
RecRec: Algorithmic Recourse for Recommender Systems
Sahil Verma

vsahil@cs.washington.edu
University of Washington

Seattle, WA, USA

Ashudeep Singh
ashudeepsingh@pinterest.com

Pinterest, Inc.
San Francisco, CA, USA

Varich Boonsanong
varicb@cs.washington.edu
University of Washington

Seattle, WA, USA

John P. Dickerson
john@cs.umd.edu

University of Maryland
College Park, MD, USA

Chirag Shah
chirags@uw.edu

University of Washington
Seattle, WA, USA

Abstract
Recommender systems play an essential role in the choices peo-
ple make in domains such as entertainment, shopping, food, news,
employment, and education. The machine learning models under-
lying these recommender systems are often enormously large and
black-box in nature for users, content providers, and system de-
velopers alike. It is often crucial for all stakeholders to understand
the model’s rationale behind making certain predictions and rec-
ommendations. This is especially true for the content providers
whose livelihoods depend on the recommender system. Drawing
motivation from the practitioners’ need, in this work, we propose
a recourse framework for recommender systems, targeted towards
the content providers. Algorithmic recourse in the recommenda-
tion setting is a set of actions that, if executed, would modify the
recommendations (or ranking) of an item in the desired manner. A
recourse suggests actions of the form: “if a feature changes 𝑋 to
𝑌 , then the ranking of that item for a set of users will change to
𝑍 .” Furthermore, we demonstrate that RecRec is highly effective
in generating valid, sparse, and actionable recourses through an
empirical evaluation of recommender systems trained on three real-
world datasets. To the best of our knowledge, this work is the first
to conceptualize and empirically test a generalized framework for
generating recourses for recommender systems. Full version of the
paper is available at http://arxiv.org/abs/2308.14916.

CCS Concepts
• Information systems→ Recommender systems; • Comput-
ing methodologies→ Machine learning.

Keywords
Algorithmic Recourse, Recommender Systems, Explainable Recom-
mender Systems

ACM Reference Format:
Sahil Verma, Ashudeep Singh, Varich Boonsanong, John P. Dickerson,
and Chirag Shah. 2023. RecRec: Algorithmic Recourse for Recommender
Systems. In Proceedings of the 32nd ACM International Conference on In-
formation and Knowledge Management (CIKM ’23), October 21–25, 2023,

This work is licensed under a Creative Commons Attribution-
NonCommercial International 4.0 License.

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0124-5/23/10.
https://doi.org/10.1145/3583780.3615181

Birmingham, United Kingdom. ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/3583780.3615181

1 INTRODUCTION
Recommender systems are ubiquitous in online platforms today.
They have a major influence on our choices in domains ranging
from entertainment, social media, and shopping to news and edu-
cation. These systems operate by filtering items from a large set to
provide the most relevant ones to the user. Recommender systems
can broadly be classified into two categories, content filtering and
collaborative filtering [2, 5, 18, 21]. Content filtering represents
each item using a set of features and recommends items to users
based on the similarity to items consumed by the user in the past
[3, 7, 14]. For example, if a user has purchased a cell phone recently,
a content filtering system would recommend a phone case to the
user based on its similarity to the phone. Collaborative filtering-
based recommender systems recommend items to a user based on
other users’ interests who have a similar user history. For example,
if a user recently bought a cell phone, a collaborative filtering-based
recommender system would recommend the user with a phone case
based on the information that other users who bought a cell phone
also bought a phone case in the past.
Modern recommender systems are black-boxmodels that has spurred
the development of inherently interpretable recommender models
or techniques to explain the factors influencing the recommenda-
tions [27]. We have also seen the rapid adoption of incorporating
explainability in real-world recommender systems. Facebook offers
“Why am I seeing this ad?” for every sponsored advertisement on
its platform, and Amazon offers reasons why a product is recom-
mended to you tab. These explanations are broadly termed as feature
attribution explanations as they highlight a part of the features that
lead to the recommendations.
All these explanations are primarily geared towards the end-users
of the recommender platforms However, recommender systems are
usually multi-stakeholder platforms with content providers and
the system developers’ interests baked into the system [1, 20, 28].
And these stakeholders also need transparency into the system.
Since the content providers are dependent on the platform for their
livelihood, they are interested in understanding the factors that
influence their product’s rank in the recommendations [6, 10, 11].
There have been several studies to understand the perspective of
content providers offering services on several kinds of such plat-
forms. Jhaver et al. [12] did a study with several Airbnb hosts to
understand their perspectives. Rahman [16] interviewed freelancers

