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ABSTRACT
Extracting meaningful drug-related information chunks, such as
adverse drug events (ADE), is crucial for preventing morbidity and
saving many lives. Most ADEs are reported via an unstructured
conversation with the medical context, so applying a general en-
tity recognition approach is not sufficient enough. In this paper,
we propose a new multi-aspect cross-integration framework for
drug entity/event detection by capturing and aligning different con-
text/language/knowledge properties from drug-related documents.
We first construct multi-aspect encoders to describe semantic, syn-
tactic, and medical document contextual information by conducting
those slot tagging tasks, main drug entity/event detection, part-of-
speech tagging, and general medical named entity recognition.
Then, each encoder conducts cross-integration with other contex-
tual information in three ways: the key-value cross, attention cross,
and feedforward cross, so the multi-encoders are integrated in
depth. Our model outperforms all SOTA on two widely used tasks,
flat entity detection and discontinuous event extraction.1
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1 INTRODUCTION
The World Health Organization2 defines Adverse Drug Reactions
(ADR) as ‘Harmful, unintended reactions to medicines that occur at
doses normally used for treatment’. According to the WHO, most
ADE-related information and related medications are reported via
an unstructured conversation, such as electronic health records or
social media, with a medical domain context. Hence, a full under-
standing of the unstructured sequence of slot values with in-depth
medical domain expertise is crucial. Due to this nature, general
entity/token tagging frameworks are insufficient for drug-related
entity(DE) extraction. Existing DE extraction research studies have
adopted relevant multiple aspects, such as pre-trained health in-
formatics contextual embedding and external medical knowledge
bases. To handle this multi-aspect data and combine its information,
DE extraction researchers have applied mainly two types of multi-
aspect fusion techniques[8, 21, 23], including early (data-level) fu-
sion [2, 5, 11, 22] and late (decision-level) fusion [3, 14, 25]. Early
fusion techniques focus on combining all individual medical input
aspects into a unified representation before proceeding through
the learning. A clear common representation of all multi-aspects
is crucial so the specific and unique properties of each aspect may
be lost by an early fusion. No doubt that such information leakage
would affect the proper medical/drug entity extraction performance.
On the other hand, late fusion aims to compute separately for each
feature and concatenated thereafter. During late fusion, direct in-
teraction effects between multiple medical aspects are lacking and
tend to ignore some low-level interaction since it is not possible
to update the cost function of the multiple aspect-based models.
An ideal fusion for successful drug-related entity extraction would
synergistically combine multiple aspects and ensure the resultant
product reflects the salient features of different drug-related aspects.

In this paper, we propose a novel multi-aspect cross integration
framework for drug entity detection by capturing and aligning dif-
ferent context/language/knowledge properties from drug-related
documents. To achieve this aim, we first select three aspects, se-
mantic information of drug-related slot tokens, syntactic structure
information of a medical text, and medical domain expertise. Based
on such aspects, we construct multi-aspect encoders to describe
semantic, syntactic, and general medical contextual information
2https://www.who.int/docs/default-source/medicines/safety-of-medicines--adverse-
drug-reactions-jun18.pdf?sfvrsn=4fcaf40_2
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Figure 1: Overview of Multi-aspect Cross Integration Frame-
work. The key-value cross (left) and attention cross (right)
integrationmechanisms are illustrated considering their out-
standing performance (See Section 4.2).

by conducting three different tasks, including main drug entity
detection, part-of-speech tagging, and general medical named en-
tity recognition. Each encoder conducts cross-fusion techniques
to jointly integrate and align with other contextual information.
We apply and validate three different cross-fusion techniques, 1)
key-value cross, 2) attention cross, and 3) feedforward cross, so the
multi-encoders are integrated into depth.

Our Contributions are as follows: 1) We propose a new multi-
aspect cross-integration framework for drug-related entity extrac-
tion that enables synergistic integration and alignment of different
context/language/knowledge properties. 2) Our model (MC-DRE)
outperforms all twelve state-of-the-art models from both Flat and
Discontinuous Drug-related Entity Extraction tasks.

