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ABSTRACT
Continual learning aims to create artificial neural networks capable
of accumulating knowledge and skills through incremental training
on a sequence of tasks. The main challenge of continual learning
is catastrophic interference, wherein new knowledge overrides or
interferes with past knowledge, leading to forgetting. An associated
issue is the problem of learning "cross-task knowledge," where
models fail to acquire and retain knowledge that helps differentiate
classes across task boundaries. A common solution to both problems
is "replay," where a limited buffer of past instances is utilized to
learn cross-task knowledge and mitigate catastrophic interference.
However, a notable drawback of these methods is their tendency to
overfit the limited replay buffer. In contrast, our proposed solution,
SurpriseNet, addresses catastrophic interference by employing a
parameter isolation method and learning cross-task knowledge
using an auto-encoder inspired by anomaly detection. SurpriseNet
is applicable to both structured and unstructured data, as it does
not rely on image-specific inductive biases. We have conducted
empirical experiments demonstrating the strengths of SurpriseNet
on various traditional vision continual-learning benchmarks, as
well as on structured data datasets. Source code made available
at https://doi.org/10.5281/zenodo.8247906 and https://github.com/
tachyonicClock/SurpriseNet-CIKM-23

CCS CONCEPTS
• Computing methodologies→ Lifelong machine learning.
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1 INTRODUCTION
Learning, in the biological sense, is a continuous process of ac-
quiring knowledge and skills, where ideas build upon each other
over time. This acquired knowledge is adaptable and adjusts to
changes in the world, such as a favorite restaurant relocating or the
introduction of new words. Our world is dynamic and constantly
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changing. In comparison, deep learning is restricted to learning
from data that has been homogenized through shuffling to conform
to a stationary data distribution. Continual learning aims to free
neural networks from interpreting data as stationary and enables
them to learn continuously from a potentially infinite and evolving
stream of data [24].

Continual learning encompasses various scenarios, such as Task
Incremental Learning (Task-IL) and Class Incremental Learn-
ing (Class-IL) [29]. Continual learning problems typically involve
a sequence of tasks, where the learner is trained sequentially on
each task before being evaluated on all tasks collectively. When
new knowledge is acquired through training, it degrades old rep-
resentations, negatively impacting the network’s performance on
past tasks [6, 20]. Even small changes can have a catastrophic ef-
fect. This phenomenon is known as "catastrophic interference" or
forgetting.

In the Task-IL scenario, the learner has access to task labels or
IDs during both training and testing. However, in many real-world
applications, assuming the availability of task labels is impractical.
On the other hand, the Class-IL scenario removes the learner’s
knowledge of the task label during testing. Empirically, there exists
a significant performance gap between the Task-IL and Class-IL
scenarios. In Class-IL, the learner must differentiate between classes
across different tasks, rather than just within a single task as in Task-
IL. Researchers refer to this challenge as "cross-task knowledge,"
"inter-task confusion," or "inter-task class separation" [11, 12, 19].

To effectively learn continually in the Class-IL scenario, reduc-
ing catastrophic interference and acquiring cross-task knowledge
becomes essential [11].

In a recent survey, Masana et al. [19] concluded that replay-free
methods cannot compete with replay methods. The replay mecha-
nism involves storing a subset of each task and continuously replay-
ing instances to prevent forgetting and gain cross-task knowledge.
Unfortunately, replay has some drawbacks. Firstly, replay methods
tend to overfit on the replay buffer [4, 19]. Secondly, replaying data
through a neural network is inefficient, as the replay instances
consume compute resources. Consequently, finding a mechanism
for continual learning without replay holds significant value.
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Figure 1: (A) Train a neural network on the classes in the first task. (B/D) Prune the network by some proportion i.e. 𝜆 = 50%. (C)
The blue weights are frozen to avoid interference, but pruned weights are reused. (E) “Train, prune, retrain and freeze" repeats
until tasks are exhausted. (F) During evaluation, SurpriseNet infers the task by passing each instance through task-specific
subsets in the network, generating multiple outputs. The task is identified by comparing the reconstruction quality.

