
STGIN: Spatial-Temporal Graph Interaction Network for
Large-scale POI Recommendation

Shaohua Liu∗
Meituan

Shanghai, China
liushaohua07@meituan.com

Yu Qi∗
Meituan

Shanghai, China
qiyu07@meituan.com

Gen Li∗
Meituan

Shanghai, China
ligen08@meituan.com

Mingjian Chen
Meituan

Shanghai, China
chenmingjian@meituan.com

Teng Zhang
Meituan

Shanghai, China
zhangteng09@meituan.com

Jia Cheng
Meituan

Shanghai, China
jia.cheng.sh@meituan.com

Jun Lei
Meituan

Shanghai, China
leijun@meituan.com

ABSTRACT
In Location-Based Services, Point-Of-Interest(POI) recommenda-
tion plays a crucial role in both user experience and business op-
portunities. Graph neural networks have been proven effective
in providing personalized POI recommendation services. How-
ever, there are still two critical challenges. First, existing graph
models attempt to capture users’ diversified interests through a
unified graph, which limits their ability to express interests in var-
ious spatial-temporal contexts. Second, the efficiency limitations
of graph construction and graph sampling in large-scale systems
make it difficult to adapt quickly to new real-time interests. To
tackle the above challenges, we propose a novel Spatial-Temporal
Graph Interaction Network. Specifically, we construct subgraphs of
spatial, temporal, spatial-temporal, and global views respectively
to precisely characterize the user’s interests in various contexts.
In addition, we design an industry-friendly framework to track
the user’s latest interests. Extensive experiments on the real-world
dataset show that our method outperforms state-of-the-art models.
This work has been successfully deployed in a large e-commerce
platform, delivering a 1.1% CTR and 6.3% RPM improvement.
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1 INTRODUCTION
In recent years, Location-Based Service providers including Face-
book, Foursquare, and UberEats have become more and more popu-
lar. As one of the key services of LBS providers, the POI recommen-
dation utilizes past user behaviors and contextual POI information
to make a personalized recommendation. Unlike the traditional
recommendation system, the quality of the POI recommendation is
intrinsically linked to three dimensions of data: personal, spatial,
and temporal, as well as their mutual interactions[11]. For example,
a user may order coffee in the morning on business days while
looking for a gym on Saturday afternoons.

Many approaches based on sequential user behavior data have
been proposed to recommend POI candidates. LSTPM[17] explores
the temporal and spatial correlations from the long-term behav-
ior sequence and captures geographical influence from short-term
sequences. STPIL[4] constructs various sequences to acquire the
spatial-temporal periodic interests of different granularities, then
applies integration for multiple interests. CatDM[21] divides a
user’s check-in history into several time windows and applies a
personalized attention mechanism for each time window. How-
ever, these works only take into account the user’s own behaviors
which could cause data sparsity issues in certain spatial-temporal
contexts.

Inspired by the idea of collaborative filtering[19] that similar
users tend to make similar choices, Graph Neural Network[7, 13]
has proven to be an effective way to mitigate data sparsity. GE[20]
and JLGE[2] jointly learn the embeddings of multiple bipartite
graphs into the same latent space. STGCN[8] considers both user-
region periodic pattern and user-POI periodic pattern and fuses
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all the context information into a unified graph. STPUDGAT[14]
leverages spatial, temporal, and preference factors from both local
and global views to learn POI-POI relationships. While these meth-
ods take advantage of graph structure to improve representation
learning, they fail to explicitly model the user’s changing interests
across different spatial-temporal contexts. Moreover, due to the
heavy cost of graph construction and sampling in large-scale in-
dustrial systems, these methods have great difficulty in integrating
graph representation with the user’s real-time behaviors, which
can lead to performance degradation in online services.

Motivated by the above analysis, we propose a novel Spatial-
Temporal Graph Interaction Network for large-scale POI recom-
mendation. Specifically, a subgraph representation framework has
been proposed to learn the user’s interests from the spatial view,
temporal view, spatial-temporal view, and global view respectively.
In addition, to capture the user’s latest interests in a real-time man-
ner, we devise a flexible mechanism to combine the interests of
multiple views with real-time behaviors in an industrial-friendly
way. Our main contributions can be summarized as follows:

• We propose a spatial-temporal graph interaction method to
capture the user’s diverse interests under different spatial-
temporal contexts. To the best of our knowledge, it is the
first work to use multi-view spatial-temporal subgraphs for
POI recommendation.

