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ABSTRACT
The importance of social bot detection has been increasingly rec-
ognized due to its profound impact on information dissemination.
Existing methodologies can be categorized into feature engineering
and deep learning-based methods, which mainly focus on static fea-
tures, e.g., post characteristics and user profiles. However, existing
methods often overlook the burst phenomena when distinguishing
social bots and genuine users, i.e, the sudden and intense activity
or behavior of bots after prolonged inter. Through comprehensive
analysis, we find that both burst behavior and static features play
pivotal roles in social bot detection. To capture such properties,
the dual-channel GNN (DCGNN) is proposed which consists of
a burst-aware channel with an adaptive-pass filter and a static-
aware channel with a low-pass filter to model user characteristics
effectively. Experimental results demonstrate the superiority of this
method over competitive baselines.

CCS CONCEPTS
• Computing methodologies→ Neural networks; • Informa-
tion systems → Social networks.
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1 INTRODUCTION
Nowadays, social media has undeniably emerged as the primary
platform for individuals to spread information and acquire news
[24, 30, 31]. However, the increasing prevalence of social bots [6, 15],
which are accounts on social media operated by programs and
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Figure 1: Burst occurs during the posting process. Genuine
users tend to tweet frequently or even daily, while bots tend
to post at longer intervals, as yellow lines indicate.

pretending to be genuine users [16, 18, 26], significantly disrupts
the order of information dissemination [5, 46] and manipulates
public opinion [17, 33, 34, 38]. Effective methodologies for social
bot detection holds substantial significance for society [44].

Existing methodologies can be categorized into feature engineer-
ing and deep learning-based methods [7]. Early studies predomi-
nantly focused on designing well-defined features [9, 22, 43]. With
the advancement of deep learning, new methodologies have been
proposed, including utilizing natural language processing (NLP)
[11, 37, 40], employing generative adversarial network (GAN) mod-
els [8, 10, 29, 39], and leveraging graph neural network (GNN).
Notably, GNN-based methods can capture the inherent social struc-
ture naturally existing in social media [2, 20]. For example, Feng
et al. [14] proposed BotRGCN which considered various features
and deployed relation graph convolution neural network (R-GCN)
[32]. However, the aforementioned methods are heuristic in nature,
capturing information without a comprehensive analysis of the
distinctions between bots and genuine users.

Through comprehensive data analysis on a representative dataset,
we have uncovered a significant distinction between bots and gen-
uine users that has been largely overlooked by existing methodolo-
gies, namely the burst phenomenon that occurs during the posting
process. As depicted in Fig. 1, social bots exhibit a preference for
sporadic activity, while genuine users do not exhibit such behavior.
We refer to this phenomenon as "burst", specifically denoting the
sudden and intense activity or behavior after prolonged intervals.
Such a phenomenon is reasonable since bots tend to be active only
when they are engaged or prompted. Meanwhile, our data analysis
reveals the significance of static account characteristics obtained
from account profile information in social bot detection.
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For the purpose of capturing both burst and static properties,
we propose Dual-Channel Graph Neural Network, namely DCGNN
to detect social bots. DCGNN consists of the burst-aware channel
and the static-aware channel. The former employs an adaptive-pass
filter on a specific graph structure to construct users’ burst property,
while the latter utilizes a low-pass filter to extract users’ static fea-
tures. This approach comprehensively considers account features
through the integration of dual perspectives. Experimental results
demonstrate the superiority of DCGNN over existing methods.

2 PRELIMINARY
We introduce data analysis and problem formulation in this section.

2.1 Data Analysis
To gain deeper insights into social bots, we perform extensive data
analysis on a comprehensive and reliable dataset. Our analysis
reveals that both burst features and static account features play
critical roles in differentiating between genuine users and bots.

Figure 2: burst counts distribution of bots and genuine users.

