
Dynamic Embedding Size Search with Minimum Regret for
Streaming Recommender System

Bowei He

City University of Hong Kong

Hong Kong SAR

boweihe2-c@my.cityu.edu.hk

Xu He

Huawei Noah’s Ark Lab

Shenzhen, China

hexu27@huawei.com

Renrui Zhang

The Chinese University of Hong Kong

Hong Kong SAR

zhangrenrui@pjlab.org.cn

Yingxue Zhang

Huawei Noah’s Ark Lab Montreal

Montreal, Canada

yingxue.zhang@huawei.com

Ruiming Tang

Huawei Noah’s Ark Lab

Shenzhen, China

tangruiming@huawei.com

Chen Ma
∗

City University of Hong Kong

Hong Kong SAR

chenma@cityu.edu.hk

ABSTRACT
With the continuous increase of users and items, conventional rec-

ommender systems trained on static datasets can hardly adapt to

changing environments. The high-throughput data requires the

model to be updated in a timely manner for capturing the user

interest dynamics, which leads to the emergence of streaming rec-

ommender systems. Due to the prevalence of deep learning-based

recommender systems, the embedding layer is widely adopted to

represent the characteristics of users, items, and other features in

low-dimensional vectors. However, it has been proved that set-

ting an identical and static embedding size is sub-optimal in terms

of recommendation performance and memory cost, especially for

streaming recommendations. To tackle this problem, we first re-

think the streaming model update process and model the dynamic

embedding size search as a bandit problem. Then, we analyze and

quantify the factors that influence the optimal embedding sizes from

the statistics perspective. Based on this, we propose the Dynamic

Embedding Size Search (DESS) method to minimize the embedding

size selection regret on both user and item sides in a non-stationary

manner. Theoretically, we obtain a sublinear regret upper bound

superior to previous methods. Empirical results across two recom-

mendation tasks on four public datasets also demonstrate that our

approach can achieve better streaming recommendation perfor-

mance with lower memory cost and higher time efficiency.

CCS CONCEPTS
• Information systems→ Recommender systems.

KEYWORDS
Streaming recommender system; Embedding size search; Contex-

tual bandit; Automated machine learning

∗
Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0124-5/23/10. . . $15.00

https://doi.org/10.1145/3583780.3615135

1 INTRODUCTION
Recommender systems (RS) have been widely adopted to reduce

information overload and satisfy users’ diverse needs. Considering

the ever-increasing users and items, as well as users’ continuous

interest shift, conventional static RS, however, can hardly adapt to

the evolving environment. To tackle such challenges, streaming

recommender systems (SRS), whose recommendation strategy up-

dates in a dynamic manner, was proposed in the last decade along

with the rapid accumulation of massive data from online applica-

tions like Google and Twitter [5, 7, 11, 13, 17, 38]. Recently, deep

learning-based recommender systems [19, 49] make a breakthrough

in improving the recommendation performance, which provides a

new direction for the evolution of streaming recommender systems.

To enable the success of deep RS, embedding learning plays

a central role in representing users, items, and other features in

low-dimensional vectors. Due to the inherent characteristics of

different users and items, the conventional design that assigns an

identical embedding size to each user or item limits the model

performance and brings huge memory costs. To solve this prob-

lem, embedding size search is introduced in [23] accompanied by

the rapid development of the automated neural network struc-

ture design in computer vision and natural language processing

tasks [4, 28, 32, 36, 48]. Recently, embedding size search has re-

ceived widespread attention [15, 23, 24, 30], and various methods

have been proposed to search for ID-specific embedding sizes. Most

of them adopt an external controller or the differential search to

decide the embedding sizes from a discrete or continuous candidate

space [9, 23, 29, 31, 33, 52]. Due to the broad application of stream-

ing recommender systems, it has also been noticed that assigning a

constant embedding size for users or items along the timeline will

lead to unsatisfactory performance. Correspondingly, the dynamic

embedding size search problem has also been gradually investigated

and several methods [28, 29, 41, 51] have been proposed to search

the best time-varying embedding sizes.

Although the aforementioned approaches are effective and in-

sightful, there are still several avenues for improvement. First, pre-

vious embedding size search methods [28, 29, 41, 52] with neural

network-based or reinforcement learning-based controllers require

large amounts of interaction data to converge, which drags down

their effectiveness in the early stages of the recommendation stream.

Moreover, the neural network-based method can hardly balance

the exploration and exploitation during the online embedding size

ar
X

iv
:2

30
8.

07
76

0v
1

 [
cs

.I
R

]
 1

5
A

ug
 2

02
3

https://doi.org/10.1145/3583780.3615135

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Bowei He et al.

search. Second, existing methods [23, 28, 29, 41, 52] only consider

the browsing frequency throughout the whole historical record

when deciding the appropriate embedding sizes. Nevertheless, this

is far from reflecting users’ recent browsing behavior characteris-

tics. In fact, the optimal embedding size is mainly associated with

the information amount of users’ browsing records, which should

be determined by both the frequency and diversity of browsing

records. Third, in previous works [28, 29, 41, 52], the model update

process still follows the conventional update pattern of static mod-

els, which optimizes the model on the training set until convergence

and then evaluating it on the untimely test set. However, in a real

SRS like Twitter, the system needs to recommend content to users

according to their real-time interests when they post tweets, which

means training and testing should alternate over time. Therefore,

the optimization objective of dynamic embedding size search should

consider the model’s performance at each timestep throughout the

whole timeline. Moreover, existing methods often suffer from huge

memory costs and low time efficiency which make it difficult to

put them into practical use.

To address these issues, we rethink the streaming recommenda-

tion model update process, and first model the dynamic optimal

embedding size search as a cumulative regret minimization bandit

problem. Then, we justify the change of the embedding size by

analyzing and quantifying the user behavior characteristics via

two indicators proposed in this paper. On this basis, we propose

the non-stationary LinUCB bandit-based Dynamic Embedding Size
Search (DESS) algorithm to minimize the performance regret. In the

method design, the weighted forgetting mechanism is adopted to

reduce interference from outdated data and help the search policy

pay more attention to recent user behaviors. We provide a sublinear

dynamic regret upper bound which guarantees the effectiveness of

our method. To help validate the superiorities of our approach, we

design an embedding size adaptive neural network based on Neural

Collaborative Filtering [45], whose embedding input part can be

shared among different base recommendation models. Following

previous works [28, 29, 51], we conduct the top-𝑘 recommendation

and rating score prediction tasks on four public recommendation

datasets. The experimental results demonstrate the effectiveness of

our method with lower memory cost and higher time efficiency.

To summarize, the main contributions of this work are as follows:

• We model the dynamic embedding size search as the cumulative

regretminimization bandit and propose a non-stationary LinUCB-

based algorithm DESS with a sublinear regret upper bound.

• We provide two effective indicators 𝐼𝑁𝐷 and 𝑃𝑂𝐷 reflecting user

behavior characteristics that can guide the search for appropriate

embedding sizes from a statistical perspective.

• Experiments on four real-world datasets show that DESS outper-
forms the state-of-the-art methods in dynamic embedding size

search for streaming recommender systems.

2 RELATEDWORK
Streaming Recommender System. SRS is a kind of newly devel-

oped recommender system in coping with the high -throughput

user data and their incremental properties [6, 7, 11, 12, 17, 38,

44].Different from the conventional recommender systems [8, 19,

49], SRS needs to update its recommendation strategy in a dy-

namic manner to catch the user interest temporal dynamics. Early

works [5, 39], known as memory-based methods, leverage similar-

ity relationships in aggregated historical data to predict ratings.

Some more advanced works [6, 12, 13]propose to extend popular

static recommender models like collaborative filtering and matrix

factorization to the streaming fashion. However, most previous

methods suffer from a common drawback: dividing the entire data

stream into two segments, training on the former segment until

convergence, and then testing on the latter segment, which is far

from the real SRS scenario. In this work, we split the data of each

time slice to two parts, train on the first part and test on the second

part alternatively along the timeline, in such way to better fit the

real streaming recommendation task.

Embedding Size Search. The embedding size search problem

gradually attracts much attention because of the large models’

increasing memory cost [1, 10] and the rapid development of neu-

ral architecture search techniques [4, 28, 32, 36, 48]. Some initial

works focus on embedding size search on static recommender sys-

tems [15, 23, 24, 30, 33]. These approaches break the long-standing

uniform-size embedding structure design. However, once deter-

mined, these embedding sizes can no longer be dynamically ad-

justed. As streaming recommender systems are more and more

adopted, some recent works [29, 41, 51, 52, 52] start to investigate

the corresponding dynamic embedding size problem which means

the embedding size for each ID is no more fixed. Generally speaking,

previousmethods can be divided into twomainstream schemes: soft-
selection and hard-selection. In the soft-selection scheme [28, 51, 52],

the input of following representation learning layers is actually

the weighted summation of transformed vectors corresponding

to each embedding size. However, this category of methods suffer

from the cold-start problem and the excessive memory cost. In

the hard-selection scheme [29, 41], only one size of embedding is

selected at each time step. Nevertheless, previous works are still

not reasonable enough for modeling the SRS update process. In

addition, the algorithm performance lacks theoretical guarantee

and needs to be improved if applied to the practical application. In

this work, we follow the hard-selection scheme and provide a more

efficient dynamic embedding size search method.

Base Recommendation Model. To make effective recommen-

dations, a number of models have been proposed [34], including

matrix factorization (MF)-based models, distance-based models, and

multi-layer perceptron-based models. Matrix factorization [26] is

a representative and widely-used recommendation method which

applies an inner product between the user and item embeddings to

capture the interactions between users and items. Distance-based

models, generally, compute the Euclidean distance between users

and items for capturing fine-grained user preference [20]. On the

other hand, Neural Collaborative Filtering (NCF) [19], a type of

multi-layer perceptron-based method, models user-item interac-

tions through neural network architectures, so that high-level non-

linearities within the user-item interaction can be learned. Follow-

ing the settings in previous works [23, 29, 51, 52], we also choose

NCF as the base recommendation model. Furthermore, we modify

its architecture to fit the dynamic embedding size setting, which is

detailed in Section 4.5. MF-based models and distance-based models

are also explored to prove the wide applicability of our method.