In this work, we aim to bridge the gap between Class-IL and
Task-IL by explicitly performing task identification with tools in-
spired by anomaly detection. Specifically, SurpriseNet employs an
anomaly detection-inspired auto-encoder to infer tasks and applies
parameter isolation to prevent catastrophic interference. It distin-
guishes itself from similar methods by being compatible with both
structured and unstructured data, eliminating the requirement for
image-specific inductive biases.

2 RELATEDWORK
Continual Learning and Anomaly Detection. Kim et al. [10, 11]

demonstrated the connection between task identification and anom-
aly detection. Their work led to the proposal of CLOM (Continual
Learning based on OOD detection and Task Masking), a state-of-
the-art replay-free method that combines anomaly detection and
fixed network parameter isolation [10, 11]. CLOM uses image rota-
tions and other data augmentations to serve as out-of-distribution
training data during contrastive learning. These assumptions make
CLOM inappropriate for some vision datasets without modifica-
tion because different problems require non-trivial data-specific
decisions.

In addition to CLOM, we compare SurpriseNet against replay,
pseudo-replay, and regularization strategies. We choose the replay
strategies: DER [1], A-GEM [2], iCaRL [25], CLOM-c [10], and expe-
rience replay. Replay methods reuse a limited buffer of past training
data to avoid interference and gain cross-task knowledge, but vary
in how samples are chosen and exploited. Our experiments use a
small replay buffer of 500 to emphasize sample efficiency [1]. Apart
from normal replay, we compare against pseudo-replay strategies:
BIR [28] and GR [28]. These methods generate training data to
resemble past data and approximate replay. Finally, we compare
against regularization strategies EWC [14] and LwF [17], which
aim to slow changes to important weights in the network to avoid
interference. These methods typically lack a specific mechanism to
learn cross-task knowledge and, consequently, perform poorly on
class-IL scenarios.

Parameter isolation techniques isolate and protect parameters
important to previous tasks, keeping them fixed while allowing
other parameters to be learnt for new tasks. “Hard Attention to

The Task" (HAT) protects past tasks by learning a mask controlled
by a task label embedding [27]. Similarly, "PackNet" protects past
tasks by creating a mask using weight magnitude as a heuristic
for importance [18]. We do not compare against HAT or PackNet
because they rely on a task ID to activate and deactivate the correct
subsets of their neural networks.

In contrast to replay methods, SurpriseNet effectively avoids
overfitting the replay buffer and enhances training efficiency by
eliminating the need to replay samples. While regularization strate-
gies are also replay-free, EWC and LwF encounter difficulties in the
Class-IL setting. SurpriseNet shares the concept of fixed network
parameter isolation with HAT and PackNet but is not limited to
Task-IL since it can infer task IDs. This characteristic aligns Sur-
priseNet closely with CLOM in terms of theoretical similarity, but
both approaches use different mechanisms for parameter isolation
and anomaly detection. Our approach has an advantage over CLOM
as it can be applied to a wider range of datasets and makes fewer
assumptions about the data.

3 METHOD
SurpriseNet divides continual learning into two subproblems: pre-
venting catastrophic forgetting and identifying task IDs. The issue
of catastrophic forgetting is tackled by pruning un-important pa-
rameters and freezing the important ones, creating “task-specific
subsets" for each task. These subsets can be selectively activated or
deactivated to solve each task in isolation. The second problem, task
identification, is addressed with an auto-encoder. This auto-encoder
gauges the reconstruction quality of each task-specific subset, to
identify the task. This is based on the assumption that themost accu-
rate reconstruction corresponds to the instance’s task. Integrating
these techniques produces an effective continual learner.