2.1.1 Burst Feature Analysis. In terms of account behavior, social
bots may only be active when they are required to perform a role,
such as controlling public opinion or promoting their agenda. This
pattern results in social bot accounts featuring "frequent activity
after a long time interval", which we define as a burst phenomenon.
To verify this notion, we sample a group of users and count the
number of bursts, assuming a release interval of 20 days as a burst.
We find that social bots have an average of 2.03 bursts, while gen-
uine users have an average of 0.618 bursts. As shown in Fig. 2, we
found that social bots have more bursts than genuine users. This
result proves that using bursts to detect social bots is effective.

Figure 3: T-SNE results of
user static features.

Cat. Bots Genuine

cat. 1 2.8% 18.9%
cat. 2 0.2% 3.9%
cat. 3 1.0% 4.5%
cat. 4 96% 72.7%

Table 1: Accounts’ propor-
tions in each category

2.1.2 Static Feature Analysis. We randomly select 10,000 users and
analyze their account features, which are considered static as they
are derived from profile information and remain unchanged with
user behavior. Using the t-SNE clustering algorithm [36], we visual-
ize these features and observe that the accounts can be categorized

into four distinct groups, as depicted in Fig. 3. We then compute the
number of accounts and their proportions within each category that
are shown in table 1. Notably, while all accounts are concentrated
in the fourth category, social bots exhibit a significantly higher
concentration of 96% in this particular category. This finding un-
derscores the importance of static account features and emphasizes
the need to capture them to enhance the accuracy of bot detection.

2.2 Problem Formulation
Suppose that we have 𝑁𝑢 users and each user has a property set
𝑈 = {𝑈𝑛𝑢𝑚,𝑈 𝑐𝑎𝑡 ,𝑈𝑑𝑒𝑠 } representing the user’s numeric proper-
ties, categorical properties, and account description. There are 𝑁𝑡

corresponding tweets posted by these users and each tweet owns
a property set 𝑇 = {𝑇𝑛𝑢𝑚,𝑇𝑐𝑎𝑡 ,𝑇 𝑡𝑒𝑥𝑡 }, where 𝑇𝑛𝑢𝑚 describes the
numerical properties,𝑇𝑐𝑎𝑡 describes the categorical properties, and
𝑇 𝑡𝑒𝑥𝑡 describes the content of the tweet.

Meanwhile, there are many relations between users and tweets.
Let 𝑅 = {𝑅 𝑓 𝑜𝑙𝑙𝑜𝑤𝑒𝑟 , 𝑅 𝑓 𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔, 𝑅𝑝𝑜𝑠𝑡 , 𝑅𝑟𝑒𝑝𝑙𝑦, 𝑅𝑞𝑢𝑜𝑡𝑒 , 𝑅𝑟𝑒𝑡𝑤𝑒𝑒𝑡 } be
the relation set, which denotes the follower and following relations
between users, the post relation between users and tweets, and the
reply, quote, retweet relations between tweets. The task of social
bot detection is to identify bots among users using the user, tweet,
and relation information 𝑈 , 𝑇 , and 𝑅.

3 METHOD
Based on our above observations, we propose dual-channel GNN
which consists of two modules: burst-aware channel and static-
aware channel. The overall architecture is illustrated in Fig. 4. In
the following, we introduce the details of each module.

3.1 Burst-Aware Channel
We propose to use the adaptive-pass filter to capture the burst
phenomenon. In the following, we first introduce our motivation
for leveraging the adaptive-pass filter and then the detailed design.

3.1.1 Motivation to use adaptive-pass filters. We compute the prop-
erties of all the tweets posted by the user 𝑢𝑖 in time slot 𝑡 𝑗 and
aggregate them to describe the post behavior:

𝑥𝑖 𝑗 = [𝑥𝑛𝑢𝑚𝑖 𝑗 ;𝑥𝑐𝑎𝑡𝑖 𝑗 ] (1)

By connecting nodes from adjacent time slots, a user with burst
behavior is described as a sequence of empty nodes followed by
a node with a higher concentration of tweets. Conversely, a user
without burst behavior is depicted by nodes without significant
fluctuations and a proper filter should be employed to distinguish
between them. To build a graph structure that can aware burst, we
introduce two kinds of edges, one is based on timing relationships,
connecting the same user at different time steps, and the other is
based on replies, quotes, and retweets to improve the connectivity.