Dynamic Embedding Size Search with Minimum Regret for Streaming Recommender System CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

3 PRELIMINARIES
In this section, we first formalize the streaming recommendation

problem. Then we derive the dynamic embedding size search task

from the streaming model update process.

3.1 Streaming Recommendation
One prominent advantage of SRS is that they can update and

respond instantaneously for catching users’ intentions and de-

mands [5, 6]. Due to the high volume of online data, previous

works [17, 29, 42, 43, 51] split the user-item interaction stream into

short-term segments. Following this setting, we split the whole data

stream of length 𝐿 into 𝑇 consecutive segments 𝐷1, ..., 𝐷𝑡 , ..., 𝐷𝑇
with the same length |𝐷𝑡 | (𝐿 = |𝐷𝑡 | ×𝑇). Each segment 𝐷𝑡 is then

divided into the training part 𝐷𝑡𝑟𝑡 and test part 𝐷𝑡𝑒𝑡 . On this ba-

sis, the streaming recommendation task is formulated as: given

𝐷𝑡𝑟
1
, 𝐷𝑡𝑟

2
, ..., 𝐷𝑡𝑟𝑡 , ..., 𝐷

𝑡𝑟
𝑇
, it is supposed to train a model𝑀 to predict

the user preference in 𝐷𝑡𝑒
1
, 𝐷𝑡𝑒

2
, ..., 𝐷𝑡𝑒𝑡 , ..., 𝐷

𝑡𝑒
𝑇
, where 𝐷𝑡𝑟𝑡 ∪ 𝐷𝑡𝑒𝑡 =

𝐷𝑡 and 𝐷
𝑡𝑟
𝑡 ∩𝐷𝑡𝑒𝑡 = ∅. The overall performance is evaluated by the

average recommendation accuracy over the entire timeline.

3.2 Dynamic Embedding Size Search
With the wide use of deep recommendation models, embeddings are

largely investigated to represent users, items, and other auxiliary

features. However, the conventional design of setting identical

and static embedding sizes suffers from the unsatisfying model

prediction performance and the unacceptablememory cost. To solve

these problems, many works [21, 23, 29, 41, 52] are proposed for the

embedding size search. To make the search fit into the streaming

scenario, a streaming update process should be first introduced:

the model 𝑀 inherits the parameters from the previous moment

𝑀𝑡−1 and updates itself to 𝑀𝑡 with the current training data 𝐷𝑡𝑟𝑡 .

Following these, the dynamic embedding size search task can be

further formulated: optimizing embedding size search policies 𝜋𝑢
𝑆𝐸

and 𝜋𝑖
𝑆𝐸

which accordingly control user and item embedding sizes

of recommendation model𝑀 at each timestep, so that the overall

model performance can be satisfying (see Figure 1). For the ease of

illustration, 𝜋𝑆𝐸 refers to both 𝜋𝑢
𝑆𝐸

and 𝜋𝑖
𝑆𝐸

.

4 METHODOLOGY
In this section, we introduce our approach for dynamic embedding

size search in streaming recommender systems. First, we model

the embedding size search as a bandit problem and formalize the

objective. Then we analyze and quantify the characteristics that

can determine optimal embedding sizes from a statistical perspec-

tive. Next, we elaborate the non-stationary LinUCB-based DESS
method (shown in Algorithm 1) to conduct the dynamic embedding

size search, and provide the corresponding theoretical guarantee

analysis. Finally, we introduce the structure of our streaming rec-

ommendation model—an embedding size adaptive neural network.

4.1 Embedding Size Search as Bandits
The target of the embedding size search in streaming scenarios is

to optimize the average/cumulative model performance by select-

ing appropriate embedding sizes at different timesteps. From the

temporal view, the search process is, in nature, a sequence of size

value decisions according to data characteristics. To solve this se-

quential decision-making problem, Multi-armed Bandits (MAB) are

a promising approach where a fixed limited set of resources must

be allocated between competing choices in a way that maximizes

the sum of rewards earned through a sequence of lever pulls [27].

Therefore, to consider the model’s recommendation performance

at each timestep, we model the dynamic embedding size search as

a bandit problem, and the objective of the search policy 𝜋𝑆𝐸 is to

minimize the expected dynamic pseudo-regret defined as:

𝑅𝑇 = 𝑚𝑎𝑥
𝜋 :𝐶→1,...,𝐾

E[
𝑇∑︁
𝑡=1

L𝑡𝑒𝑡 (𝜋𝑆𝐸) −
𝑇∑︁
𝑡=1

L𝑡𝑒𝑡 (𝜋)], (1)

where L𝑡𝑒𝑡 (𝜋𝑆𝐸) is the batch loss of𝑀 with embedding sizes deter-

mined by search policy 𝜋𝑆𝐸 on test data 𝐷𝑡𝑒𝑡 . L𝑡𝑒𝑡 (𝜋) is the model

test loss received from pulling the arm that an arbitrary policy 𝜋

recommends at the current state. 𝐶 is the set of context informa-

tion that can help the policy 𝜋 select the best arm from the arm

candidates 1, ..., 𝐾 at different timesteps. Note that the ideal 𝑅𝑇 is

obtained when 𝜋 is the optimal one. Thus, the pseudo regret for

𝜋𝑆𝐸 is the difference between the actual loss it incurs and the loss

incurred by the best possible embedding size search policy [27].

Since the test data is actually inaccessible in the training phase,

we utilize the validation data to interact with the bandit directly

and update the search policy. Especially, in the streaming recom-

mendation scenario, the union of training data and test data at the

last timestep 𝑡 − 1 (𝐷𝑡−1) can be regarded as the validation data for

timestep 𝑡 [29, 51]. Then, the corresponding dynamic regret is:

𝑅𝑇 = 𝑚𝑎𝑥
𝜋 :𝐶→1,...,𝐾

𝑇∑︁
𝑡=1

|𝐷𝑡−1 |∑︁
𝑗=1

𝑟 𝑣𝑎𝑡,𝑗 (𝜋 (x)) −
𝑇∑︁
𝑡=1

|𝐷𝑡−1 |∑︁
𝑗=1

𝑟 𝑣𝑎𝑡,𝑗 (𝜋𝑆𝐸 (x)), (2)

where 𝑟 𝑣𝑎
𝑡,𝑗

(𝜋 (x)) is the reward received from pulling the arm that

the 𝜋 recommends in the validation phase. 𝑟 𝑣𝑎
𝑡,𝑗

(𝜋𝑆𝐸 (x)) is the re-
ward actually received by our 𝜋𝑆𝐸 on validation data. The x indi-

cates the context as the input of the bandit model, whose details

will be provided in Section 4.2. Here, we further explain the reward

𝑟𝑡, 𝑗 , noted as 𝑟𝑙 (𝑙 = (𝑡 − 1) × |𝐷𝑡 | + 𝑗, 1 ≤ 𝑙 ≤ 𝐿) and the arm 𝑎.

Reward. The reward 𝑟𝑙 is defined based on the performance

L𝑛𝑒𝑤
𝑙

of the temporarily updated embedding structure by 𝜋𝑆𝐸 and

the previous structure’s performanceL𝑜𝑙𝑑
𝑙

on 𝑙-th interaction of the

validation data stream. To fairly compare the effectiveness of such

two embedding structures with different sizes, we temporarily tune

their parameters with the 𝑙-th interaction. 𝑟𝑙 here is designed as a

binary variable and can only be 0 or 1. The formula is following:

𝑟𝑙 =

{
1, 𝑖 𝑓 L𝑜𝑙𝑑

𝑙
− L𝑛𝑒𝑤

𝑙
> 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

0, 𝑖 𝑓 L𝑜𝑙𝑑
𝑙

− L𝑛𝑒𝑤
𝑙

< 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
(3)

In the real-world application, 𝑟𝑙 can be designed as a continuous

real number L𝑜𝑙𝑑
𝑙

− L𝑛𝑒𝑤
𝑙

for performance optimization.

Arm. The arms 𝑎 here are actually different embedding size

candidates or other embedding size adjustment operations, like

increasing or decreasing embedding sizes.

4.2 Embedding Size Indicator
To effectively determine the sizes of embeddings, the indicator to in-

crease or decrease embedding sizes is worth exploring because only

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Bowei He et al.

Figure 1: Illustration of the dynamic embedding size search process. At each timestep, the embedding layer outputs embedding
vectors with sizes determined by the 𝜋𝑆𝐸 . After transformation, they will be input into Neural CF layers for further inference.

browsing frequency is not sufficient to prompt the search policy

to make the correct decision. According to [2, 14, 22], a larger data

dispersion degree indicates a greater amount of information the

data contains. Thus, when the data dispersion degree is large, the

size of the embedding should be large to represent the whole histor-

ical information. Motivated by this, we follow a similar fashion to

quantify the amount of information in historical data by leveraging

the explicit item features independent of the user-item interactions.