• We propose an industrial-friendly framework that combines
the spatial-temporal graph learning and the user’s real-time
behaviors in an end-to-end manner and is able to track the
user’s latest preferences.

• We have successfully deployed this work in a large location-
based e-commerce platform and achieved encouraging re-
sults in both online and offline experiments.

2 PROBLEM DEFINITION
Generally speaking, a recommender system consists of two stages:
matching and ranking[3]. In this paper, we implement our method
in the matching stage by learning the embedding representations
of queries and POIs respectively. With very few modifications, our
model is also available in the ranking stage.

Let U denote the set of users, P denote the set of candidate
POIs, S denote the set of locations, and T denote the set of time
slots that are divided by a specific pattern(like an hour, day, etc).
𝑝𝑢 = {𝑝𝑢1 , 𝑝

𝑢
2 , ..., 𝑝

𝑢
𝐿
} denotes the behavior sequence of the user 𝑢.

It is a list of POIs that are ordered by the corresponding behavior
timestamps. Here 𝐿 denotes the length of the user 𝑢’s behavior
sequence. In this work, we consider clicking as the behavior type.

Since users are consistently interacting with new POIs, we di-
vide the behavior sequence 𝑝𝑢 into two parts, one is the real-time
sequence (𝑝𝑢𝑟 ) which grows with new click behaviors, the other
behaviors are considered as the history sequence (𝑝𝑢

ℎ
).

For a query 𝑞 = (𝑢, 𝑠, 𝑡) requested by a user 𝑢 under current
location 𝑠 and time 𝑡 , the goal of the POI recommendation is to
select the top 𝐾 POIs (P′) that the user would be interested in. It
can be formulated as

argmax
P′⊂P, | P′ |=𝐾

∑︁
𝑝∈P′

𝑠𝑖𝑚(𝒆𝒒, 𝒆𝒑), (1)

where 𝒆𝒒 is the vector representation of the query 𝑞, and 𝒆𝒑 is the
vector representation of the POI 𝑝 . The function 𝑠𝑖𝑚() calculates
the similarity of two vectors.

3 METHODOLOGY
In this section, we elaborate on the proposed Spatial-Temporal
Graph Interaction Network. Model structure is shown in Figure 1(a).

3.1 Spatial-Temporal Graph Learning
Users tend to show different preferences in different spatial-temporal
contexts. Since a unified graph mixes information from various con-
texts, it is difficult to accurately express the user’s interest in a
specific spatial-temporal context. Therefore, we use multi-view sub-
graphs for context-specific interest learning.
Graph Construction. Based on the user’s history sequence 𝑝𝑢

ℎ
,

we construct subgraphs from the four types of views: global view,
spatial view, temporal view, and spatial-temporal view. Each sub-
graph has two types of nodes, representing users and POIs in our
task, connected by two types of heterogeneous edges. Clicking
edges represent users’ explicit interests. As shown in Figure 1(b),
we extract POIs from behavior sequences that occurred in the cor-
responding spatial-temporal contexts and build an edge between
the user and each POI. Note that, clicking edges in the global view
are constructed with POIs in all contexts. Co-clicking edges rep-
resent the implicit relation between POIs. An edge is constructed
between two POIs that have been clicked by the same user within
a session[6]. It should be emphasized that co-clicking edges are
shared among all subgraphs.
Graph Sampling&Aggregation. To precisely capture the user’s
interest in each view, we devise a spatial-temporal oriented mecha-
nism for node aggregation. Specifically, for each user 𝑢 ∈ U, we

adopt meta-path[5] “user
𝑐𝑙𝑖𝑐𝑘−−−−→ POI

𝑐𝑜−𝑐𝑙𝑖𝑐𝑘−−−−−−−→ POI” to generate
neighbors. Such a sampling strategy not only preserves the unique-
ness of each view but also enhances the representation through
shared co-clicking edges. Taking the temporal view 𝑡𝑖 ∈ T as an
example, neighbor set 𝐵𝑢𝑡𝑖 contains both POIs clicked by the user 𝑢
at time 𝑡𝑖 and POIs co-clicked by others within a short period. Then
we apply a two-layer GAT[18] mechanism to get the user’s interest
in this temporal view as follows