After constructing the post-behavior graph, the main difference
between users with burst and thosewithout it lies in the significance
of feature variations on the graph. Adaptive-pass filters, which
retain high-frequency and non-smooth features while filtering out
low-frequency and smooth features, exhibit enhanced capability.

To provide more evidence for the above analysis, we focus on the
difference between high-pass filters and low-pass filters. Given a
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Figure 4: Architecture overview of DCGNN, which includes burst-aware channel and static-aware channel.

graph𝐺 = (𝑉 , 𝐸) with adjacencymatrix𝐴, we can define its normal-
ized Laplacian matrix as 𝐿 = 𝐼𝑛 − 𝐷− 1

2𝐴𝐷− 1
2 where 𝐷𝑖𝑖 =

∑
𝑗𝐴𝑖 𝑗 .

The matrix 𝐿 possesses a complete set of orthonormal eigenvectors
𝑈 = [𝑢1, 𝑢2, ..., 𝑢𝑛].For an eigenvector 𝑢𝑖 , its associated eigenvalue
_𝑖 captures the smoothness, and eigenvectors corresponding to
small eigenvalues exhibit smoothness in relation to the graph struc-
ture [35, 42]. Since eigenvectors are orthonormal, given a signal 𝑥
defined on this graph, it can be uniquely represented by 𝑈 as:

𝑥 = 𝛼1𝑢1 + 𝛼2𝑢2 + ... + 𝛼𝑛𝑢𝑛 (2)

and 𝑢𝑖𝑢𝑇𝑖 composes a set of basic filters:

𝑢𝑖𝑢
𝑇
𝑖 𝑥 = 𝛼1𝑢𝑖𝑢

𝑇
𝑖 𝑢1 + · · · + 𝛼𝑛𝑢𝑖𝑢

𝑇
𝑖 𝑢𝑛 = 𝛼𝑖𝑢𝑖 (3)

Then various graph neural networkmethods employ distinct weight
assignments for these filters.

As depicted in Fig. 4, human signals with few bursts consist
mainly of low-frequency components, which are predominantly
preserved by the low-pass filter. Conversely, bot signals with more
bursts are primarily captured by the high-pass filter[23, 45]. To
distinguish between these two types of signals, we utilize adaptive-
pass filters that amplify low-frequency and high-frequency signals
while inhibiting mid-frequency signals [41].

3.1.2 Implementation of Adaptive-Pass Filters. Therefore, we apply
the Frequency Adaptation Graph Convolutional Networks (FAGCN)
[4] to extract burst features. First, we map the initial post feature
to hidden space:

𝑥
(0)
𝑖 𝑗

= 𝜙 (𝑊1 · 𝑥𝑖 𝑗 + 𝑏1) (4)
where𝑊1 and 𝑏1 are learnable parameters. 𝜙 represents the activate
function and we adopt leaky-relu as𝜙 for the rest of the paper. Then
we apply the convolutional layer of FAGCN:

𝑥
(𝑙 )
𝑖 𝑗

= 𝜖𝑥
(0)
𝑖 𝑗

+∑
𝑘∈𝑁𝑖 𝑗

𝛼𝑖 𝑗,𝑘√
𝑑𝑖 𝑗𝑑𝑘

𝑥
(𝑙−1)
𝑖 𝑗

(5)

where 𝜖 is the initial layers weight defined in FAConv which we set
to the default value 0.1 and 𝛼𝑖 𝑗,𝑘 is the learnable attention weight
between node 𝑖 𝑗 and its neighbor 𝑘 . The representations of the

same user from different time slots are aggregated to obtain the
final burst feature. Specifically, we compute the absolute value to
obtain the magnitude of the signal:

𝑥𝑖 =
∑

𝑗

��𝑥𝑖 𝑗 �� (6)

where 𝑥𝑖 is the aggregated feature of user 𝑢𝑖 . Then it is fed into a
one-layer MLP to get the final user burst feature:

𝑥𝑖_𝑏𝑢𝑟𝑠𝑡 = 𝜙 (𝑊2𝑥𝑖 + 𝑏2) (7)

where𝑊2 and 𝑏2 are learnable parameters and 𝑥𝑖_𝑏𝑢𝑟𝑠𝑡 is the final
burst feature of user 𝑢𝑖 .