2 MC-DRE
In this study, we utilize the transformer encoder as the fundamental
component to gather multiple aspects of information. We present
details of the input embedding, how to construct the multi-aspect
encoders, and the cross-integration learning and the prediction.

Contextual Input Representation Recently, deep learning ar-
chitectures with pre-trained language models (PLMs) could achieve
state-of-the-art (SOTA) performance on various general domain
NLP tasks, because contextualized embeddings from PLMs repre-
sent different meanings based on the context (e.g, date can mean
time, a kind of fruit, and appointment in disparate texts). More
specifically, some words may have opposite meanings in the medi-
cal domain (e.g, positive usually means something good, but often
refers to the presence of a specific condition, which is typically
not a desirable outcome). Inspired by this, we explored several
medical-specific PLMs, i.e., BioBERT [15], ClinicalBERT [10], and
PubMedBERT [7], and found that PubMedBERT would be the best
performed ‘medical’ contextual embeddings3.

2.1 Multi-aspect Encoders
Both flat drug entity and discontinuous adverse drug event extrac-
tions are token-level tasks, which give a possible label for each
token in a sequence. Due to the complexity of medical texts, it is
necessary to understand the meaning of each token and the gram-
matical and syntactic structure as tokens have different aspects.

3The input embedding ablation studies are already done and will be included in the
Appendix after the acceptance.

Also, overall medical documents would include lots of special ter-
minologies and abbreviations so understanding those terms may
benefit the final prediction. Thus, we use multi-aspect encoders
to obtain drug event semantic, syntactic, and medical document
contextual information by leading different medical slot tagging
tasks. Details of the multi-encoders are presented as follows:

Semantic Encoder Drug entity detection is one of the sub-tasks
of medical spoken language understanding (MSLU), which seeks
to extract semantic elements from input sentences. Inspired by
previous studies [6, 18], we feed the output of the input embedding
module into an encoder to acquire semantic contextual knowledge.

Syntactic Encoder Part-of-speech (POS) tagging is the process
of identifying and labelling the parts of speech in a sentence. This
process aids the model in understanding the syntactic structure.
In this paper, we extract POS tags from two libraries, i.e., spaCy4
and NLTK5, and feed them into an encoder to explore the syntactic
information. Similar to the strategies in the semantic encoder, we
utilise the word representation from the input embedding module
and obtain syntactic-based contextual information as the output.

Domain-Specific Encoder General medical named entities in-
clude such as diseases, treatments, DNA, RNA, protein, and other
medical concepts. The output can support other medical applica-
tions, like clinical information retrieval, and disease surveillance.
Here, based on the contextual embedding from input layer, we ex-
plore four kinds of models in scispaCy [19], and feed them into an
encoder to collect the medical entity-based contextual knowledge.

After obtaining multiple crucial aspects of information by the
above encoders, we focus on exploiting joint learning approaches
to integrate and align information among encoders.

2.2 Cross Learning and Integration
We propose three cross-learning methods to jointly integrate and
align the above multi-aspect encoders. Despite the identical input
in the encoders, the contextual knowledge can be updated via the
backpropagation algorithm within the neural network architecture.

1) key-value input cross The concept of key-value input cross
involves sharing the K and Vmatrices of the multi-head attention in
any two encoders with the third ones. Take semantic (se.) encoder
as the example, the original K and V, i.e., 𝐾𝑠𝑒. and 𝑉𝑠𝑒. , will be
updated by the concatenation of K and V in the syntactic (sy.) and
domain-specific (do.) encoders. Then we feed the attention output
into a dense layer to adjust the tensor dimensions.

𝐾𝑠𝑒.𝑛𝑒𝑤 = 𝑐𝑜𝑛𝑐𝑎𝑡 (𝐾𝑠𝑦., 𝐾𝑑𝑜.),𝑉𝑠𝑒.𝑛𝑒𝑤 = 𝑐𝑜𝑛𝑐𝑎𝑡 (𝑉𝑠𝑦.,𝑉𝑑𝑜.) (1)

𝑐𝑖 = 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑠𝑒.𝑊𝑄𝑠𝑒.