4325

http://arxiv.org/abs/2308.14916
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1145/3583780.3615181
https://doi.org/10.1145/3583780.3615181
https://doi.org/10.1145/3583780.3615181
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583780.3615181&domain=pdf&date_stamp=2023-10-21

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Sahil Verma, Ashudeep Singh, Varich Boonsanong, John P. Dickerson, and Chirag Shah

working on Upwork. Razaq et al. [17] interviewd sellers on hand-
made product platform Etsy. Most content providers expressed the
helplessness they face in understanding the factors that influence
their product’s rank on the platform [8, 12, 16, 17], and would like
to gain transparency into it.
The kind of explainability that the content providers seek is similar
to counterfactual explanations in classification systems [23, 24].
In general, counterfactual explanations describe a causal situation
of the form: ‘If I change X to Y, the outcome will change to Z’.
Counterfactual explanations are frequently employed to answer
questions like “What change in my features would help me to get
the loan?”. In recommender systems, a set of factors that improves
the rank of a product offer a causal explanation of what changes
would lead to an improved ranking for it. This set of factors are
termed as recourse if the content providers can alter them to im-
prove their product’s rank. Since studies have shown that providing
transparency into the algorithmic system improves the user’s trust
and adoption of the platforms [13], the motivating reason for in-
corporating counterfactual explanations in recommender systems
is even more compelling.
The primary contribution of our work is to conceptualize a gener-
alized framework for generating algorithmic recourse-based expla-
nations for recommender systems. In this work, we use the terms
counterfactual explanations and algorithmic recourse interchange-
ably, as we are using counterfactuals to provide recourses to the
content providers, system developers, or curious end-users of a
recommender system. Under this framework, we propose a novel
algorithm, RecRec, that generates algorithmic recourses for a real-
world recommender systems. RecRec casts the problem of finding
recourses as an optimization problem that is solved using gradient
descent in the feature space.
We first establish the desirable properties of a recourse in recom-
mender systems (Section 2) and then cast the recourse generation
problem as an optimization problem (Section 3), which RecRec
solves. We conduct experiments with three different recommender
systems and show RecRec’s efficacy in generating recourses that
achieve high success rate while satisfying the other desirable prop-
erties (Section 4). We make the following key contributions:

(1) We establish the desirable properties for algorithmic recourses
in recommender systems (Section 2).

(2) We propose a novel approach called RecRec to generate recourses
for a broad class of recommender system architectures (Section 3).

(3) We empirically demonstrate the effectiveness of RecRec through
extensive experiments on three recommender systems trained
on real-world datasets (Section 4).

2 DESIRABLE PROPERTIES OF
ALGORITHMIC RECOURSE

To be effective for a content provider, a recourse in a recommender
system setting should satisfy several desirable properties:

(1) Valid: A recourse when executed should lead to an increased ex-
posure for the concerned item among the users of the target group,
and therefore should have an improved rank after the recourse.

(2) Sparse Changes: A recourse should not change many features of
the item. Being close to the original features makes the recourse
more easily achievable [15].

(3) Minimal side-effect : A recourse should ideally only move the
concerned item to an improved rank and have minimal side-effect
on the ranks of the other items [19] (specially near the top ranks).

3 RecRec’s ALGORITHM TO GENERATE
RECOURSE

This section formulates the recourse from the perspective of a
content provider wanting to change the features of an item so that
it gets more exposure for users in a target group, i.e., within the
top-𝑘 recommendations for these users.
Given an item’s original features, 𝑟 , the goal is to find updated
features 𝑟 ′, such that the item, item, is recommended within the
top-𝑘 ranks for a group of target users In content filtering based
systems, the features of an item are its attributes that are used to
measure the similarity between different items, e.g. genres of a
movie or book. Table 1 lists the notation used in this section.