𝒖𝒕𝒊 = 𝐺𝐴𝑇_𝐴𝐺𝐺 ({𝑝 |𝑝 ∈ 𝐵𝑢𝑡𝑖 }) . (2)

Similarly, we can get the user’s interest from the spatial view 𝒖𝒔𝒋 ,
the spatial-temporal view 𝒖𝒔𝒋 𝒕𝒊 , and the global view 𝒖𝒈 . The neigh-

bors for each POI are generated from the meta-path “POI
𝑐𝑜−𝑐𝑙𝑖𝑐𝑘−−−−−−−→

POI
𝑐𝑜−𝑐𝑙𝑖𝑐𝑘−−−−−−−→ POI”, note that we skip the user node when gener-

ating POI’s neighbors, since a user may have different types of
behaviors in the sequence, which may introduce noise for learning
the POI. Again, we use a two-layer GAT mechanism to get the
representation of the POI as 𝒆𝒑 , which is shared across all views.
Multi-view Interests Interaction. Different contexts play differ-
ent roles in determining each user’s interests. Therefore, we design
a user-dependent attention module to learn the relations among
different views. For all spatial views, since POIs located far away
are hardly reachable, we fetch the user’s spatial view that exactly
matches the current location. For all temporal views, we apply
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Figure 1: Overall network structure and construction of multi-view subgraphs.

an attention aggregation process to learn their mutual influence
guided by the user’s global view. The process is defined as

𝒖𝒕 =
𝑇∑︁
𝑖=1

𝛼𝑡𝑖 · 𝒖𝒕𝒊 . (3)

Note that 𝛼𝑡𝑖 is the attention weight and is defined as

𝛼𝑡𝑖 =
𝑒𝑥𝑝 (𝑓 (𝑾𝑻

𝒕 [𝒆 |𝑡𝑖−𝑡𝑞 | | |𝒖𝒕𝒊 | |𝒖𝒈]))∑𝑇
𝑘=1 𝑒𝑥𝑝 (𝑓 (𝑾

𝑻
𝒕 [𝒆 |𝑡𝑘−𝑡𝑞 | | |𝒖𝒕𝒌 | |𝒖𝒈]))

, (4)

where 𝑓 (.) is the activation function, || indicates concatenation,
𝒆 |𝑡𝑖−𝑡𝑞 | denotes the embedding of the absolute difference between
query time 𝑡𝑞 and the time of the corresponding temporal view 𝑡𝑖 ,
𝑇 denotes the number of time slots,𝑾𝑻

𝒕 is the weighting matrix.
The same process can be applied for spatial-temporal views and

get 𝒖𝒔𝒕 as the desired output.
Finally, we get the user’s multi-view interest through all views

𝒖𝒉 = 𝑓 (𝑾𝑻
𝒉 [𝒖𝒈 | |𝒖𝒔 | |𝒖𝒕 | |𝒖𝒔𝒕 ]). (5)

3.2 Real-time Interests Perception
Users are constantly interacting with new POIs, and these real-time
behaviors are essential for predicting users’ subsequent interests.
Therefore, we need to develop a flexible real-time interest tracking
mechanism compatible with spatial-temporal graph learning.
Real-time Behaviors Modeling. Users’ real-time behaviors (𝑝𝑢𝑟 )
indicate their latest needs, but historical habits and current context
should not be overlooked. First, historical habits such as brands and
lifestyles often play an important role in current decisions. Second,
given the context of the current time and location, users’ next visit is
likely to be related to a subset of real-time behaviors. Consequently,
we model the user’s real-time interest evolution based on the above
factors

𝒖𝒓 =

𝑀∑︁
𝑖=1

𝛼𝑟𝑖 · 𝒆𝒑𝒓𝒊
. (6)

𝒆𝒑𝒓𝒊
denotes the representation of a recently clicked POI.𝑀 is the

length of real-time behaviors. 𝛼𝑟𝑖 is the attention weight, which is
formalized as