𝑖
, 𝐾𝑠𝑒.𝑛𝑒𝑤𝑊

𝐾𝑠𝑒.𝑛𝑒𝑤

𝑖
,𝑉𝑠𝑒.𝑛𝑒𝑤𝑊

𝑉𝑠𝑒.𝑛𝑒𝑤
𝑖

)
(2)

2) attention cross The knowledge after the multi-head attention
in one encoder will be updated based on the attention score in the
other two. By concatenating the attention output from the sy. and
do. encoders, we will update the attention score in se.

3) feedforward cross The formula for the layer normalization
after the FFN layer in the transformer encoder is written as:

𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥 + 𝐹𝐹𝑁 (𝑥)) (3)

4https://spacy.io/
5https://www.nltk.org/
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Table 1: Overall Performance on 2018 n2c2 with Breakdown F-scores for each entity category. All baselines applied the same
setup as ours, in terms of dataset split and evaluation metrics.

Models ADE Dosage Drug Duration Form Frequency Reason Route Strength Overall
2% 8% 32% 1% 13% 12% 8% 11% 13% 100%

Chen et al. [2] 42.08% 88.37% 86.92% 70.11% 88.99% 90.11% 57.84% 86.73% 92.62% 84.97%
Dai et al. [3] 38.75% 92.67% 93.10% 81.61% 94.94% 96.95% 62.67% 94.70% 97.41% 91.90%
Kim et al. [14] 27.11% 93.93% 95.55% 81.78% 95.46% 97.06% 57.57% 95.40% 97.88% 92.66%
Ju et al. [11] 27.90% 93.95% 95.50% 81.38% 95.43% 97.27% 62.37% 95.52% 98.10% 92.78%
Dandala et al. [5] 46.20% 94.10% 95.40% 83.50% 95.80% 97.00% 67.60% 95.30% 97.40% 92.90%
Narananan et al. [18] 53.08% 93.22% 94.75% 85.65% 95.57% 97.10% 68.57% 95.38% 97.97% 92.91%
Wei at al. [22] 52.95% 94.82% 95.56% 86.24% 95.75% 97.48% 67.49% 95.62% 98.32% 93.45%
Narayanan et al.[17] 56.04% 91.43% 93.39% 77.66% 93.11% 86.11% 65.41% 94.13% 95.74% 94.00%
Ours 61.59% 98.11% 98.86% 93.76% 98.80% 98.84% 87.13% 98.41% 99.43% 98.38%

where x is the input to the FFN layer as introduced in formula 3
For this integration method, information after the FFN sub-layer,
i.e., FFN(x), will be shared among the three encoders, so that we
calculate the layer normalization in se. encoder as:

𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥𝑠𝑒. + 𝑐𝑜𝑛𝑐𝑎𝑡 (𝐹𝐹𝑁 (𝑥𝑠𝑦., 𝐹 𝐹𝑁 (𝑥𝑑𝑜.)))) (4)
where 𝐹𝐹𝑁 (𝑥𝑠𝑦.) and 𝐹𝐹𝑁 (𝑥𝑑𝑜.) are the output of FFN sub-layer
in sy. and do. encoders, respectively. Like semantic encoders, syn-
tactic and domain-specific encoders also fused information from
the other two. Let 𝐽𝑠𝑒. , 𝐽𝑠𝑦. , and 𝐽𝑑𝑜. represent the output from joint
integration learning for the three encoders, respectively.

Drug Entity Extraction Finally, we perform softmax to give
probability distributions over the drug entity, POS, and general
medical NER labels on each token in the three encoders, separately:

𝑃𝑠𝑒. = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐽𝑠𝑒. ∗𝑊 𝑠𝑒. + 𝑏𝑠𝑒.) (5)

𝑃𝑠𝑦. = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐽𝑠𝑦. ∗𝑊 𝑠𝑦. + 𝑏𝑠𝑦.) (6)

𝑃𝑑𝑜. = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐽𝑑𝑜. ∗𝑊 𝑑𝑜. + 𝑏𝑑𝑜.) (7)
The multi-aspect cross integration model is trained on the sum of
the cross entropy losses for the three tasks.