Assume we have a set of raw feature vectors F1, F2, .., F𝑁 corre-

sponding to each item. Till 𝑙-th interaction of the data stream, let

user 𝑢 have rated a subset of the items indexed by 𝑖1, 𝑖2, ..., 𝑖𝐻 , then

the interest diversity of user 𝑢 can be formulated by the centroid

diameter distance:

𝐼𝑁𝐷𝑢
𝑙
=

1

𝐻

𝐻∑︁
ℎ=1

√︃
(F𝑖ℎ − Q𝑢

𝑙
) (F𝑖ℎ − Q𝑢

𝑙
)⊤, (4)

where Q𝑢
𝑙
is the mean vector of F𝑖1 , F𝑖2 , ..., F𝑖𝐻 and represents the

user 𝑢’s mean interest. For item 𝑖 , assume it has been rated by users

𝑢1, 𝑢2, .., 𝑢𝐻 till 𝑙-th interaction, the diversity of its property is:

𝑃𝑂𝐷𝑖
𝑙
=

1

𝐻

𝐻∑︁
ℎ=1

√︃
(Q𝑢ℎ
𝑙

− P𝑖
𝑙
) (Q𝑢ℎ

𝑙
− P𝑖

𝑙
)⊤, (5)

where P𝑖
𝑙
is the mean vector ofQ𝑢1

𝑙
,Q𝑢2

𝑙
, ...,Q𝑢𝐻

𝑙
and represents item

𝑖’s mean property. In this way, we define the context x𝑙 for the user
embedding size search policy 𝜋𝑢

𝑆𝐸
as the combination of frequency

and information diversity (𝐹𝑅𝐸𝑢
𝑙
, 𝐼𝑁𝐷𝑢

𝑙
), where 𝐹𝑅𝐸𝑢

𝑙
is the oc-

currence number of user 𝑢 in historical data. The context for the

item embedding size search policy 𝜋𝑖
𝑆𝐸

is defined as (𝐹𝑅𝐸𝑖
𝑙
, 𝑃𝑂𝐷𝑖

𝑙
)

similarly, where 𝐹𝑅𝐸𝑖
𝑙
is the occurrence of item 𝑖 in historical data.

4.3 Non-stationary LinUCB-based Search Policy
Despite the effectiveness of linear MAB, some recent works [25,

37, 47, 50] focus on a more general setting: the constraint that re-

quires fixed optimal regression parameters 𝜽 ∗ is relaxed, which is

more suitable for our scenario. To better balance the exploration

and exploitation in such a setting, we design our non-stationary

LinUCB-based DESS algorithm for dynamic embedding size search.

Its effectiveness on memory cost and time efficiency will be elabo-

rated in Section 5. Due to the fact that the accumulated historical

data for each user and item can only become richer and richer as

data streams in, we simplify the embedding size search as a binary

selection problem, where 𝜋𝑆𝐸 only needs to decide if increasing the

embedding size to the subsequent larger size candidate.

The algorithm details are described in Algorithm 1. Generally, the

whole algorithm is separated to two parts: Updating Non-stationary
LinUCB-based Search Policy 𝜋𝑆𝐸 and Updating recommendation
model, which are executed one after the other at each timestep

𝑡 . Different arms 𝑎 in our method share the common context in-

formation 𝑥𝑙 about the frequency and interest/property diversity:

x𝑙,1 = x𝑙,2 = ... = x𝑙,𝐾 = x𝑙 . Based on the assumption that the

expected payoff 𝑟𝑙 is linear to its context x𝑙 ∈ R𝑑 , we set dis-

joint linear reward models 𝜽1, 𝜽2, ..., 𝜽𝐾 for corresponding arms

1, 2..., 𝐾 to estimate rewards when selecting different arms. Note

that in this paper, 𝜽𝑙,𝑎 indicates the parameter of 𝜽𝑎 at the 𝑙-th

user-item interaction. For such disjoint linear models, we use ridge

regression [35] to solve them. And the objective is to minimize

the regularized weighted residual sum of squares, thus the
ˆ𝜽𝑙,𝑎 is

defined as follows:

𝑎𝑟𝑔𝑚𝑖𝑛
𝜽 ∈R𝑑

(
𝑙∑︁
𝑠=1

1(𝑎𝑠 = 𝑎)𝛾𝑙−𝑠 (𝑟𝑠 − ⟨x𝑠,𝑎, 𝜽 ⟩)2 + 𝜆∥𝜽 ∥2

2
), (6)

where ⟨, ⟩ indicates the inner product operation, and 𝑎𝑠 is the arm
selected by the 𝜋𝑆𝐸 at 𝑠-th interaction (1 ≤ 𝑠 ≤ 𝑙). Eq. 6 is actu-

ally the regularized weighted least-squared estimator of 𝜽 ∗𝑎 at 𝑙-th

interaction. The conduct of the weighted forgetting mechanism

(discount factor 𝛾) is to reduce the interference from the outdated

data [3, 37, 47] and help 𝜋𝑆𝐸 pay more attention to the recent

Dynamic Embedding Size Search with Minimum Regret for Streaming Recommender System CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

user/item behaviors. Furthermore, we have the solution for Eq. 6:

ˆ𝜽𝑙,𝑎 = V−1

𝑙,𝑎

𝑙∑︁
𝑠=1

1(𝑎𝑠 = 𝑎)𝛾𝑙−𝑠x𝑠,𝑎𝑟𝑠 ,

𝑤ℎ𝑒𝑟𝑒 V𝑙,𝑎 =

𝑙∑︁
𝑠=1

1(𝑎𝑠 = 𝑎)𝛾𝑙−𝑠x𝑠,𝑎x⊤𝑠,𝑎 + 𝜆I𝑑 ,

(7)

and I𝑑 denotes the 𝑑-dimensional identity matrix. Here, similar

to V−1

𝑙,𝑎
, we define a matrix Ṽ𝑙,𝑎 as an intermediate variable in our

algorithm to help obtain the confidence ellipsoid:

Ṽ𝑙,𝑎 =

𝑙∑︁
𝑠=1

1(𝑎𝑠 = 𝑎)𝛾2(𝑙−𝑠)x𝑠,𝑎x⊤𝑠,𝑎 + 𝜆I𝑑 , (8)

which is strongly connected to the variance of the estimator
ˆ𝜽𝑙,𝑎 .

Applying the online version of ridge regression [25, 37, 50], the

update formulations of V𝑎𝑙 , Ṽ𝑎𝑙 , ˆ𝜽𝑎𝑙 are shown as follows:

V𝑎𝑙 = 𝛾V𝑎𝑙 + x𝑙,𝑎𝑙 x
⊤
𝑙,𝑎𝑙

+ (1 − 𝛾)𝜆I𝑑 ,

Ṽ𝑎𝑙 = 𝛾
2Ṽ𝑎𝑙 + x𝑙,𝑎𝑙 x

⊤
𝑙,𝑎𝑙

+ (1 − 𝛾2)𝜆I𝑑 ,

b𝑎𝑙 = 𝛾b𝑎𝑙 + 𝑟𝑙x𝑙,𝑎𝑙 , ˆ𝜽𝑎𝑙 = V−1

𝑎𝑙
b𝑎𝑙 ,

(9)

where b is an intermediate variable to help compute
ˆ𝜽 . The initial-

ization of V𝑎, Ṽ𝑎, ˆ𝜽𝑎 for each arm 𝑎 is provided in the Initialize
part of Algorithm 1. During the algorithm execution, we use Eq. 9

to update such variables for the selected arm at each interaction.

Finally, we introduce how our non-stationary LinUCB-based pol-

icy 𝜋𝑆𝐸 selects themost promising arm. Following relatedworks [25,

37, 47, 50], we first obtain the confidence value 𝛽𝑙 (coefficient of

confidence ellipsoid) which controls the exploration level:

𝛽𝑙 =
√
𝜆𝑆 + 𝜎

√︄
2 log(1

𝛿
) + 𝑑 log(1 + 𝑈

2 (1 − 𝛾2𝑙)
𝜆𝑑 (1 − 𝛾2)

), (10)

where 𝑆 is the upper bound for parameters (∀𝑙, 𝑎, ∥𝜽 ∗
𝑙,𝑎

∥2 ≤ 𝑆),𝑈 is

the upper bound for contexts (∀𝑙, 𝑎, ∥x𝑙,𝑎 ∥2 ≤ 𝑈), 𝜎 is the subgaus-

sian constant, and 𝛿 is a pre-designated probability. Based on this,

we can derive the upper confidence bound (UCB) which considers

both the estimated reward and the uncertainty (confidence ellip-

soid) of the reward estimation, in such a way to better balance the

exploration and exploitation for arm selection:

𝑈𝐶𝐵(𝑎) = x⊤
𝑙,𝑎

ˆ𝜽𝑎 + 𝛽𝑙
√︃
x⊤
𝑙,𝑎
V−1

𝑎 Ṽ𝑎V−1

𝑎 x𝑙,𝑎 . (11)

After computing𝑈𝐶𝐵(𝑎) for each arm, 𝜋𝑆𝐸 will select the arm with

the highest UCB score as the embedding size control command.

4.4 Theoretical Analysis
We provide the upper regret bound analysis for DESS in this sec-

tion. As far as we know, this is the first theoretical regret bound

for the non-stationary contextual linear bandit with disjoint arm-

associated parameter vectors 𝜽𝑎 .

Definition 1. Parameter Variation Budget. For the search
policy, the true oracle parameters {𝜽 ∗

𝑙,𝑎
}𝐿
𝑙=1

are actually unknown.
And their shifts can be quantified by the variation budget which

Algorithm 1 Dynamic Embedding Size Search (DESS)

Input:
𝜂 (learning rate for recommender model), probability 𝛿 ,

subgaussianity constant 𝜎 , context dimension 𝑑 , regularization 𝜆,

upper bound for contexts𝑈 , upper bound for parameters 𝑆 ,

discount factor 𝛾

Initialize: initial recommender model𝑀0,

b𝑎 = 0R𝑑 ,V𝑎 = 𝜆I𝑑 , Ṽ𝑎 = 𝜆I𝑑 , ˆ𝜽𝑎 = 0R𝑑 for each arm 𝑎,

user-item interaction data stream {(𝐷𝑡𝑟
1
, 𝐷𝑡𝑒

1
), ..., (𝐷𝑡𝑟

𝑇
, 𝐷𝑡𝑒
𝑇
)}

which contains 𝑇 segments of data in chronological order

Process:
1: for each 𝑡 = 1,2,...,𝑇 do
2: /∗ Update Non-stationary LinUCB-based Policy 𝜋𝑆𝐸 ∗/
3: Collect the last segment of data (𝐷𝑡𝑟

𝑡−1
, 𝐷𝑡𝑒
𝑡−1

)
4: for each interaction in (𝐷𝑡𝑟

𝑡−1
∪ 𝐷𝑡𝑒

𝑡−1
) do

5: Receive context x𝑙,𝑎 for each arm 𝑎

6: 𝛽𝑙 =
√
𝜆𝑆 + 𝜎

√︂
2 log(1

𝛿
) + 𝑑 log(1 + 𝑈 2 (1−𝛾2𝑙)