3.2 Static-Aware Channel
To introduce the static feature into the model, we follow BotRGCN
[14], which is the state-of-art social bot detection method based on
GNN. The initial user static feature is computed by:

𝑟𝑖 = [𝑟𝑏,𝑖 ; 𝑟𝑡,𝑖 ; 𝑟𝑛𝑢𝑚𝑝,𝑖 ; 𝑟𝑐𝑎𝑡𝑝,𝑖 ] (8)

where 𝑟𝑖 , 𝑟𝑏,𝑖 , 𝑟𝑡,𝑖 , 𝑟𝑛𝑢𝑚𝑝,𝑖
and 𝑟𝑐𝑎𝑡

𝑝,𝑖
correspond to the initial static

features, the descriptions, the tweets, the numerical properties, and
the categorical properties of user𝑢𝑖 , respectively. 𝑟𝑛𝑢𝑚𝑝,𝑖

and 𝑟𝑐𝑎𝑡
𝑝,𝑖

are
directly from user property set𝑈 , while 𝑟𝑏,𝑖 and 𝑟𝑡,𝑖 are processed
by pretrained RoBERTa [25].

First the features are transformed to derive the hidden vectors:

𝑦
(0)
𝑖

= 𝜙 (𝑊3 · 𝑟𝑖 + 𝑏3) (9)

where𝑊3 and 𝑏3 are learnable parameters. Next we apply the R-
GCN layers to aggregate feature in following and follower relations:

𝑦𝑙+1𝑖 = Θ𝑠𝑒𝑙 𝑓 𝑦
𝑙
𝑖 +

∑︁
𝑟 ∈𝑅

∑︁
𝑗∈𝑁𝑟 (𝑖 )

1
|𝑁𝑟 (𝑖) |

Θ𝑟𝑦
𝑙
𝑖 (10)

where Θ is the projection matrix. After 𝐿 layers we use MLP to get
the final user static feature:

𝑥𝑖_𝑠𝑡𝑎𝑡𝑖𝑐 = 𝜙 (𝑊4𝑦
𝐿
𝑖 + 𝑏4) (11)
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where𝑊4 and 𝑏4 are learnable parameters. Finally, the burst and
static features are concatenated to get the final representation:

ℎ𝑖 = 𝜙 (𝑊5 · [𝑥𝑖_𝑏𝑢𝑟𝑠𝑡 ;𝑥𝑖_𝑠𝑡𝑎𝑡𝑖𝑐 ] + 𝑏5) (12)

where𝑊5 and 𝑏5 are learnable parameters.

3.3 Loss Function
We apply a softmax layer to conduct social bot detection task based
on the final user representations:

𝑦𝑖 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊𝑜 · ℎ𝑖 + 𝑏𝑜 ) (13)

where𝑊𝑜 and𝑏𝑜 are learnable parameters.We introduce theweighted
cross entropy loss to address the imbalanced classification:

𝐿 = −
∑︁
𝑖∈𝑌

[𝜔+𝑦𝑖𝑙𝑜𝑔(𝑦𝑖 ) + 𝜔− (1 − 𝑦𝑖 )𝑙𝑜𝑔(1 − 𝑦𝑖 )] + _
∑︁
𝜔∈\

𝜔2 (14)

where 𝑌 is the users with label in the dataset, 𝑦𝑖 is the ground-truth
label, \ is all learnable parameters in the model, and 𝜔+ and 𝜔− are
the weights added to positive class and negative class.

