR tasks. However,
the accuracy is different for each SR task. For example, “ADHD” is 0.891, and “Statins” is 0.95.
The AUC score is less sensitive to class imbalance as the minority class will have a strong impact
on the AUC score, which illustrates the difficulty of predicting class imbalance datasets. On the
other hand, accuracy is not sensitive to class imbalance, thus it can be very high as our result
even the minority class is not well predicted.

We note that our work has several limitations that could be improved upon. First, citations
that were not a part of PubMed were not included. This was done because there would have
been insufficient and inconsistent metadata with the rest of the articles in PGB, as well as
the need to find some identifier for the articles themselves to denote that they were distinct
from the PubMed articles. Second, many of the existing baseline methods were unable to scale
to the entire dataset. Such models typically require considerable computing resources which
we, unfortunately, did not have access to. More extensive methods can be included for future
work to better understand the performance of state-of-the-art models. Finally, we note that
the SR dataset is based on old evidence reports, while there has been a considerable number
of recent SRs on various topics. We are in the process of expanding this to include more SRs
by collaborating with people who have conducted recent SRs in public health, nursing, and
medicine.
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7 Conclusion

In this paper, we discuss the importance of biomedical literature and the necessary metadata
fields for research. There exist many studies that use heterogeneous network embedding for
various tasks such as node classification, link prediction, and SR. However, it is time-consuming
to aggregate the necessary information from multiple sources to capture rich bibliographic data.
We construct PGB, a biomedical literature bibliographic dataset, that contains 11 fields of
metadata. The strength of PGB is not only that it contains multiple types of nodes and edges,
but also captures a hierarchical structure on one of its nodes. Our experimental results illustrate
that the scalability and the capability of handling rich metadata, especially the hierarchical
structure, for existing graph embedding models, still remain open challenges.
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