𝜆𝑑 (1−𝛾2))

7: 𝑈𝐶𝐵(𝑎) = x⊤
𝑙,𝑎

ˆ𝜽𝑎 + 𝛽𝑙
√︃
x⊤
𝑙,𝑎
V−1

𝑎 Ṽ𝑎V−1

𝑎 x𝑙,𝑎 for each 𝑎

8: 𝑎𝑙 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈A (𝑈𝐶𝐵(𝑎))
9: Temporarily change embedding sizes according to 𝑎𝑙
10: Temporarily tune embedding parameters

11: Input interaction into𝑀𝑡−1 and receive reward 𝑟𝑙
12: Updating: V𝑎𝑙 = 𝛾V𝑎𝑙 + x𝑙,𝑎𝑙 x

⊤
𝑙,𝑎𝑙

+ (1 − 𝛾)𝜆I𝑑 , Ṽ𝑎𝑙 =
𝛾2Ṽ𝑎𝑙 +x𝑙,𝑎𝑙 x

⊤
𝑙,𝑎𝑙

+(1−𝛾2)𝜆I𝑑 , b𝑎𝑙 = 𝛾b𝑎𝑙 +𝑟𝑙x𝑙,𝑎𝑙 , ˆ𝜽𝑎𝑙 = V−1

𝑎𝑙
b𝑎𝑙

13: end for
14:

15: /∗ Update Recommendation Model𝑀 ∗/
16: Collect the current segment of data (𝐷𝑡𝑟𝑡 , 𝐷𝑡𝑒𝑡)
17: Output actions 𝑎𝑡 from 𝜋𝑆𝐸
18: Permanently change the embedding sizes for user-item

pairs in 𝐷𝑡𝑟𝑡 according to 𝑎𝑡

19: Input 𝐷𝑡𝑟𝑡 to𝑀𝑡−1 and update the model to𝑀𝑡

20: Report the accuracy and test loss of𝑀𝑡 on test data 𝐷𝑡𝑒𝑡
21: end for

measures the magnitude of non-stationarity in the dynamical data
stream. This can be defined as:

𝐵∗𝐿 :=

𝐿−1∑︁
𝑙=1

𝑚𝑎𝑥
𝑎

∥𝜽 ∗
𝑙+1,𝑎

− 𝜽 ∗
𝑙,𝑎

∥2 . (12)

Assumption 1. Variation Budget Upper Bound
We assume that the variation budget is bounded by a known quantity
𝐵𝐿 similar to the previous literature [3, 25, 37, 50], that is 𝐵∗

𝐿
≤ 𝐵𝐿 .

Assumption 2. Bounded Reward
We assume that the reward 𝑟𝑙 is bounded by the subgaussianity con-
stant 2𝜎 , 0 ≤ 𝑟𝑙 ≤ 2𝜎 which can be easily satisfied. For example, in
the above algorithm description part, the 𝜎 can be set as 0.5.

Lemma 1. Let prediction error𝐸𝑟 (x𝑙,𝑎, 𝜽𝑙,𝑎) = |⟨x𝑙,𝑎, 𝜽 ∗𝑙,𝑎⟩−⟨x𝑙,𝑎, 𝜽𝑙,𝑎⟩|,
𝑘 = 𝑠𝑢𝑝

x,𝜽
⟨x, 𝜽 ⟩, 𝑐 = 𝑖𝑛𝑓

x,𝜽
⟨x, 𝜽 ⟩, and 𝐷 ∈ N∗. With probability at least

1 − 𝛿 : for all 𝑎 ≥ 1, the following holds:

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Bowei He et al.

𝐸𝑟 (x𝑙,𝑎, 𝜽𝑙,𝑎) ≤ 2𝑘
𝑐 𝛽𝑙 ∥x𝑙,𝑎 ∥V−1

𝑙,𝑎
+ 2𝑘𝑈

𝑐

√︃
1 + 𝐿2

𝜆 (1−𝛾) (
2𝑘𝑆𝑈 2

𝜆

𝛾𝐷

1−𝛾 +

𝑘

√︃
𝑑

𝜆 (1−𝛾)
∑𝑙−1

𝑠=𝑙−𝐷 ∥𝜽 ∗𝑠,𝑎 − 𝜽 ∗
𝑠+1,𝑎

∥2).

Lemma 2. Similar to [37], let {x𝑠,𝑎∗
𝑙
}𝑙
𝑠=1

a sequence in R𝑑 such
that ∥x𝑠,𝑎∗

𝑙
∥2 ≤ 𝑈 for all 𝑠 ∈ N∗. 𝑎∗

𝑙
is the optimal arm that 𝜋𝑆𝐸

should select at 𝑙-th interaction. For 𝑙 ≥ 1, define𝑉𝑙,𝑎∗
𝑙

:=
∑𝑙
𝑠=1

1(𝑎𝑠 =
𝑎∗
𝑙
)𝛾𝑙−𝑠x𝑠,𝑎∗

𝑙
x⊤
𝑠,𝑎∗

𝑙

+ 𝜆I𝑑 . Given 𝜆 ≥ 0, the following inequality holds:∑𝐿
𝑙=1

∥x𝑙,𝑎∗
𝑙
∥V−1

𝑙,𝑎∗
𝑙

≤ 2 max(1, 𝐿2/𝜆) (𝑑𝐿 log(1

𝛾)+𝑑 log(1+𝑈
2 (1−𝛾𝐿)
𝜆𝑑 (1−𝛾))).

Theorem 1. Under the assumptions above, the regret of the DESS
algorithm is bounded for all 𝛾 ∈ (0, 1) and integer 𝐷 ≥ 1, with the
probability at least 1 − 𝛿 , by

𝑅𝐿 ≤
√︁

32 max(1,𝑈 2/𝜆) 𝑘𝑐 𝛽𝐿
√
𝑑𝐿

√︂
𝐿 log(1

𝛾) + log(1 + 𝑈 2 (1−𝛾𝐿)
𝜆𝑑 (1−𝛾)) +

8𝑘2𝑆𝑈 3𝛾𝐷

𝑐𝜆 (1−𝛾) 𝐿 +
8𝑘2𝑆𝑈 4𝛾𝐷

𝑐𝜆
3

2 (1−𝛾)
3

2

𝐿 + 4𝑘2𝑈𝐷

𝑐
√
𝜆

√︃
𝑑

1−𝛾 𝐵𝐿 +
4𝑘2𝑈 2𝐷
𝑐𝜆

√
𝑑

1−𝛾 𝐵𝐿 .

Corollary 1. By choosing discount factor𝛾 = 1−(𝐵𝐿/(
√
𝑑𝐿))2/5,

the regret of DESS algorithm is asymptotically upper bounded with
high probability by a term O(𝑑9/10𝐵

1/5

𝐿
𝐿4/5) when 𝐿 → ∞.

The detailed proofs of theorem 1 and corollary 1 are provided in

Appendix B.1 and B.2, respectively.

4.5 Embedding Size Adaptive Neural Network
4.5.1 Model Inference. As mentioned in Section 2, based on the

NCFmodel [19, 23, 29], we design an embedding size adaptive neural
network shown in Figure 2 as the streaming recommendation model

𝑀 in Algorithm 1. Different from the conventional design that as-

signs one or a set of embedding sizes for each user or item in ad-

vance [19, 28, 29, 45, 49], the embedding size of each user or item can

be selected flexibly from a group of size candidates at each timestep

in our proposed structure. Suppose that the embedding size group

for users and items are both 𝑠𝑖𝑧𝑒 = [𝑠0, 𝑠1, .., 𝑠𝑛] (𝑠0 < 𝑠1 ... < 𝑠𝑛) for
simplicity. Actually, the candidates for each user or item can be dif-

ferent. The initial size for each ID is set as the minimum value 𝑠0 of

the candidate group. {W01, b0,W12, b1, ...,W𝑛−1𝑛, b𝑛} is a sequence
of linear transformation parameters that will unify the embedding

size to 𝑠𝑛 before inputting it to the representation learning part.

Assume that the current embedding size for user 𝑢 is 𝑠𝑖 and the

embedding vector is E𝑢
𝑖
, the forward propagation process in embed-

ding input part is: Ê𝑢
𝑖+1

= W𝑖𝑖+1E𝑢𝑖 + b𝑖 , .., Ê𝑢𝑛 = W𝑛−1𝑛Ê𝑢𝑛−1
+ b𝑛−1.

The embedding vector will be transformed into the 𝑠𝑛-dimensional

space R𝑠𝑛 . Then, an additional batch normalization with Tanh

activation is necessary to tackle the magnitude differences be-

tween inner-batch transformed embeddings Ê𝑢𝑛 if processing a mini-

batch:̂E𝑢𝑛 = 𝑡𝑎𝑛ℎ

(
Ê𝑢𝑛−𝜇𝐵√︃
(𝜎2

𝐵
)2+𝜖

)
, where 𝜇𝐵 is the mini-batch mean and

𝜎2

𝐵
is the mini-batch variance. The batch size can be set as 1 when

inferring a single sample. After executing a similar transforma-

tion on item 𝑖 , we obtain the transformed user embedding Ê𝑢𝑛 and

item embedding Ê𝑖𝑛 with the same dimension 𝑠𝑛 . The following

representation learning part is a sequence of BatchNorm, Linear,

and Tanh activation layers: h1 = 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝑐𝑎𝑡 (Ê𝑢𝑛, Ê𝑖𝑛)), h2 =

𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝐿𝑖𝑛𝑒𝑎𝑟 (h1)), ŷ𝑢𝑖 = 𝐿𝑖𝑛𝑒𝑎𝑟 (𝑇𝑎𝑛ℎ(h2)) .