Table 1: Notations for RecRec’s Algorithm
Notation Description

U: Set of users
I: Set of items
I: {𝑣𝑖 : 𝑖 ∈ 𝐼 , 𝑣𝑖 ∈ R𝑓 }, 𝑣𝑖 is the item features for item i.
R 𝑗 ∈ R |𝐼 𝑗 | : R 𝑗 [𝑘] denotes the rating given by user j to item 𝐼 𝑗 [𝑘]
S: Set of target users
a: The item for which recourse is being sought

ALGORITHM 1: Generate recourse to move an item to the top-k
recommendations for a target group of users.
Input : Item features I, the target user group S, ratings given by each user R, the

concerned item a, the desired rank of the item (e.g. top-10), hyperparameter 𝜆,
hyperparameter LearningRate

Output :New item feature for concerned item a: 𝑣∗𝑎
1 Function Compute_Recourse(I, S, R, a,DesiredRank, LearningRate, 𝜆)
2 iterations← 0
3 va, v′a ← I[a]
4 S′ ← S
5 while iterations < maxiterations do
6 loss← −

(∑
j∈S′ vaI⊤j ⊙ Rj

)
+ 𝜆 ∗

v′a − va

1
// In each iteration, perform a gradient descent step for the loss

7 v′a ← gradient_descent(LearningRate, loss)
// Get the updated rank of the item for each user in S

8 newrank← get_updated_ranks(I, v′a, R, S) // Remove users from S for

whom the concerned item is within the desired rank

9 for u ∈ S do
10 if newrank[u] ∈ DesiredRank then
11 S′ ← S \ u
12 return v′a
13 Function get_updated_ranks(I, v′a, R, S)

// Compute the new score of each item for each user

14 for u ∈ S do
15 newscore← ∅
16 for z ∈ I do
17 newscore[z] ← ∑

vzI⊤j ⊙ Rj
// sort the newscore in descending order to generate new ranks

18 newrank[u] ← arg sortz∈I newscore[z]
19 return newrank

Equation (1) shows the objective function that we need to optimize
to generate a recourse that achieves the desired change in the rank
of the item while not changing its feature too much.

𝑣∗𝑎 = argmax
𝑣′𝑎

∑
𝑗 ∈𝑆

𝑣 ′𝑎I⊤𝑗 ⊙ R 𝑗 𝑠 .𝑡 .

𝑣 ′𝑎 − 𝑣𝑎

0 ≤ 𝜖 (1)

4326

RecRec: Algorithmic Recourse for Recommender Systems CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

Weuse gradient descent to optimize the objective function forwhich
we need encode the twofold goal as a constrained optimization
problem with sparsity inducing L1 norm as the constraint (with 𝜆

as the hyperparameter).

argmin
𝑣′𝑎

−
(∑
𝑗 ∈𝑆

𝑣𝑎I⊤𝑗 ⊙ R 𝑗

)
+ 𝜆 ∗

𝑣 ′𝑎 − 𝑣𝑎

1 (2)

Algorithm 1 provides the algorithm to generate recourses for con-
tent filtering based recommender systems. The algorithm takes as
input the features of all item I, the target user group 𝑆 , the ratings
given by the users R, the item for which a recourse is desired 𝑎, and
the desired rank for the item 𝐷𝑒𝑠𝑖𝑟𝑒𝑑𝑅𝑎𝑛𝑘 . It runs the gradient de-
scent algorithm until convergence. In each iteration, the algorithm
computes the loss given in eq. (2) and updates the features of the
item using the gradient descent algorithm. The first term of the loss
function is only computed for the subset of users in the target group
𝑆 for whom the concerned item has not yet been ranked within
the desired rank (line 9). This helps in two ways: a) encourages the
algorithm to change the item features to move the item within the
desired rank for a larger number of users from the target group,
and b) limits the change in the users’ recommendation lists (which
is another desirable property of a recourse).

Iterative Hard Thresholding We use L1 norm to induce sparsity in
the change between the original and the recourse item features.
However, this might not be sufficient to ensure that the recourse
is sparse. Therefore, after the convergence of algorithm 1, we it-
eratively set the values of the features with the smallest absolute
difference with the original features to the original feature value
at those indices, a process termed as iterative hard thresholding
[4]. This leads to a tradeoff between the number of users for whom
the item is moved within the desired rank (success rate) and the
sparsity of the recourse. We continue iteratively hard thresholding
until we start losing more than a certain percentage of the success
rate (in our experiments we set this threshold to 20%).