SurpriseNet builds upon PackNet [18], inheriting the pruning
procedure and parameter importance heuristic. However, it incor-
porates additional features such as task inference, a new pruning
schedule, and a hybrid architecture. Figure 1(A-E) provides a sum-
mary of the PackNet procedure as utilized in SurpriseNet. Most
importantly, unlike PackNet, SurpriseNet is not confined to Task-IL
as it is capable of inferring task IDs.
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SurpriseNet introduces a novel pruning schedule (EqPrune),
which allocates an equal proportion of the network to each task.
Our experiments reveal that EqPrune consistently performs well
when compared to pruning with a sub-optimal 𝜆, although it is
often outperformed by a well-chosen 𝜆. EqPrune is a viable default
when, hyper-parameter tuning is not possible.

Unlike PackNet, SurpriseNet is a hybrid supervised and unsu-
pervised learner. It consists of an encoder 𝑧 = 𝐸𝜃 (𝑥), a decoder 𝑥 =

𝐷𝜃 (𝑧), and a classifier 𝑦 = 𝐶𝜃 (𝑧). The encoder and decoder form an
auto-encoder (AE) where 𝑥 = 𝐷𝜃 (𝐸𝜃 (𝑥)). The classifier connects to
the encoder, 𝑦 = 𝐶𝜃 (𝐸𝜃 (𝑥)). SurpriseNet is trained to achieve dual
objectives. The first objective reconstructs the input in the output
using mean squared error as the loss function 𝐿𝑟𝑒𝑐 = 1

𝑛

∑𝑛
𝑖=1 | |𝑥𝑖 −

𝐷𝜃 (𝐸𝜃 (𝑥𝑖 )) | |2. The second objective classifies instances with cross-
entropy loss 𝐿𝑐𝑙𝑠 = − 1

𝑛

∑𝑛
𝑖=1 𝑦𝑖 log(𝐶𝜃 (𝐸𝜃 (𝑥𝑖 ))). Here, (𝑥𝑖 , 𝑦𝑖 ) rep-

resent an instance in a batch of size 𝑛 originating from the active
task. Adding the losses together forms a hybrid model outputting
both reconstructions and a classification at each forward step. As an
alternative to AE, we experimented with variational auto-encoders
(VAE) [13], which regularize the latent space to follow a probability
distribution. The intention was to learn a more structured internal
representation.

The auto-encoder infers the task, using a technique inspired by
anomaly detection. The auto-encoder model contains a bottleneck
thatmust learn a compressed representation, containing regularities
of nominal training data. Consequently, anomalous data belonging
to other tasks, is harder to reconstruct [23]. Essentially, the best-
suited task-specific subset can be found by measuring the lowest
reconstruction loss (e.g | |𝑥−𝑥 | |2) of each task-specific subset. Figure
1 (E-F) further describes the SurpriseNet task inference procedure.

SurpriseNet’s ability to perform anomaly detection and infer
tasks depends on the capabilities of AE and VAE. However, anom-
aly detection remains a challenging problem, particularly for high-
dimensional data such as images. In certain cases, deep generative
models assign higher likelihood to anomalous data i.e. lower re-
construction loss [22]. This has been attributed to the emphasis of
generative modeling on low-level features [7]. To overcome this
limitation, we utilize a pre-trained ResNet18 to extract features and
reduce dimensionality, enabling our model to work with higher-
level features. van de Ven et al. [28] argues that the outer regions of
the human mind, which undergo minimal changes throughout life,
perform compression and dimensionality reduction, providing a bi-
ological basis for a similar procedure. Our approach, incorporating
a pre-trained ResNet18, is designated SurpriseNetE.

3.1 Experimental Design
To improve the comparison with other methods, we adhere to the
desirable qualities of a continual learning experimental setting
outlined by Farquhar and Gal [5]. These qualities include cross-task
resemblances, a shared output head, no assumption of task labels at
test time, no unconstrained retraining on old tasks, and scenarios
involving more than two tasks. Furthermore, we randomly sample
the task order to showcase the robustness of our method to task
ordering.

SurpriseNet is demonstrated on vision datasets with classes
split into multiple tasks: S-FMNIST (epochs=20) [31], S-CIFAR10

(epochs=50) [15], and S-CIFAR100 (epochs=100) [15]. S-CIFAR100
is particularly popular among researchers [4, 12, 21, 28].