4.5.2 Embedding Warm Initialization. When receiving the increas-

ing embedding size command from 𝜋𝑆𝐸 , there are two intuitive

ways to initialize the embedding vector with the new embedding

size: 1) zero initialization/random initialization, and 2) initialization

with the information from previous embedding vectors. We take

the second type of initialization and name it as embedding warm
initialization (EWI). We perform a linear transformation sharing

the parameters with above on the previous embedding E𝑖 ∈ R𝑠𝑖 and
obtain E𝑖+1 in the 𝑠𝑖+1-dimensional space R𝑠𝑖+1

: E𝑖+1 = W𝑖𝑖+1E𝑖 +b𝑖 .
After the embedding warm initialization, the model inference

starts from E𝑖+1 and follows the forward propagation introduced

in Section 4.5.1.

5 EXPERIMENTS
In this section, to comprehensively demonstrate the effectiveness

of our method, we mainly focus on the following questions:

• RQ1: Does our method achieve better recommendation accuracy

than the state-of-art methods along the timeline?

• RQ2: Does our method get sublinear regret on selecting embed-

ding sizes, outperforming previous methods?

• RQ3: Whether our method consumes less computer memory

compared with baseline methods?

• RQ4: Whether our method is more time-efficient than baselines

for streaming recommendation?

• RQ5: Whether our method is applicable to different base rec-

ommendation models, like matrix factorization-based model and

distance-based model?

• RQ6: Whether Embedding Warm Initialization technique con-

tributes to the model performance improvement?

5.1 Experiment Setting
5.1.1 Datasets. We evaluate our method on four public recom-

mender system datasets. The data and code will be released soon.

• ml-20m [16]: This dataset describes 5-star rating and free-text

tagging activity from MovieLens, a movie recommendation ser-

vice. It contains 20,000,263 ratings created by 138,493 users over

27,278 movies between January 09, 1995 and March 31, 2015.

• ml-latest [16]: This is a recently released dataset from Movie-

Lens and contains 27,753,444 ratings by 283,228 users over 58,098

movies between January 09, 1995 and September 26, 2018.

• Amazon-Books [18]: This dataset contains book reviews from

Amazon, including 22,507,154 ratings spanning May 1996 - July

2014. We download the ratings-only dataset and preprocess it

like [40]. In the filtered dataset, each user has reviewed at least

20 books and each book has been reviewed by at least 20 users.

• Amazon-CDs [18]: This is a CD review dataset also from the

website above, including 3,749,003 ratings covering the same

time span. A similar preprocessing operation is executed and the

filtering threshold is set as 10.

5.1.2 Tasks. We adopt the top-𝑘 recommendation and rating score

prediction tasks to evaluate the effectiveness of our method.

• Top-𝑘 Recommendation: This is one of the most common rec-

ommendation tasks to evaluate the model’s ability on inferring

Dynamic Embedding Size Search with Minimum Regret for Streaming Recommender System CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

User Embedding Input

Linear

Output

Embedding Size Adaptive
Neural Network

Tanh

…

……

……

……

Representation Learning

Embedding Warm
Initialization

Batch
Norm1d

Linear
Batch

Norm1d

Tanh

Item Embedding Input

Size[n]Size[1] Size[2]Size[0]

𝑾𝟎𝟏𝑬𝟎 + 𝒃𝟎 𝑾𝟏𝟐
෡𝑬𝟏 + 𝒃𝟏

𝑾𝒏−𝟏 𝒏
෡𝑬𝒏−𝟏+ 𝒃𝒏−𝟏

𝑾𝟏𝟐𝑬𝟏 + 𝒃𝟏

𝑾𝒏−𝟏 𝒏
෡𝑬𝒏−𝟏 + 𝒃𝒏−𝟏

𝑾𝒏−𝟏 𝒏
෡𝑬𝒏−𝟏 + 𝒃𝒏−𝟏

Batch
Norm1d

User Item

Figure 2: The illustration of embedding size adaptive neural network structure. Only the user embedding input is shown in
detail above. The item embedding input structure is similar. Different colors indicate the model inference process at different
timesteps. The dashed rectangles represent the tensors that do not participate in the current forward propagation. The hollow
rectangles represent intermediate tensors that will not be saved after the neural network forward propagation.

users’ intentions. In detail, the model needs to recommend a list

of items with the length 𝑘 to each user according to their histori-

cal interaction records. The accuracy is measured with metrics

Recall@𝑘 and NDCG@𝑘 . Recall@𝑘 indicates what percentage

of a user’s rated items can emerge in the list. NDCG@𝑘 is the

normalized discounted cumulative gain at 𝑘 , which takes the po-

sition of correctly recommended items into consideration. Here,

we take 𝑘 to be 10.

• Rating Score Prediction: Similar to previous works [28, 29, 51],

we also utilize the following two rating score prediction subtasks

as the benchmark: binary classification andmulticlass classi-
fication. The former can be understood as predicting if a user

likes an item. And the latter can be used to estimate the discretized

interest degree of users. For binary classification task, when pre-

processing the raw data, we set the rating scores greater than the

threshold 3.5 to 1.0 and others to 0.0. The model performance is

measured with classification accuracy and mean-squared-error

loss [29, 51]. For multiclass classification task, we regard the

5-star rating scores as 5 classes. The model performance is mea-

sured with classification accuracy and cross-entropy loss [29, 51].

5.1.3 Baselines. Following methods serve as the baselines:

• Fixed: The base Neural Collaborative Filtering [19] model, where

the embedding sizes for users and items are both identical and

fixed. To fairly compare experimental results, , we set the embed-

ding sizes to 128 and 222, regarding the two versions Fixed-128
and Fixed-222 of the model, respectively.

• DARTS [28]: A type of soft-selection algorithm developed from

the neural architecture search. The weight vectors regarding em-

bedding sizes are trained directly with gradient backpropagation.

• AutoEmb [51]: Another type of soft-selection algorithm similar to

DARTS. However, the weight vectors are the outputs of controller

neural networks independent of the recommendation model.

• ESAPN [29]: A type of hard-selection algorithm using the REIN-

FORCE algorithm [46] as the controller to dynamically choose

the suitable embedding size for corresponding users and items.

Due to the fact that Amazon datasets cannot provide the raw item

feature vectors, we run both DESS-CV (with (𝐹𝑅𝐸𝑢
𝑙
, 𝐼𝑁𝐷𝑢

𝑙
) and

(𝐹𝑅𝐸𝑖
𝑙
, 𝑃𝑂𝐷𝑖

𝑙
) as embedding size search policies input) and DESS-

FRE (with only historical frequency as search policies input) on

ml-20m and ml-latest datasets while only DESS-FRE on Amazon-

Books and Amazon-CDs datasets. The comparison between DESS-

CV and DESS-FRE can be regarded as the ablation study to the

embedding size indicators proposed in Section 4.2. All the results

below are the average of five trials with different random seeds.

5.2 Results and Analysis
5.2.1 Recommendation Accuracy (RQ1). In Tables 1, 2 and 3,

we report the average performance of recommendation models on

test data sequence {𝐷𝑡𝑒
1
, ..., 𝐷𝑡𝑒

𝑇
} of each task. First, we observe that

DESS performs significantly better than the fixed methods and the

soft-selection methods. This proves that hard-selection, generally
speaking, is a more effective way to search embedding sizes. Sec-

ond, we notice that our DESS-FRE and DESS-CV achieve better

results compared with the state-of-the-art hard-selection algorithm

ESAPN on all tasks and datasets. This demonstrates the effective-

ness of DESS algorithm in improving the streaming recommenda-

tion. Third, by comparing the results of DESS-FRE with ESAPN and

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Bowei He et al.

Table 1: The top-𝑘 recommendation performance on all four datasets. Our results are statistically significant (t-test, 𝑝 <= 0.01).

Methods

ml-20m ml-latest Amazon-Books Amazon-CDs

Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10

Fixed-128 0.0774 0.0785 0.0779 0.0783 0.0568 0.0404 0.0759 0.0402

Fixed-222 0.0769 0.0779 0.0785 0.0791 0.0573 0.0416 0.0742 0.0397

DARTS 0.0786 0.0791 0.0784 0.0795 0.0597 0.0435 0.0778 0.0432

AutoEmb 0.0771 0.0782 0.0783 0.0792 0.0571 0.0412 0.0780 0.0429

ESAPN 0.0831 0.0842 0.0825 0.0837 0.0632 0.0475 0.0816 0.0468

DESS-FRE (w/o EWI) 0.0858 0.0867 0.0866 0.0869 0.0658 0.0494 0.0843 0.0487
DESS-FRE 0.0866 0.0876 0.0874 0.0879 0.0672 0.0507 0.0852 0.0493

DESS-CV (w/o EWI) 0.0875 0.0888 0.0879 0.0887
N/A

DESS-CV 0.0898 0.0891 0.0884 0.0895

Table 2: The performance of both rating score binary classification and rating score multiclass classification tasks on ml-20m
dataset and ml-latest dataset. Our results are statistically significant (t-test, 𝑝 <= 0.01).

Methods

ml-20m ml-latest

Binary Classification Task Multi Classification Task Binary Classification Task Multiclass Classification Task

Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss

Fixed-128 70.93% 0.1904 47.88% 1.1870 70.98% 0.1900 48.28% 1.1804

Fixed-222 71.09% 0.1896 48.19% 1.1799 71.13% 0.1892 48.62% 1.1727

DARTS 71.07% 0.1897 48.24% 1.1781 71.12% 0.1892 48.73% 1.1702

AutoEmb 70.54% 0.1917 47.99% 1.1820 71.00% 0.1892 48.61% 1.1718

ESAPN 71.62% 0.1861 49.24% 1.1539 71.40% 0.1870 49.52% 1.1510

DESS-FRE (w/o EWI) 71.89% 0.1843 49.55% 1.1463 71.77% 0.1849 49.89% 1.1435
DESS-FRE 71.93% 0.1837 49.67% 1.1438 71.98% 0.1838 50.05% 1.1383

DESS-CV (w/o EWI) 72.29% 0.1823 49.98% 1.1358 72.35% 0.1819 50.24% 1.1327
DESS-CV 73.28% 0.1768 51.19% 1.1103 73.07% 0.1779 50.73% 1.1216

Table 3: The performance of both rating score binary classification and rating score multiclass classification tasks on Amazon-
Books dataset and Amazon-CDs dataset. Our results are statistically significant (t-test, 𝑝 <= 0.01).