4 EXPERIMENTS
To validate the proposed DCGNN, we show the experimental results
of our model applied to representative TwiBot-22 dataset[13].

4.1 Experimental Setup
4.1.1 Dataset. We use TwiBot-22 [13] dataset that contains both
the tweet information and various relations between users and
tweets to validate DCGNN. Meanwhile, social bots are about 13%,
which meets real-world scenarios. We random extract a subgraph of
the raw data by applying a Louvain Community detection algorithm
[3] on the following relationship among users, which involves 8694
accounts with about 11% social bots. We follow the partition of
training, validation, and test set in the original benchmark.

4.1.2 Baselines. We leverage the following various baselines:
• Miller et al. [27] who extract 107 features and defines the
social bot detection as anomaly detection.

• Kudugunta et al. [21] who use both account metadata and
the tweet content.

• Efthimion et al. [12] who leverage text variation and apply
the Support Vector Machine (SVM) algorithm.

• Moghaddam et al. [28] who use graph structure and at-
tributes to conduct the random forest algorithm.

• Ali et al. [1] who select a subset of features and apply GNN.
• BotRGCN [14] which uses multiple static features and ag-
gregates features by RGCN.

4.1.3 Evaluation Metric. We choose commonly used evaluation
metrics to assess the performance, including accuracy, precision, re-
call, and f1-score. Considering the imbalanced nature of the dataset,
we prioritize the f1-score rather than accuracy.

4.2 Performance on Social Bot Detection Task
Table 2 clearly shows the superior performance of our method.
Among the evaluated methods, Miller’s approach exhibits superior
recall but lower precision, suggesting an inclination towards over-
classifying accounts as bots. Ali’s method performs the highest
accuracy and precision but falls short in terms of recall, indicating

Table 2: Performance on TwiBot-22 benchmark

Method F1-Score Precision Recall Accuracy

Kudugunta 0.4089 0.3049 0.6209 0.6083
Miller 0.3733 0.2399 0.8405 0.3842

Efthimion 0.2203 0.3562 0.1595 0.7537
Moghaddam 0.4058 0.4171 0.3951 0.7475

Ali 0.1939 0.5758 0.1166 0.7885
BotRGCN 0.3194 0.4200 0.2577 0.7604

DCGNN 0.4713 0.4653 0.4785 0.7657

its limited ability to accurately identify bots among all accounts. In
contrast, our method achieves the most favorable overall perfor-
mance, as reflected by the f1 score, thus underscoring its efficacy.

4.3 Ablation studies
To demonstrate the effectiveness of dual channels, we conduct abla-
tion studies, including using single-channel detection and changing
the adaptive-pass filter to a typical low-pass one.

Table 3: Ablation studies with DCGNN

Module F1-Score Precision Recall Accuracy

BAC 0.3389 0.2190 0.7485 0.3628
SAC 0.3650 0.3739 0.2638 0.7430

low-pass 0.3094 0.3739 0.2638 0.7430

DCGNN 0.4713 0.4653 0.4785 0.7657

We conduct bot detection with a single burst-aware channel
(BAC) and a single static-aware channel (SAC). As shown in table 3,
both channels could complete the detection task independently, yet
their performance falls short of the complete module. Notably, the
BAC exhibits superior performance in terms of the recall metric,
while the SAC demonstrates better precision results. This suggests
that these channels focus on different aspects, emphasizing the
significance of considering both. Furthermore, we validate the ef-
fectiveness of adaptive-pass filters in the BAC by replacing FAGCN
with a typical low-pass filter GCN [19]. The results shown in table
3 demonstrate the effectiveness of adaptive-pass filters.

5 CONCLUSION
Weperform comprehensive data analysis on a representative dataset
to identify social bots and underscore the significance of burst phe-
nomena. Therefore, DCGNN is proposed to incorporate burst fea-
tures and static features. Extensive experiments on the TwiBot-22
dataset demonstrate the superiority of our method compared to
competitive baselines.
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