4 EVALUATION
We performed experiments using three real-world recommender
systems to measure RecRec’s efficacy, efficiency, and side-effect
when generating recourses for items at various ranks:

(1) MovieLens-100K [9]: This movie recommendation dataset has about
1000 movies and 1700 users who gave a total of 100K ratings. Each
movie has information such as its summary, actors, directors, and
genre. We consider the movie summary as mutable and others as
immutable features. Using standard NLP data processing we featur-
ize each summary in about 9500 dimensions. Dot product between
the feature vectors of two movies determine their similarity. If
two movies are very similar and a user has liked one of them, the
recommender system will recommend the other. MovieLens also
provides the rating a user has given to certain movies which we use
to weigh similarity between movies for providing more accurate
recommendations. The dataset also provides user metadata, like
age and occupation. In experiments, we use age ranges to group
users into 5 equi-sized groups that content providers want to target.

(2) AliEC Ads [22]: This dataset is an ad click prediction dataset pro-
vided by Alibaba. It has about 5600 ads and 13200 users who in-
teracted with 1.4 million ads. For each ad, it provides information

like its category, brand, and price. All features are considered muta-
ble. We one-hot encode all categorical features and use price after
normalization to feature each ad in about 2300 dimensions. Again,
the dot product between feature vectors of two ads determine their
similarity. The dataset also provides user metadata such as age level
and gender. In experiments, we use age level to group users into
five equi-sized groups that content providers want to target.

(3) Goodreads [25, 26]: This book recommendation dataset has about
4300 books and 11200 users who have a total of 1.3 million ratings.
Each book has features like its short description, genre, number
of reviews, hardcover or ebook format. All features are considered
mutable. Using standard NLP data processing, we featurize each
movie description and other features in about 17400 dimensions.
The dot product measures the similarity between two books, and
user ratings are used to weigh similarity. The dataset does not
provide user metadata, and therefore we group users into five equi-
sized groups based on the number of ratings they provided.

4.1 Experimental Methodology
For all three recommender systems, we group the users into 5 equi-
sized group either based on available metadata (like age) or based
on the number of ratings they provided. Our experimental setup
portrays a scenario where a content provider wants to increase
the exposure of their item to a group of users, the target group.
RecRec provides a recourse to the content provider and after its
execution, if the rank of their item improves to being within the
top-𝑘 recommendations for users in the target group, we would say
that the item’s exposure has increased and the provided recourse
was valid. In experiments, we consider an item to have increased
exposure for a user if after the recourse it is within the top-10
recommendation for that user. Even though the content providers
would want to target a large group of users, optimizing the losses
in eq. (2) for all users in the target group can be computationally
expensive. Therefore, we experiment using a sampling procedure.
We randomly sample a small percentage of the users in the target
group andminimize the loss only over them. However, we report the
percentage of users in the entire target group that get an increased
exposure to the item. Intuitively, if we sample more users from
the target group, a higher percentage of users would see the item
within their top-10 recommendations.
Metrics. We report the following metrics for RecRec:

(1) Success Rate: For each recommender system, we report the per-
centage for users from the target group who see the concerned
item withing their top-10 recommendations. We report this vari-
ous sampling sizes. A higher value for this metric is better.

(2) Number of changes required: This metric is computed as the L0
norm of the difference between the original features and the new
features after recourse. A lower value for this metric is better.

(3) Side-effect on user recommendations: To estimate the impact of a
recourse on the users’ original recommendations, wemeasure the
similarity between the them and the new recommendations. We
use rank-biased overlap (RBO) as a measure of similarity between
the two ranked lists. Since the change in recommendations at
top ranks matter more, we weigh them more when measuring
RBO similarity (p = 0.5). A higher value for this metric is better.

All the metrics are reported for items at various original ranks.
Specifically, we generate recourses for items whose original ranks

4327

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Sahil Verma, Ashudeep Singh, Varich Boonsanong, John P. Dickerson, and Chirag Shah

1 1.5 2 2.5 3 3.5 4 5
Target Group Sampling Percentage

0

20

40

60

80

100

Su
cc

es
s R

at
e

Item's original rank: 11

Age < 25
Age 25-30
Age 30-40
Age 40-50
Age > 50

MovieLens 100k

1 1.5 2 2.5 3 3.5 4 5
Target Group Sampling Percentage

0

20

40

60

80

100

Su
cc

es
s R

at
e

Item's original rank: 21

Age < 25
Age 25-30
Age 30-40
Age 40-50
Age > 50

MovieLens 100k

1 1.5 2 2.5 3 3.5 4 5
Target Group Sampling Percentage

0

20

40

60

80

100

Su
cc

es
s R

at
e

Item's original rank: 51

Age < 25
Age 25-30
Age 30-40
Age 40-50
Age > 50

MovieLens 100k

1 1.5 2 2.5 3 3.5 4 5
Target Group Sampling Percentage

0

20

40

60

80

100

Su
cc

es
s R

at
e

Item's original rank: 101

Age < 25
Age 25-30
Age 30-40
Age 40-50
Age > 50

MovieLens 100k

Figure 1: RecRec’s success rate for items at original ranks 11, 21, 51, and 101 for the recommender system trained on MovieLens-100K. RecRec
gets 100% success rate for all user groups and items at all original ranks with very small sampling size starting from 1% of the user group.