In addition to vision continual learning benchmarks, SurpriseNet
is benchmarked on structured data datasets, specifically human ac-
tivity recognition datasets (HAR). HAR is a desirable domain for
continual learning because new unique activities will eventually
occur [16]. Jha et al. [9] provides the example of COVID-19, the out-
break significantly changed human behavior, something a continual
learning system could adapt to without also forgetting normal be-
havior. S-DSADS (Epoch Budget=200) [26] splits the Daily and
Sports Activities dataset of sensor data for 19 activities randomly
into 9 tasks of 2 activities each (the remaining activity is ignored).
Participants 7 and 8 are used in the test set. S-PAMAP2 (Epoch
Budget=200) [3] splits the Physical Activity Monitoring dataset,
containing data of 12 different physical activities, into 6 tasks of
2 activities each. Participants 7 and 8 are used in the test set. The
variant of the dataset we utilize is provided alongside our code and
uses a sliding window to generate features from raw accelerometer
data for both S-DSADS and S-PAMAP2 [8, 9, 30, 32].

To fairly represent each method hyper-parameters must be opti-
mized. Grid searches were conducted for EWC, LWF, ICARL, AGEM,
DER, and ER, exploring learning rates and additional strategy-
specific hyper-parameters where applicable. CLOM, BIR, and GR,
use their default configurations (applying MNIST’s for FMNIST),
but epochs were reduced to fall within our epoch budget. Minor
modifications were made to BIR and GR to ensure compatibility
with S-DSADS and S-PAMAP2. Grid searches were also performed
to select optimal values for fc-units, latent-dims, and learning-rate
for both BIR and GR on those datasets. Regarding SurpriseNet, a
grid search was conducted to determine the best prune-proportion,
while keeping the learning rates constant. Specifically, S-FMNIST,
S-CIFAR10, and S-CIFAR100 employed Adamwith a learning rate of
0.0001, while S-DSADS and S-PAMAP2 used Adam with a learning
rate of 0.0008. SurpriseNet is a ResNet like auto-encoder for vision
datasets and a multilayer perceptron auto-encoder on non-vision
datasets. In vision datasets using SurpriseNetE a feature extractor
feeds into an auto-encoder multilayer perceptron. Results from grid
search and hyper-parameter selections can be found alongside the
source code.

4 RESULTS
Table 1 compares SurpriseNet with other strategies. SurpriseNet
proves to be effective, surpassing replay methods (n=500) and
other replay-free approaches when applied to lower-dimensional
datasets such as S-DSADS, S-PAMAP2, and S-FMNIST. However,
SurpriseNet’s effectiveness diminishes when dealing with higher-
dimensional data, as observed in S-CIFAR10 and S-CIFAR100. This
limitation can be attributed to the fact that deep generative models
are not well-suited for anomaly detection tasks involving high-
dimensional data [22].

To address this issue, SurpriseNetE use a pre-trained network
to reduce dimensionality. Figure 2 demonstrates the improvement
in task identification. SurpriseNetE continues to outperform most
other methods in our experiments, with the exception of CLOM,
given our buffer budget and epoch budget.
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Table 1: Mean Final Accuracy (%) ± One Standard Deviation, from 5 runs

Strategy S-DSADS S-PAMAP2 S-FMNIST S-CIFAR10 S-CIFAR100

(2 classes for 9 tasks) (2 classes for 6 tasks) (2 classes for 5 tasks) (2 classes for 5 tasks) (10 classes for 10 tasks)
Joint (Non-CL) 75.08 ± 3.33 88.12 ± 1.52 87.86 ± 0.72 90.35 ± 0.83 72.62 ± 0.58