𝛼𝑟𝑖 =
𝑒𝑥𝑝 (𝑓 (𝑾𝑻

𝒓 [𝒆 |𝑡𝑟𝑖 −𝑡𝑞 | | |𝒆 |𝑠𝑟𝑖 −𝑠𝑞 | | |𝒆𝒑𝒓𝒊
| |𝒖𝒉]))∑𝑀

𝑘=1 𝑒𝑥𝑝 (𝑓 (𝑾
𝑻
𝒓 [𝒆 |𝑡𝑟𝑘 −𝑡𝑞 | | |𝒆 |𝑠𝑟𝑘 −𝑠𝑞 | | |𝒆𝒑𝒓𝒌

| |𝒖𝒉]))
, (7)

where || indicates concatenation, 𝒆 |𝑠𝑟𝑖 −𝑠𝑞 | denotes the embedding of
the distance between query location 𝑠𝑞 and the location of clicked
POI 𝑠𝑟𝑖 ,𝑾𝑻

𝒓 is the weighting matrix.
Adaptive Fusion Mechanism. we conduct a gating-based fusion
to generate the final query representation 𝒆𝒒

𝒆𝒒 = 𝛼1 · 𝒖𝒉 + 𝛼2 · 𝒖𝒓 + 𝛼3 · [𝒆𝒕𝒒 | |𝒆𝒔𝒒 ] . (8)

𝛼1, 𝛼2, 𝛼3 are generated by the following softmax function

[𝛼1, 𝛼2, 𝛼3] = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 ( [𝒘𝑻
𝒉 𝒖𝒉,𝒘

𝑻
𝒓 𝒖𝒓 ,𝒘

𝑻
𝒄 [𝒆𝒕𝒒 | |𝒆𝒔𝒒 ]]), (9)

where𝒘𝑻
𝒉
,𝒘𝑻

𝒓 , and𝒘𝑻
𝒄 are weighting vectors, 𝒆𝒕𝒒 and 𝒆𝒔𝒒 are the

embeddings of query time 𝑡𝑞 and query location 𝑠𝑞 .

3.3 Optimization
After obtaining the representations 𝒆𝒒 and 𝒆𝒑 , we adopt the pair-
wise training method[1] and minimize the hinge loss as follows

𝐿𝑜𝑠𝑠 =

𝑁∑︁
𝑖=1

𝐾∑︁
𝑗=1

𝑚𝑎𝑥 (0,𝑚𝑎𝑟𝑔𝑖𝑛 − 𝑠𝑖𝑚(𝒆𝑖𝑞, 𝒆+𝑝𝑖 ) + 𝑠𝑖𝑚(𝒆𝑖𝑞, 𝒆−𝑝 𝑗 )), (10)

where 𝑁 is the length of the training data and 𝐾 is the number of
negative samples for each positive sample.

4 IMPLEMENTATION
Training. Graph building and learning are themost time-consuming
parts in STGIN. Though Cartesian combinations between spatial
and temporal information may be numerous, the actual volume
of graph data is acceptable since most users only visited a small
number of locations. Thus the graph can be trained simultaneously
with other parts. In practice, we divide timestamps into four slots
(morning, noon, dinnertime, and night) and use geohash1 of length
5 to divide a city into multiple locations. For our production dataset
with over 300million users, 20 million POIs, and 600million clicking
behaviors, it takes about four hours to train on 50 virtual machines,
each providing 6 CPU cores and 40GB RAM.
Serving. Benefiting from the real-time interests perception module,
the graph structure could be updated at a given frequency without
real-time requirements. The learned embeddings are stored in a
key-value table, thus we can skip the real-time inference of graphs,

1https://en.wikipedia.org/wiki/Geohash
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Table 1: Statistics of dataset

Data Users POIs Records BehaviorLen Locations

Train 637563 108551 2023304 149.6 320
Test 217561 60982 532194 149.9 305

Table 2: Comparisons of different methods

Methods HitRate@200 Recall@200

CatDM 21.37% 15.42%
STPIL 23.80% 17.45%
JLGE 19.96% 14.45%
STGCN 18.52% 13.14%
STPUDGAT 22.21% 16.04%
STGIN 25.87% 19.12%
STGIN-RT 19.71% 14.10%
STGIN-Temporal 22.62% 16.35%
STGIN-Spatial 25.12% 18.57%
STGIN-Interaction 22.56% 16.26%

which may become a bottleneck in online service. It’s worth noting
that having a new clicking POI will change a user’s real-time se-
quence as well as the representation vector 𝒆𝒒 . On average, it takes
just 5.6 milliseconds to make an online recommendation.