0.5 1 5 10 20
Target Group Sampling Percentage

0

20

40

60

80

100

Su
cc

es
s R

at
e

Item's original rank: 11

Age level 1
Age level 2
Age level 3
Age level 4
Age level 5

AliEC Ads

0.5 1 5 10 20
Target Group Sampling Percentage

0

20

40

60

80

100

Su
cc

es
s R

at
e

Item's original rank: 21

Age level 1
Age level 2
Age level 3
Age level 4
Age level 5

AliEC Ads

0.5 1 5 10 20
Target Group Sampling Percentage

0

20

40

60

80

100

Su
cc

es
s R

at
e

Item's original rank: 51

Age level 1
Age level 2
Age level 3
Age level 4
Age level 5

AliEC Ads

0.5 1 5 10 20
Target Group Sampling Percentage

0

20

40

60

80

100

Su
cc

es
s R

at
e

Item's original rank: 101

Age level 1
Age level 2
Age level 3
Age level 4
Age level 5

AliEC Ads

Figure 2: RecRec’s success rate for items at original ranks 11, 21, 51, and 101 for the recommender system trained on AliEC Ads. RecRec gets
more than 80% success for most user groups and items at all original ranks with very small sampling size starting from 1% of the user group,
and increases to 100% for with 20% sampling.

0.1 0.5 1 2 5
Target Group Sampling Percentage

50

60

70

80

90

100

Su
cc

es
s R

at
e

Item's original rank: 11

Group A
Group B
Group C
Group D
Group E

Goodreads

0.1 0.5 1 2 5
Target Group Sampling Percentage

50

60

70

80

90

100

Su
cc

es
s R

at
e

Item's original rank: 21

Group A
Group B
Group C
Group D
Group E

Goodreads

0.1 0.5 1 2 5
Target Group Sampling Percentage

50

60

70

80

90

100

Su
cc

es
s R

at
e

Item's original rank: 51

Group A
Group B
Group C
Group D
Group E

Goodreads

0.1 0.5 1 2 5
Target Group Sampling Percentage

50

60

70

80

90

100

Su
cc

es
s R

at
e

Item's original rank: 101

Group A
Group B
Group C
Group D
Group E

Goodreads

Figure 3: RecRec’s success rate for items at original ranks 11, 21, 51, and 101 for the recommender system trained on Goodreads. RecRec gets
more than 90% success for all user groups and items at all original ranks with very small sampling size starting from 0.5% of the user group,
and increases to 100% for with 2-5% sampling.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 5.0
Target Group Sampling Percentage

15

20

25

30

35

40

45

Pe
rc

en
ta

ge
 o

f f
ea

tu
re

s c
ha

ng
es

MovieLens 100k

0.51.0 5.0 10.0 20.0
Target Group Sampling Percentage

0.05

0.10

0.15

0.20

0.25

Pe
rc

en
ta

ge
 o

f f
ea

tu
re

s c
ha

ng
es

AliEC Ads

0.10.5 1.0 2.0 5.0
Target Group Sampling Percentage

0.015

0.020

0.025

0.030

0.035

Pe
rc

en
ta

ge
 o

f f
ea

tu
re

s c
ha

ng
es

Goodreads
Number of Changes required for each recommender system

Figure 4:The percentage of item’s features that need to be changed to execute the recourse. The plots are for the recommender systems trained
on MovieLens-100K, AliEC Ads, and Goodreads. With increasing sampling percentage, the number of changes required to get a recourse
decreases, and eventually becomes negligible.

are 11, 21, 51, and 101 (item rank averaged over the users in the
target group). For rigorosity, we ensure that an item whose rank is
already within top-10 for more than 1% of the users in the target
group is not considered for getting a recourse.

Discussion of the results and the conclusions are the full version of
the paper available at http://arxiv.org/abs/2308.14916.