Replay Method 𝑛 = Buffer Size
Experience Replay n=500 74.40 ± 3.29 81.30 ± 4.42 76.08 ± 2.07 44.24 ± 7.51 21.21 ± 0.87
A-GEM [2] n=500 29.34 ± 6.83 48.41 ± 11.21 53.27 ± 7.86 24.05 ± 5.30 9.58 ± 0.55
DER [1] n=500 65.02 ± 5.30 69.86 ± 9.19 80.71 ± 0.59 57.41 ± 4.46 25.18 ± 7.35
iCaRL [25] n=500 43.74 ± 17.97 71.18 ± 2.29 57.22 ± 17.64 53.72 ± 7.00 41.05 ± 0.46
CLOM-c [10] n=(20 per class) NA NA 37.88 ± 9.19 81.37 ± 0.52 71.90 ± 1.53

Replay Free
Naive SGD 9.81 ± 2.15 15.02 ± 2.85 19.85 ± 0.33 18.53 ± 1.36 8.80 ± 0.39
BIR [28] 14.68 ± 4.08 78.01 ± 1.65 76.37 ± 1.87 NA 21.2 ± 1.06
LwF [17] 10.77 ± 0.86 16.38 ± 0.08 20.07 ± 0.54 18.85 ± 0.30 8.80 ± 0.39
EWC [14] 11.13 ± 0.43 16.52 ± 0.11 22.27 ± 5.55 18.60 ± 1.09 7.90 ± 0.72
GR [28] 13.02 ± 2.68 63.40 ± 4.04 76.37 ± 1.87 18.93 ± 1.06 6.92 ± 0.54
CLOM [10] NA NA 54.51 ± 4.04 79.78 ± 1.16 71.50 ± 1.61
(ours) SurpriseNet VAE 76.95 ± 1.08 79.76 ± 1.61 79.20 ± 1.72 37.21 ± 1.66 15.85 ± 0.28
(ours) SurpriseNet AE 78.21 ± 3.83 80.48 ± 1.59 82.16 ± 0.39 38.29 ± 2.01 16.49 ± 0.58
(ours) SurpriseNet VAE EqPrune 77.56 ± 1.22 79.45 ± 1.93 79.47 ± 1.95 34.86 ± 2.00 14.31 ± 0.54
(ours) SurpriseNetE VAE EqPrune NA NA 80.52 ± 2.06 76.04 ± 1.42 48.15 ± 0.68

0 1 2 3 4 5 6 7 8
0%

20%
40%
60%
80%

100%

Ac
cu

ra
cy

S-DSADS

0 1 2 3 4 5

S-PAMAP2

0 1 2 3 4
Tasks Experienced

S-FMNIST

0 1 2 3 4

S-CIFAR10

0 1 2 3 4 5 6 7 8 9

S-CIFAR100

SurpriseNet
 Task Identification 
Accuracy

SurpriseNet
 Accuracy Given Correct 
Task Identification

SurpriseNetE
 Task Identification
Accuracy

SurpriseNetE
 Accuracy Given Correct 
Task Identification

Figure 2: To classify correctly SurpriseNet must first identify a task, then classify within the task. “SurpriseNet VAE EqPrune"
and “SurpriseNetE VAE EqPrune" configurations are shown above where each approach is applicable.

The variances observed in Table 1 exceed those reported by
other researchers in similar experiments due to our experimental
protocol’s inclusion of class order shuffling. To illustrate the effect
of this factor, we repeated our iCaRL experiments on S-FMNIST
without shuffling class ordering. The sample’s standard deviation
decreased significantly from 57.2 ± 17.6 to 65.3 ± 1.2. We strongly
argue that shuffling class orders is necessary to evaluate a model’s
robustness against task composition and to avoid biases in default
class orderings.

5 CONCLUSION
SurpriseNet utilizes parameter isolation to stabilize against for-
getting and an auto-encoder to learn cross-task knowledge and
identify tasks. High-dimensional data challenges our method but
we explore a dimensionality reduction technique to mitigate the
limitation. Future work could focus on improving the pruning pro-
cedure to enable more efficient utilization of capacity or enhancing
the anomaly detection capabilities. Although most continual learn-
ing works focus on image data, we present a more flexible method.

SurpriseNet is a flexible, effective, and replay-free method competi-
tive against replay methods, in some scenarios.
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