5 EXPERIMENTS
We design experiments to answer the following research questions:
(RQ1): How does STGIN perform compared to other state-of-the-art
models? (RQ2): What are the effects of different components? (RQ3):
How effective are the spatial-temporal views interacting with each
other? (RQ4): How does STGIN perform in online A/B tests?

5.1 Experimental Setup
Dataset and Settings. We conduct offline experiments on indus-
trial production data of a large e-commerce platform. It spans one
month(2022-08-09 to 2022-09-08) and is sampled in a few cities. The
statistics of dataset are shown in Table 1. We take behaviors over
the last 24 hours as the real-time sequence. All experiments are
trained on Tensorflow with graph learning engine Euler2. We adopt
Adam[12] as the optimizer and the dimension of each trainable
feature embedding is 16. The batch size and learning rate are set to
1024 and 0.001. We apply LeakyReLU[16] as the activation function.
The number of negative samples is 6.
Competitors. We implement several competitive baselines for eval-
uation. JLGE[2] expresses user, POI, location, and time in the same
latent space through multiple bipartite graphs. STGCN[8] fuses all
spatial-temporal information into a unified graph and applies a
time-based neighborhood sampling algorithm. STPUDGAT[14] uses
both spatial and temporal factors to model the POI-POI relation-
ship. Besides, we also implement two popular sequential models.
CatDM[21] and STPIL[4] both explore user interests from spatial-
temporal behavior subsequences and integrate them through atten-
tion mechanisms. To further understand the contribution of each
component, we design four variants of our model. STGIN-RT drops
real-time behavior sequence. STGIN-Temporal drops subgraphs of
2https://github.com/alibaba/euler

Table 3: Result for Online A/B Test

Metric CTR RPM

Relative Improvement +1.1% +6.3%

the temporal view. STGIN-Spatial drops subgraphs of the spatial
view. STGIN-Interaction merely concatenates graph representa-
tion and real-time sequence without their mutual interaction.
Metrics. We apply widely used HitRate@K and Recall@K[9, 10,
15] to evaluate the performance of all methods.

5.2 Offline Evaluation
Exp-RQ1. As shown in Table 2, STGIN outperforms other competi-
tors in all metrics. Due to the heavy cost of graph construction and
sampling, STGCN faces a major challenge in addressing users’ real-
time behaviors. JLGE and STPUDGAT try to solve this challenge with
the POI-POI graph but pay little attention to the interest interaction.
In addition, a unified graph cannot express fine-grained interests
in different spatial-temporal contexts. CatDM and STPIL are good
at dealing with users’ real-time behaviors, but they cannot address
the issues of data sparsity when users have limited behaviors.
Exp-RQ2. From table 2, all the components significantly bene-
fit our task. Precisely, STGIN-RT demonstrates real-time behav-
iors are essential for POI recommendation. STGIN-Temporal and
STGIN-Spatial show that it is useful to capture the interests of
users from spatial-temporal views. STGIN-Interaction shows that
the potential of real-time behaviors can be enhanced by interaction.
Exp-RQ3. To validate the effects of interaction among spatial-
temporal views, we design temporal-related experiments from
coarse to fine-grained. STGIN_Only_Temporal only retrieves a tem-
poral subgraph thatmatches the current time. STGIN_Sum_Temporal
retrieves temporal subgraphs of all time slots and applies sum pool-
ing operation. In Figure 2, STGIN-Temporal gets the lowest score
because it omits temporal information. STGIN_Only_Temporal per-
forms slightly better than STGIN_Sum_Temporal, for the lattermethod
does not differentiate the user’s attention on different temporal
views. Consequently, STGIN achieves the best performance.

Figure 2: Comparisons of temporal-related subgraphs.

5.3 Online A/B Test (RQ4)
Based on the optimizations described in the section 4, we have suc-
cessfully deployed the STGINmodel in our production environment
to handle the real traffic of a large e-commerce APP. Online evalu-
ation metrics are CTR and RPM (Revenue Per Mille). As noted in
Table 3, both metrics increased compared to the base model, demon-
strating the effectiveness of STGIN in practical environments.

6 CONCLUSION
In this paper, we propose a novel approach for POI recommen-
dation called STGIN. It can characterize a user’s diverse interests
from spatial-temporal subgraphs and capture a user’s latest inter-
ests through real-time behaviors modeling. Both online and offline
experiments demonstrate the effectiveness of our method.
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