References
[1] Himan Abdollahpouri, Robin Burke, and BamshadMobasher. 2017. Recommender

Systems as Multistakeholder Environments. In Proceedings of the 25th Conference

4328

http://arxiv.org/abs/2308.14916

RecRec: Algorithmic Recourse for Recommender Systems CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

on User Modeling, Adaptation and Personalization (Bratislava, Slovakia) (UMAP
’17). Association for Computing Machinery, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/3079628.3079657

[2] Gediminas Adomavicius and Alexander Tuzhilin. 2005. Toward the Next Gener-
ation of Recommender Systems: A Survey of the State-of-the-Art and Possible
Extensions. IEEE Transactions on Knowledge and Data Engineering 17, 6 (jun
2005), 734–749.

[3] Charu C Aggarwal. 2016. Content-based recommender systems. In Recommender
systems. Springer, 139–166.

[4] Thomas Blumensath and Mike E. Davies. 2009. Iterative hard thresholding for
compressed sensing. Applied and Computational Harmonic Analysis 27, 3 (2009),
265–274. https://www.sciencedirect.com/science/article/pii/S1063520309000384

[5] Jesús Bobadilla, Fernando Ortega, Antonio Hernando, and Abraham Gutiérrez.
2013. Recommender systems survey. Knowledge-based systems 46 (2013), 109–
132.

[6] Eliane Léontine Bucher, Peter Kalum Schou, and Matthias Waldkirch. 2020. Paci-
fying the algorithm - Anticipatory compliance in the face of algorithmic man-
agement in the gig economy. Organization 28 (2020), 44 – 67.

[7] Laurent Candillier, Kris Jack, Françoise Fessant, and Frank Meyer. 2009. State-of-
the-art recommender systems. In Collaborative and Social Information Retrieval
and Access: Techniques for Improved User Modeling. IGI Global, 1–22.

[8] Motahhare Eslami, Aimee Rickman, Kristen Vaccaro, Amirhossein Aleyasen,
Andy Vuong, Karrie Karahalios, Kevin Hamilton, and Christian Sandvig. 2015. "I
Always Assumed That I Wasn’t Really That Close to [Her]": Reasoning about
Invisible Algorithms in News Feeds. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems (Seoul, Republic of Korea)
(CHI ’15). Association for Computing Machinery, New York, NY, USA, 10 pages.
https://doi.org/10.1145/2702123.2702556

[9] F. Maxwell Harper and Joseph A. Konstan. 2015. TheMovieLens Datasets: History
and Context. ACM Trans. Interact. Intell. Syst. 5, 4, Article 19 (Dec. 2015), 19 pages.
https://doi.org/10.1145/2827872

[10] Maya Holikatti, Shagun Jhaver, and Neha Kumar. 2019. Learning to Airbnb by
Engaging in Online Communities of Practice. Proc. ACM Hum.-Comput. Interact.
3, CSCW (2019), 19 pages. https://doi.org/10.1145/3359330

[11] Mohammad Hossein Jarrahi andWill Sutherland. 2019. Algorithmic Management
and Algorithmic Competencies: Understanding and Appropriating Algorithms
in Gig Work. In Information in Contemporary Society. Springer International
Publishing, Cham, 578–589.

[12] Shagun Jhaver, Yoni Karpfen, and Judd Antin. 2018. Algorithmic Anxiety
and Coping Strategies of Airbnb Hosts. In Proceedings of the 2018 CHI Con-
ference on Human Factors in Computing Systems (Montreal QC, Canada) (CHI
’18). Association for Computing Machinery, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3173574.3173995

[13] Min Kyung Lee. 2018. Understanding perception of algorithmic decisions: Fair-
ness, trust, and emotion in response to algorithmic management. Big Data &
Society 5 (2018).

[14] Pasquale Lops, Marco De Gemmis, and Giovanni Semeraro. 2011. Content-
based recommender systems: State of the art and trends. Recommender systems
handbook (2011), 73–105.