Methods

Amazon-Books Amazon-CDs

Binary Classification Task Multi Classification Task Binary Classification Task Multiclass Classification Task

Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss

Fixed-128 80.75% 0.1459 54.31% 1.1225 80.28% 0.1545 57.17% 1.1638

Fixed-222 80.87% 0.1433 54.85% 1.1026 80.09% 0.1540 57.24% 1.1536

DARTS 81.02% 0.1415 55.22% 1.0895 80.50% 0.1498 57.74% 1.1305

AutoEmb 80.60% 0.1456 54.77% 1.0910 80.48% 0.1504 57.89% 1.1232

ESAPN 81.51% 0.1357 56.84% 1.0437 81.44% 0.1399 59.50% 1.0616

DESS-FRE (w/o EWI) 81.62% 0.1342 57.14% 1.0372 81.82% 0.1367 60.02% 1.0453
DESS-FRE 81.76% 0.1336 57.35% 1.0329 81.93% 0.1361 60.15% 1.0491

DESS-CV with DESS-FRE, respectively, we can find that the non-

stationary LinUCB-based search policy 𝜋𝑆𝐸 and the two indicators

(𝐼𝑁𝐷 and 𝑃𝑂𝐷) both contribute to the performance gains.

5.2.2 Embedding Size Selection Regret (RQ2). We report the

regret in terms of users due to the space limitation. The item side

has a similar trend. Fixed embedding size methods and soft-selection
methods have no regret because they actually use the embeddings

of all sizes at the same time. We illustrate the regret curves of

two rating score prediction tasks on each dataset in Figure 3. First,

the observed decline in regret connects the aforementioned im-

provement in accuracy, justifying the advantage of modeling the

dynamic embedding size search as bandits. Second, the regret can

be reduced several times to dozens of times compared with ESAPN.

The regret of DESS-CV is a bit lower than that of DESS-FRE. These

demonstrate the effectiveness of 𝜋𝑆𝐸 and also the two indicators.

Third, from the regret curves, we observe the sublinear increase

phenomena of DESS-FRE and DESS-CV, which is also in line with

the regret upper bound guarantee given in Section 4.4.

5.2.3 Model Memory Cost (RQ3). In Figure 4, we calculate

the average number of embedding parameters for each algorithm

on each task. From this figure, we observe that the embedding

parameter quantity of DESS-FRE is much less than that of other

Dynamic Embedding Size Search with Minimum Regret for Streaming Recommender System CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

Figure 3: The regret curves of three hard-selection methods: ESAPN, DESS-FRE, DESS-CV across binary classification and
multiclass classification tasks. DESS-CV cannot be evaluated on the Amazon datasets due to the lack of raw item features.

(a) MovieLens Datasets (b) Amazon Datasets

1e8 1e7

Figure 4: The parameter comparison among different meth-
ods. In the table, “BC” refers to the binary classification task
and “MC’ denotes the multiclass classification task.

four methods. As for ml-20m, the memory consumption of Fixed-

128 and two soft selection approaches are 1.93 times, 3.35 times,

and 3.45 times of DESS-FRE. In the recommendation tasks on ml-

latest dataset, our method only consumes 50.2%, 28.9%, 28.9% and

28.2% memory compared with the Fixed-128, Fixed-222, DARTS,

and AutoEmb, respectively. Moreover, the embedding memory cost

brought by DESS-CV is even less than that of DESS-FRE. Similar

memory overhead savings can also be observed on Amazon datasets.

These all certify that our proposed methods can reduce the memory

cost effectively and contribute to the more efficient algorithm DESS.

5.2.4 Time Efficiency Analysis (RQ4). Time efficiency is also

of great significance when deploying streaming recommendation

models in real world. In the experiments, we count the average

training time and average inference time of our method and em-

bedding size-changeable baselines for the above two classification

tasks on ml-latest and ml-20m datasets. The results are shown in

Figure 5. From the figure, we can observe that the average training

time of ourDESS algorithms is much less that of other soft-selection
and hard-selection methods. More precisely, the training time of

DESS-FRE is no more than 20% ∼ 30% of Darts and is even no

more than 10% of AutoEmb. We can also observe a similar trend in

average inference time histogram. Thus, we can speculate that our

(a) Average Training Time (b) Average Inference Time

Figure 5: The average training time and inference time of
different embedding size search methods in two rating score
prediction tasks on ml-latest dataset and ml-20m dataset.

DESS algorithm holds obvious time efficiency advantage compared

with previous methods. This is actually because that the bandit

inherently has more lighter model and faster decision-making pro-

cess compared with deep neural work-based and reinforcement

learning-based embedding size selection policies. Besides, we can

find that both the average training time and average inference

time of DESS-FRE are less than DESS-CV to some extent. This is

due to the lower input dimension and the smaller linear matrix

in the bandit’s reward model, which finally lead to much faster

computation.

5.2.5 Method Applicability Analysis (RQ5). We also explore

the effects of our method when choosing the matrix factorization-

based model and distance-based model as the base streaming rec-

ommendation models, respectively. Different dynamic embedding

size search methods are evaluated with the rating score binary clas-

sification task on ml-20m and ml-latest datasets. From the accuracy

reported in Table 4, it can be first noticed that the recommendation

models with fixed embedding sizes (Fixed-128 and Fixed-222) are

much worse than that with dynamic embedding sizes. This also

confirms the necessity of the dynamic embedding size search in

the streaming recommendation. Second, we observe that DESS-CV

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Bowei He et al.

Table 4: The binary classification accuracy when adopting
matrix factorization-based model and distance-based model.
Our results are statistically significant (t-test, 𝑝 <= 0.01).

Methods

Matrix Factorization-based Distance-based

ml-20m ml-latest ml-20m ml-latest

Fixed-128 50.03% 50.08% 54.87% 55.36%

Fixed-222 50.07% 50.04% 52.02% 52.59%

DARTS 70.74% 70.92% 70.17% 70.17%

AutoEmb 69.77% 70.32% 70.30% 70.44%

ESAPN 70.21% 71.86% 71.55% 71.03%

DESS-FRE 72.75% 72.61% 71.46% 71.84%
DESS-CV 73.84% 73.25% 73.02% 72.49%

outperforms all the baselines regardless of datasets and recommen-

dation models. Even the DESS-FRE without the support from 𝐼𝑁𝐷

and 𝑃𝑂𝐷 is still superior to all the previous methods in most cases.

Such experimental results demonstrate that our algorithm can be a

general approach towards more effective dynamic embedding size

search in streaming recommendation.

5.2.6 Ablation Study (RQ6). To validate the effectiveness of Em-
bedding Warm Initialization technique proposed in Section 4.5, we

also conduct the experiments of DESS-FRE (w/o EWI) and DESS-CV

(w/o EWI) on four datasets, whose results are shown in Tables 1, 2,

and 3. We can observe that, DESS-FRE and DESS-CV both achieve

stable performance gain over DESS-FRE (w/o EWI) and DESS-CV

(w/o EWI), respectively, especially onml-20m andml-latest datasets.

The limited improvement on Amazon datasets may be due to the

bottleneck of the base recommender model itself. These results

demonstrate that initializing the embeddings with previous infor-

mation via a simple linear transformation can effectively benefit

the recommendation performance along the timeline.

6 CONCLUSION
In this work, we first rethink the streaming model update process

and then model the dynamic embedding size as a bandit prob-

lem. Based on the embedding size indicator analysis, we provide

the DESS algorithm and obtain a sublinear dynamic regret upper

bound as the theoretical guarantee. The results of recommenda-

tion accuracy, memory cost, and time consumption across various

recommendation tasks on four open datasets demonstrate the ef-

fectiveness of our method. In the future, we plan to explore the

automated tuning methods of other hyperparameters like learning

rate in the streaming machine learning.

ACKNOWLEDGMENTS
This work was supported by the Start-up Grant (No. 9610564) and

the Strategic Research Grant (No. 7005847) of City University of

Hong Kong.

REFERENCES
[1] Bilge Acun, Matthew Murphy, Xiaodong Wang, Jade Nie, Carole-Jean Wu, and

Kim Hazelwood. 2021. Understanding training efficiency of deep learning rec-

ommendation models at scale. In 2021 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). IEEE, 802–814.

[2] Samuele Battaglino and Erdem Koyuncu. 2020. A generalization of principal com-

ponent analysis. In ICASSP 2020-2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 3607–3611.

[3] Omar Besbes, Yonatan Gur, and Assaf Zeevi. 2014. Stochastic multi-armed-bandit

problem with non-stationary rewards. Advances in neural information processing
systems 27 (2014).

[4] Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. 2017. Smash:

one-shot model architecture search through hypernetworks. arXiv preprint
arXiv:1708.05344 (2017).

[5] Badrish Chandramouli, Justin J Levandoski, Ahmed Eldawy, and Mohamed F

Mokbel. 2011. Streamrec: a real-time recommender system. In Proceedings of the
2011 ACM SIGMOD International Conference on Management of data. 1243–1246.

[6] Shiyu Chang, Yang Zhang, Jiliang Tang, Dawei Yin, Yi Chang, Mark A Hasegawa-

Johnson, and Thomas S Huang. 2017. Streaming recommender systems. In

Proceedings of the 26th international conference on world wide web. 381–389.
[7] Chen Chen, Hongzhi Yin, Junjie Yao, and Bin Cui. 2013. Terec: A temporal

recommender system over tweet stream. Proceedings of the VLDB Endowment 6,
12 (2013), 1254–1257.

[8] Xiong-Hui Chen, Bowei He, Yang Yu, Qingyang Li, Zhiwei Qin, Wenjie Shang,

Jieping Ye, and Chen Ma. 2023. Sim2Rec: A Simulator-based Decision-making

Approach to Optimize Real-World Long-term User Engagement in Sequential

Recommender Systems. arXiv preprint arXiv:2305.04832 (2023).
[9] Weiyu Cheng, Yanyan Shen, and Linpeng Huang. 2020. Differentiable neural

input search for recommender systems. arXiv preprint arXiv:2006.04466 (2020).
[10] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks

for youtube recommendations. In Proceedings of the 10th ACM conference on
recommender systems. 191–198.