3 EVALUATION SETUP
Two popular public benchmark datasets were applied. 1) Flat Drug
Entity: The second track in the 2018 National NLP Clinical Chal-
lenge shared task (2018 n2c2)6 [9] focused on the extraction of
flat drug-related entities, including drugs, their attributes (strength,
form, frequency, route, dosage, reason, ADE and duration). Baselines
are [2, 3, 5, 11, 14, 17, 18, 22]. 2) Discontinuous Drug Entity: The
CSIRO Adverse Drug Event Corpus(CADEC)7 [12] is source from
AskaPatient8. The entity types in CADEC contain drug, disease,
symptom, and ADE from 1,250 posts for 12 kinds of drugs Voltaren,
Catafam, Voltaren-XR, Arthrotec, Pennsaid, Solaraze, Flector, Cam-
bia, Zipsor, Diclofenac Sodium, Diclofenac Potassium, and Lipitor . To
compare our performances directly against previously discontinu-
ous ER models, like [4, 24], only the 1,000 annotated ADE are used
in this paper. We follow [20] to extend the standard NER schema
‘BIO’ (B-beginning of an entity, I-inside of an entity, O-outside of
an entity) into ‘BIOHD’. ‘H’ means the token is shared by multiple
6https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/
7https://data.gov.au/dataset/ds-dap-csiro%3A10948/details?q=
8https://www.askapatient.com/

Table 2: Overall Performance on CADEC (F-score). Following
[4], we add the breakdown F-score for both sentences con-
taining at least one Discontinuous Mention(2nd column) and
Discontinuous Mentions only(3rd column).

Models Sent. with DM DM only Overall
Dai et al. [4] 65.40% 37.90% 69.00%
Yan et al. [24] - - 70.64%
Zhang et al. [26] - - 71.60%
Li et al. [16] - - 73.21%
Ours 68.86% 40.00% 76.50%

mentions, and ‘D’ means a discontinuous entity but not shared by
other mentions [20]. Baselines are [4, 16, 24, 26].

Evaluation Metrics F-score is the major evaluation metric in
drug entity recognition. For the fair comparison with baselines, we
adopt the lenient and strict micro-average F-score to evaluate the
performance on the 2018 n2c2 and CADEC datasets, respectively.
The lenient evaluation mode is applied to the 2018 n2c2 dataset.
It allows an overlapped boundary between the gold annotation
and prediction. The strict mode is applied to the CADEC dataset,
followed by the study of [4, 20, 24], which needs the prediction
boundary with the exact match of the gold annotation.

Implementation settings9 Regarding the hardware setting
of the experiments, we use Google Colaboratory (Colab) as the
development platform. The utilized deep learning framework was
Keras [13], whichwas built on top of Tensorflow [1]. In detail, we set
the learning rate to 4e-4, batch size 32, dropout rate 0.5, optimizer
as Adam, and loss function as Sparse categorical crossentropy.

4 EVALUATION RESULTS
4.1 Overall Performance
We compared the performance of our multi-aspect cross-integration
framework with baselines. In Table 1, compared to those baselines
on single-aspect or multi-aspect fusion, our proposed multi-aspect
cross-integration mechanism achieved the best performance on all
the Entity tags and produced the highest overall F-score of 98.38%
on 2018 n2c2, surpassing the second best by a large margin of 4.38%.
More specifically, improvements compared to the best baseline on
9We followed the data split and environment as the same as the original data papers
[9, 12] published.
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each Entity type ranging from 1.11% (Strength) up to 18.56% (Rea-
son) are observed, with a notable increase of 7.52% on Duration (in
spite of its 1% supporting training samples) and 18.56% on Reason
respectively. Similarly, our multi-aspect cross-integration frame-
work also illustrates the significant improvement of the overall
F-score on CADEC, outperforming the best baseline by around
3.29%. Following [4], we also evaluated for sentences with at least
one discontinuous mentions and those containing discontinuous
mentions only on CADEC. The results show an increase of 3.46%
and 2.1% respectively, demonstrating the effectiveness of our frame-
work in recognizing discontinuous mentions.