[15] Tim Miller. 2019. Explanation in artificial intelligence: Insights from the
social sciences. Artificial Intelligence 267 (2019). https://doi.org/10.1016/
j.artint.2018.07.007

[16] Hatim A. Rahman. 2021. The Invisible Cage: Workers’ Reactivity to Opaque
Algorithmic Evaluations. Administrative Science Quarterly 66, 4 (2021), 945–988.
https://doi.org/10.1177/00018392211010118

[17] Lubna Razaq, Beth Kolko, and Gary Hsieh. 2022. Making crafting visible while
rendering labor invisible on the Etsy platform. In Designing Interactive Systems
Conference 2021 (Virtual Event, USA) (DIS ’22). Association for Computing Ma-
chinery, New York, NY, USA, 15 pages.

[18] Kunal Shah, Akshaykumar Salunke, Saurabh Dongare, and Kisandas Antala. 2017.
Recommender systems: An overview of different approaches to recommendations.
In 2017 International Conference on Innovations in Information, Embedded and
Communication Systems (ICIIECS). IEEE, 1–4.

[19] Guy Shani and Asela Gunawardana. 2011. Evaluating Recommendation Systems.
Springer US, Boston, MA, 257–297. https://doi.org/10.1007/978-0-387-85820-3_8

[20] Özge Sürer, Robin Burke, and Edward C. Malthouse. 2018. Multistakeholder
Recommendation with Provider Constraints. In Proceedings of the 12th ACM
Conference on Recommender Systems (Vancouver, British Columbia, Canada)
(RecSys ’18). Association for Computing Machinery, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3240323.3240350

[21] Poonam B Thorat, RMGoudar, and Sunita Barve. 2015. Survey on collaborative fil-
tering, content-based filtering and hybrid recommendation system. International
Journal of Computer Applications 110, 4 (2015), 31–36.

[22] Tianchi. 2018. Ad Display/Click Data on Taobao.com. https://tianchi.aliyun.com/
dataset/dataDetail?dataId=56

[23] Sahil Verma, John Dickerson, and Keegan Hines. 2020. Counterfactual Explana-
tions for Machine Learning: A Review. arXiv:2010.10596 [cs.LG]

[24] Sandra Wachter, Brent Mittelstadt, and Chris Russell. 2018. Counterfactual
Explanations without Opening the Black Box: Automated Decisions and the
GDPR. arXiv:1711.00399 [cs.AI]

[25] Mengting Wan and Julian J. McAuley. 2018. Item recommendation on monotonic
behavior chains. In Proceedings of the 12th ACM Conference on Recommender
Systems, RecSys 2018, Vancouver, BC, Canada, October 2-7, 2018. ACM, 86–94.
https://doi.org/10.1145/3240323.3240369

[26] Mengting Wan, Rishabh Misra, Ndapa Nakashole, and Julian J. McAuley. 2019.
Fine-Grained Spoiler Detection from Large-Scale Review Corpora. In Proceedings
of the 57th Conference of the Association for Computational Linguistics, ACL 2019,
Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers. Association for
Computational Linguistics, 2605–2610. https://doi.org/10.18653/v1/p19-1248

[27] Yongfeng Zhang and Xu Chen. 2020. Explainable Recommendation: A Survey
and New Perspectives. Found. Trends Inf. Retr. 14 (2020), 1–101.

[28] Yong Zheng. 2019. Multi-Stakeholder Recommendations: Case Studies, Methods
and Challenges (RecSys ’19). Association for Computing Machinery, New York,
NY, USA, 2 pages. https://doi.org/10.1145/3298689.3346951

4329

https://doi.org/10.1145/3079628.3079657
https://doi.org/10.1145/3079628.3079657
https://www.sciencedirect.com/science/article/pii/S1063520309000384
https://doi.org/10.1145/2702123.2702556
https://doi.org/10.1145/2827872
https://doi.org/10.1145/3359330
https://doi.org/10.1145/3173574.3173995
https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/10.1177/00018392211010118
https://doi.org/10.1007/978-0-387-85820-3_8
https://doi.org/10.1145/3240323.3240350
https://tianchi.aliyun.com/dataset/dataDetail?dataId=56
https://tianchi.aliyun.com/dataset/dataDetail?dataId=56
https://arxiv.org/abs/2010.10596
https://arxiv.org/abs/1711.00399
https://doi.org/10.1145/3240323.3240369
https://doi.org/10.18653/v1/p19-1248
https://doi.org/10.1145/3298689.3346951

	Abstract
	1 INTRODUCTION
	2 DESIRABLE PROPERTIES OF ALGORITHMIC RECOURSE
	3 RecRec's ALGORITHM TO GENERATE RECOURSE
	4 EVALUATION
	4.1 Experimental Methodology

	References