[11] Abhinandan S Das, Mayur Datar, Ashutosh Garg, and Shyam Rajaram. 2007.

Google news personalization: scalable online collaborative filtering. In Proceed-
ings of the 16th international conference on World Wide Web. 271–280.

[12] Robin Devooght, Nicolas Kourtellis, and Amin Mantrach. 2015. Dynamic matrix

factorization with priors on unknown values. In Proceedings of the 21th ACM
SIGKDD international conference on knowledge discovery and data mining. 189–
198.

[13] Ernesto Diaz-Aviles, Lucas Drumond, Lars Schmidt-Thieme, and Wolfgang Nejdl.

2012. Real-time top-n recommendation in social streams. In Proceedings of the
sixth ACM conference on Recommender systems. 59–66.

[14] George H Dunteman. 1989. Principal components analysis. Number 69. Sage.

[15] AA Ginart, Maxim Naumov, Dheevatsa Mudigere, Jiyan Yang, and James Zou.

2021. Mixed dimension embeddings with application to memory-efficient recom-

mendation systems. In 2021 IEEE International Symposium on Information Theory
(ISIT). IEEE, 2786–2791.

[16] F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History

and context. Acm transactions on interactive intelligent systems (tiis) 5, 4 (2015),
1–19.

[17] Bowei He, Xu He, Yingxue Zhang, Ruiming Tang, and Chen Ma. 2023. Dy-

namically Expandable Graph Convolution for Streaming Recommendation. In

Proceedings of the ACM Web Conference 2023. 1457–1467.
[18] Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual

evolution of fashion trends with one-class collaborative filtering. In proceedings
of the 25th international conference on world wide web. 507–517.

[19] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng

Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th international
conference on world wide web. 173–182.

[20] Cheng-Kang Hsieh, Longqi Yang, Yin Cui, Tsung-Yi Lin, Serge Belongie, and

Deborah Estrin. 2017. Collaborative metric learning. In Proceedings of the 26th
international conference on world wide web. 193–201.

[21] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2011. Sequential model-

based optimization for general algorithm configuration. In International confer-
ence on learning and intelligent optimization. Springer, 507–523.

[22] Arun Jambulapati, Jerry Li, and Kevin Tian. 2020. Robust sub-gaussian principal

component analysis and width-independent schatten packing. Advances in Neural
Information Processing Systems 33 (2020), 15689–15701.

[23] Manas R Joglekar, Cong Li, Mei Chen, Taibai Xu, Xiaoming Wang, Jay K Adams,

Pranav Khaitan, Jiahui Liu, and Quoc V Le. 2020. Neural input search for large

scale recommendation models. In Proceedings of the 26th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining. 2387–2397.

[24] Wang-Cheng Kang, Derek Zhiyuan Cheng, Ting Chen, Xinyang Yi, Dong Lin,

Lichan Hong, and Ed H Chi. 2020. Learning multi-granular quantized embeddings

for large-vocab categorical features in recommender systems. In Companion
Proceedings of the Web Conference 2020. 562–566.

[25] Baekjin Kim and Ambuj Tewari. 2020. Randomized exploration for non-stationary

stochastic linear bandits. In Conference on Uncertainty in Artificial Intelligence.
PMLR, 71–80.

[26] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-

niques for recommender systems. Computer 42, 8 (2009), 30–37.
[27] Tor Lattimore and Csaba Szepesvári. 2020. Bandit algorithms. Cambridge Univer-

sity Press.

Dynamic Embedding Size Search with Minimum Regret for Streaming Recommender System CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

[28] Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2018. Darts: Differentiable

architecture search. arXiv preprint arXiv:1806.09055 (2018).
[29] Haochen Liu, Xiangyu Zhao, Chong Wang, Xiaobing Liu, and Jiliang Tang. 2020.

Automated embedding size search in deep recommender systems. In Proceedings
of the 43rd International ACM SIGIR Conference on Research and Development in
Information Retrieval. 2307–2316.

[30] Siyi Liu, Chen Gao, Yihong Chen, Depeng Jin, and Yong Li. 2021. Learnable

embedding sizes for recommender systems. arXiv preprint arXiv:2101.07577
(2021).

[31] Siyi Liu, Chen Gao, Yihong Chen, Depeng Jin, and Yong Li. 2021. Learnable

Embedding sizes for Recommender Systems. In ICLR. OpenReview.net.
[32] Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. 2018. Neural

architecture optimization. Advances in neural information processing systems 31
(2018).

[33] Fuyuan Lyu, Xing Tang, Hong Zhu, Huifeng Guo, Yingxue Zhang, Ruiming Tang,

and Xue Liu. 2022. OptEmbed: Learning Optimal Embedding Table for Click-

through Rate Prediction. In Proceedings of the 31st ACM International Conference
on Information & Knowledge Management. 1399–1409.

[34] Chen Ma, Liheng Ma, Yingxue Zhang, Ruiming Tang, Xue Liu, and Mark Coates.

2020. Probabilistic metric learning with adaptive margin for top-k recommenda-

tion. In Proceedings of the 26th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining. 1036–1044.

[35] Donald W Marquardt and Ronald D Snee. 1975. Ridge regression in practice. The
American Statistician 29, 1 (1975), 3–20.

[36] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. 2018. Efficient

neural architecture search via parameters sharing. In International conference on
machine learning. PMLR, 4095–4104.

[37] Yoan Russac, Claire Vernade, and Olivier Cappé. 2019. Weighted linear bandits

for non-stationary environments. Advances in Neural Information Processing
Systems 32 (2019).

[38] Yang Song, Ziming Zhuang, Huajing Li, Qiankun Zhao, Jia Li, Wang-Chien Lee,

and C Lee Giles. 2008. Real-time automatic tag recommendation. In Proceedings of
the 31st annual international ACM SIGIR conference on Research and development
in information retrieval. 515–522.

[39] Karthik Subbian, Charu Aggarwal, and Kshiteesh Hegde. 2016. Recommendations

for streaming data. In Proceedings of the 25th ACM International on Conference on
Information and Knowledge Management. 2185–2190.

[40] Jianing Sun, Zhaoyue Cheng, Saba Zuberi, Felipe Pérez, and Maksims Volkovs.

2021. Hgcf: Hyperbolic graph convolution networks for collaborative filtering.

In Proceedings of the Web Conference 2021. 593–601.
[41] Bruno Veloso, Luciano Caroprese, Matthias König, Sónia Teixeira, Giuseppe

Manco, Holger H Hoos, and João Gama. 2021. Hyper-parameter Optimization for

Latent Spaces. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. Springer, 249–264.

[42] Junshan Wang, Guojie Song, Yi Wu, and Liang Wang. 2020. Streaming graph neu-

ral networks via continual learning. In Proceedings of the 29th ACM International
Conference on Information & Knowledge Management. 1515–1524.

[43] Junshan Wang, Wenhao Zhu, Guojie Song, and Liang Wang. 2022. Streaming

Graph Neural Networks with Generative Replay. In KDD ’22: The 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC,
USA, August 14 - 18, 2022. 1878–1888.

[44] Weiqing Wang, Hongzhi Yin, Zi Huang, Qinyong Wang, Xingzhong Du, and

Quoc Viet Hung Nguyen. 2018. Streaming ranking based recommender systems.

In The 41st International ACM SIGIR Conference on Research & Development in
Information Retrieval. 525–534.

[45] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.

Neural graph collaborative filtering. In Proceedings of the 42nd international ACM
SIGIR conference on Research and development in Information Retrieval. 165–174.

[46] Ronald J Williams. 1992. Simple statistical gradient-following algorithms for

connectionist reinforcement learning. Reinforcement learning (1992), 5–32.

[47] Qingyun Wu, Naveen Iyer, and Hongning Wang. 2018. Learning contextual

bandits in a non-stationary environment. In The 41st International ACM SIGIR
Conference on Research & Development in Information Retrieval. 495–504.

[48] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. 2018. SNAS: stochastic

neural architecture search. arXiv preprint arXiv:1812.09926 (2018).
[49] Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie, and Wei-Ying Ma.

2016. Collaborative knowledge base embedding for recommender systems. In

Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining. 353–362.

[50] Peng Zhao, Lijun Zhang, Yuan Jiang, and Zhi-Hua Zhou. 2020. A simple ap-

proach for non-stationary linear bandits. In International Conference on Artificial
Intelligence and Statistics. PMLR, 746–755.

[51] Xiangyu Zhao, Haochen Liu, Wenqi Fan, Hui Liu, Jiliang Tang, Chong Wang,

Ming Chen, Xudong Zheng, Xiaobing Liu, and Xiwang Yang. 2021. Autoemb:

Automated embedding dimensionality search in streaming recommendations. In

2021 IEEE International Conference on Data Mining (ICDM). IEEE, 896–905.
[52] Xiangyu Zhao, Haochen Liu, Hui Liu, Jiliang Tang, Weiwei Guo, Jun Shi, Sida

Wang, Huiji Gao, and Bo Long. 2021. Autodim: Field-aware embedding dimension

searchin recommender systems. In Proceedings of the Web Conference 2021. 3015–
3022.

A NOTATIONS
We summarize the main notations used in this paper in Table 5.

Table 5: Major notations.