4.2 Ablation Studies
Effect of Multi-aspect Encoders To evaluate the benefits of our
proposed multi-aspect encoder, we conducted ablation studies on
the two auxiliary aspects (i.e., Syntactic and Domain-based) for
cross-learning. In Table 3, the model with three-aspect encoders
achieves the best performance on both datasets, 98.38% on 2018 n2c2
and 76.50% on CADEC. Besides, removing any of the two auxiliary
aspects leads to a performance drop: 1) Without using the syntactic
or domain aspect alone, around 2.53% or 0.76% decrease on 2018
n2c2 and around 3.56% or 2.82% drop on CADEC were found. 2)
ablating both syntactic and domain aspects (i.e., single transformer
modelling of one aspect without cross-learning of multi-aspect
integration) leads to a more severe performance downgrade on both
datasets. In summary, both datasets demonstrated more reliance on
the syntactic aspect compared to the domain aspect whereas the
two auxiliary aspects together boost the most with our multi-aspect
cross-integration framework.
Effect of Cross-integration MechanismWe ablated the cross-
integration component by exploring three exchange mechanisms
as it plays a key role in our research. Table 4 shows that simply
modelling the three aspects via multi-task joint loss with no ex-
change of aspect information produces inferior overall F-score on
both datasets, i.e., 97.51% for 2018 n2c2 and 75.05% for CADEC.
Different locations of exchanges enforce different degrees of aspect
integration, resulting in performance gain variances on different
datasets. For instance, the key-value cross fuses the aspects at the
earliest stage from the dense word-word relation modelling via at-
tention components, while the attention cross exchanges the aspects
after the attention module and exerts the aspect fusion through the
Feedforward layer and onwards. Comparatively, the feedforward
cross conducts the latest fusion only at the last Add&Norm layer.
As in Table 4, each dataset demonstrates different preferences of
exchanges that 2018 n2c2 performs the best with attention cross
(98.38%) while CADEC prefers the comparative earlier cross via
key-value cross (76.50%). We assume that the task of CADEC is more
complex than 2018 n2c2 in terms of the number of Entity tags and
the nature of discontinuousness, which benefits from more dense
modelling of the multiple aspects at the early stage.

4.3 Qualitative Analysis: Case Study
We further evaluate MC-DRE with a qualitative assessment of the
entity detection on 2018 n2c2. In Figure 2, assume we have a sen-
tence ‘Colace 1 tablet twice for constipation’ and test the drug entity

Table 3: Effect of Cross-integration Aspect (F-score). All vari-
ants applied the same aspect settings as the full multi-aspect
cross-integration counterpart regarding the Semantic, Syn-
tactic and Domain sources: PubMedBERT + NLTK + craft
with attention cross (2018 n2c2) and PubMedBERT + spaCy +
craft with key-value cross (CADEC).

Semantic Syntactic Domain 2018 n2c2 CADEC
o x x 95.07% 71.34%
o o x 97.62% 73.68%
o x o 95.85% 72.94%
o o o 98.38% 76.50%

Table 4: Effect of Cross-Integration Mechanism (F-score).

Cross learning approaches 2018 n2c2 CADEC
no exchange 97.51% 75.05%
key-value input cross 98.04% 76.50%
attention cross 98.38% 75.82%
feedforward cross 98.26% 74.83%

detection by using our models with different aspect cross integra-
tion shown in Table 3. First, we found that most variants misclassi-
fied the word ‘1’, except the one with all three aspects combination.
This trend presents the effectiveness of integrating all three aspects
in order to detect the meaning of ambiguous terms. Secondly, the
model with a sem. only predicted ‘constipation’ as an ADE due
to the missed grammatical connection or general medical context,
especially with the word ‘for’. Unsurprisingly, the model with three
encoders correctly predicted all labels for this case.

Figure 2: Prediction example with our model on 2018 n2c2.

5 CONCLUSION
Drug event/entity extraction is an essential but challenging task
in the medical field due to its unstructured nature and in-depth
medical expertise. We propose MC-DRE, which enables the syner-
gistic integration and alignment of different context, language, and
knowledge properties for drug-related entity extraction. The re-
sults indicate that our proposed framework, MC-DRE, is effective in
integrating and aligning crucial aspects of drug event information.
It is hoped that our model, MC-DRE, provides great insight into the
effectiveness of multi-aspect cross-integration and representation
in the future direction of such drug-related entity extraction tasks.
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