𝐾 The number of arms (embedding size candidates)

𝑇 The total number of time steps

𝐿 The length of the whole data stream

𝐶 The set of contexts for non-stationary LinUCB

𝑈 The upper bound of contexts for non-stationary LinUCB

𝑆 The upper bound of parameters in reward models of bandit

𝛾 The discount factor in non-stationary LinUCB bandit

𝑑 The dimension of context vectors for bandit

𝜋𝑢
𝑆𝐸

The dynamic embedding size search policy for users

𝜋𝑖
𝑆𝐸

The dynamic embedding size search policy for items

𝑟𝑙 The reward received at 𝑙-th user-item interaction (𝑙 ≤ 𝐿)

𝜽𝑙,𝑎
The updated parameter of the reward model for arm 𝑎 at

𝑙-th user-item interaction

𝜽 ∗
𝑙,𝑎

The parameter of the oracle reward model for arm 𝑎 at 𝑙-th

user-item interaction

𝑀𝑡 The updated recommendation model at time step 𝑡 (𝑡 ≤ 𝑇)
F𝑖 The raw feature vector for item 𝑖

B THEOREM PROOF
B.1 Proof of Theorem 1

Proof. First recall that 𝑎∗
𝑙
= arg𝑚𝑎𝑥𝑎∈A ⟨x𝑙 , 𝜽 ∗𝑙,𝑎⟩ and x𝑙,1 =

x𝑙,2 = ... = x𝑙,𝐾 = x𝑙,𝑎∗
𝑙
= x𝑙 = x(𝑡, 𝑗) (𝑙 = 𝑡 × |𝐷𝑡 | + 𝑗),

𝑅𝐿 =

𝑇∑︁
𝑡=1

|𝐷𝑣𝑎𝑙
𝑡 |∑︁
𝑗=1

⟨x(𝑡, 𝑗) , 𝜽 ∗(𝑡, 𝑗),𝑎∗(𝑡,𝑗)
⟩ − ⟨x(𝑡, 𝑗) , 𝜽 ∗(𝑡, 𝑗),𝑎 (𝑡,𝑗) ⟩

=

𝐿∑︁
𝑙=1

⟨x𝑙 , 𝜽 ∗𝑙,𝑎∗
𝑙

⟩ − ⟨x𝑙 , 𝜽 ∗𝑙,𝑎𝑙 ⟩

=

𝐿∑︁
𝑙=1

⟨x𝑙 , 𝜽 ∗𝑙,𝑎∗
𝑙

⟩ − ⟨x𝑙 , 𝜽𝑙,𝑎∗
𝑙
⟩ +

𝐿∑︁
𝑙=1

⟨x𝑙 , 𝜽𝑙,𝑎∗
𝑙
⟩ − ⟨x𝑙 , 𝜽𝑙,𝑎𝑙 ⟩

+
𝐿∑︁
𝑙=1

⟨x𝑙 , 𝜽𝑙,𝑎𝑙 ⟩ − ⟨x𝑙 , 𝜽 ∗𝑙,𝑎𝑙 ⟩

=

𝐿∑︁
𝑙=1

⟨x𝑙 , 𝜽𝑙,𝑎∗
𝑙
⟩ − ⟨x𝑙 , 𝜽𝑙,𝑎𝑙 ⟩ +

𝐿∑︁
𝑙=1

⟨x𝑙 , 𝜽 ∗𝑙,𝑎∗
𝑙

⟩ − ⟨x𝑙 , 𝜽𝑙,𝑎∗
𝑙
⟩

+
𝐿∑︁
𝑙=1

⟨x𝑙 , 𝜽𝑙,𝑎𝑙 ⟩ − ⟨x𝑙 , 𝜽 ∗𝑙,𝑎𝑙 ⟩

≤ 2𝑘

𝑐

𝐿∑︁
𝑙=1

𝛽𝑡 [∥x𝑙 ∥𝑉 −1

𝑙,𝑎∗
𝑙

− ∥x𝑙 ∥𝑉 −1

𝑙,𝑎𝑙

] +
𝐿∑︁
𝑙=1

𝐸𝑟 (x𝑙 , 𝜽𝑙,𝑎∗
𝑙
)

+
𝐿∑︁
𝑙=1

𝐸𝑟 (x𝑙 , 𝜽𝑙,𝑎𝑙).

(13)

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Bowei He et al.

Thanks to Lemma 1 and Lemma 2:

𝑅𝐿 ≤
𝐿∑︁
𝑙=1

4𝑘

𝑐
𝛽𝑙 ∥x𝑙 ∥𝑉 −1

𝑙,𝑎∗
𝑙︸ ︷︷ ︸

𝑅1

𝐿

+
𝑇∑︁
𝑙=1

4𝑘𝑈

𝑐

√︄
1 + 𝑈 2

𝜆(1 − 𝛾)
2𝑘𝑆𝑈 2

𝜆

𝛾𝐷

1 − 𝛾︸ ︷︷ ︸
𝑅2

𝐿

+
𝐿∑︁
𝑙=1

4𝑘𝑈

𝑐

√︄
1 + 𝑈 2

𝜆(1 − 𝛾)

𝑙−1∑︁
𝑠=𝑙−𝐷

𝑘

√︄
𝑑

𝜆(1 − 𝛾)𝑚𝑎𝑥𝑎 ∥𝜽
∗
𝑠,𝑎 − 𝜽 ∗𝑠+1,𝑎 ∥)︸ ︷︷ ︸

𝑅3

𝐿

.

(14)

𝑅1

𝐿 ≤
𝐿∑︁
𝑙=1

4𝑘

𝑐
𝛽𝐿 ∥x𝑙 ∥𝑉 −1

𝑙,𝑎∗
𝑙

≤ 4𝑘

𝑐
𝛽𝐿

√
𝐿

√√√ 𝐿∑︁
𝑙=1

∥x𝑙 ∥𝑉 −1

𝑙,𝑎∗
𝑙

(𝐶𝑎𝑢𝑡ℎ𝑦 − 𝑆𝑐ℎ𝑤𝑎𝑟𝑧)

≤ 4𝑘

𝑐
𝛽𝐿

√︂
2𝑑𝐿max(1, 𝑈

2

𝜆
)

√︄
𝐿 log(1

𝛾
) + log(1 + 𝑈

2 (1 − 𝛾𝐿)
𝜆𝑑 (1 − 𝛾)) (𝐿𝑒𝑚𝑚𝑎 2) .

(15)

Because

√︃
1 + 𝑈 2

𝜆 (1−𝜆) can be upper bounded by 1 + 𝑈√
𝜆 (1−𝜆)

:

𝑅2

𝐿 ≤ 8𝑘2𝑆𝑈 3𝛾𝐷

𝑐𝜆(1 − 𝛾) 𝐿 +
8𝑘2𝑆𝑈 4𝛾𝐷

𝑐𝜆
3

2 (1 − 𝛾)
3

2

𝐿

𝑅3

𝐿 ≤ 4𝑘2𝑈𝐷

𝑐
√
𝜆

√︄
𝑑

1 − 𝛾 𝐵𝐿 +
4𝑘2𝑈 2𝐷

𝑐𝜆

√
𝑑

1 − 𝛾 𝐵𝐿 .
(16)

Add such three components together, we have:

𝑅𝐿 ≤ 𝑅1

𝐿 + 𝑅
2

𝐿 + 𝑅
3

𝐿

≤
√︁

32 max(1,𝑈 2/𝜆)𝑘
𝑐
𝛽𝐿

√
𝑑𝐿

√︄
𝐿 log(1

𝛾
) + log(1 + 𝑈

2 (1 − 𝛾𝐿)
𝜆𝑑 (1 − 𝛾))+

8𝑘2𝑆𝑈 3𝛾𝐷

𝑐𝜆(1 − 𝛾) 𝐿 +
8𝑘2𝑆𝑈 4𝛾𝐷

𝑐𝜆
3

2 (1 − 𝛾)
3

2

𝐿 + 4𝑘2𝑈𝐷

𝑐
√
𝜆

√︄
𝑑

1 − 𝛾 𝐵𝐿 +
4𝑘2𝑈 2𝐷

𝑐𝜆

√
𝑑

1 − 𝛾 𝐵𝐿 .

(17)

Thus, the theorem 1 is proved. □

B.2 Proof of Corollary 1
Proof. By neglecting the logarithmic term,

𝛽𝐿
√
𝑑𝐿

√︁
𝐿 log(1/𝛾) ∼ 𝑑𝐿 𝐵

1/5

𝐿
𝑑−1/10

𝐿1/5
= 𝑑9/10𝐵

1/5

𝐿
𝐿4/5

𝛾𝐷𝐿/(1 − 𝛾)3/2 ∼ 𝑒− log𝐿𝐿(𝑑1/5𝐿2/5

𝐵
2/5

𝐿

)3/2 = 𝑑3/10𝐵
−3/5

𝐿
𝐿3/5

√
𝑑

1−𝛾 𝐷𝐵𝐿 ∼ 𝑑1/2𝐵𝐿 (𝑑
1/5𝐿2/5

𝐵
2/5

𝐿

)2 = 𝑑9/10𝐵
1/5

𝐿
𝐿4/5

.

Thus, with high probability, we have:

𝑅𝐿 = O𝐿→∞ (𝑑9/10𝐵
1/5

𝐿
𝐿4/5).

□

C IMPLEMENTATION DETAILS
For the fair comparison, we set the embedding size candidates of

the last three methods and our DESS as {2, 4, 8, 16, 64, 128}, which
is also consistent with previous related researches [28, 29, 51]. All

the methods share the embedding size adaptive neural network

designed in 4.5 as the streaming recommendation model. We use

the Adam optimizer with an initial learning rate as 0.001 and a

regularization parameter as 0.001. The hidden layer size of the

recommendation model is set to 512. The min-batch size is set as

500. The discount factor 𝛾 is set as 0.99. The subguassian constant

𝜎 is set as 3.0. Without specifications, the hyper-parameters are

set same as the original paper. We implement our algorithm with

PyTorch and test it on the NVIDIA Titan-RTX GPU with 24 GB

memory.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Streaming Recommendation
	3.2 Dynamic Embedding Size Search

	4 Methodology
	4.1 Embedding Size Search as Bandits
	4.2 Embedding Size Indicator
	4.3 Non-stationary LinUCB-based Search Policy
	4.4 Theoretical Analysis
	4.5 Embedding Size Adaptive Neural Network

	5 Experiments
	5.1 Experiment Setting
	5.2 Results and Analysis

	6 Conclusion
	Acknowledgments
	References
	A Notations
	B Theorem Proof
	B.1 Proof of Theorem 1
	B.2 Proof of Corollary 1

	C Implementation Details

