
FiBiNet++: Reducing Model Size by Low Rank Feature Interaction
Layer for CTR Prediction

Pengtao Zhang
Sina Weibo

Beijing, China
zpt1986@126.com

Zheng Zheng
Brandeis University

Waltham, United States
zhengzheng@brandeis.edu

Junlin Zhang
Sina Weibo

Beijing, China
junlin6@staff.weibo.com

ABSTRACT
Click-Through Rate (CTR) estimation has become one of the most
fundamental tasks in many real-world applications and various
deep models have been proposed. Some research has proved that
FiBiNet is one of the best performance models and outperforms
all other models on Avazu dataset. However, the large model size
of FiBiNet hinders its wider application. In this paper, we propose
a novel FiBiNet++ model to redesign FiBiNet’s model structure,
which greatly reduces model size while further improves its per-
formance. One of the primary techniques involves our proposed
"Low Rank Layer" focused on feature interaction, which serves
as a crucial driver of achieving a superior compression ratio for
models. Extensive experiments on three public datasets show that
FiBiNet++ effectively reduces non-embedding model parameters of
FiBiNet by 12x to 16x on three datasets. On the other hand, FiBi-
Net++ leads to significant performance improvements compared to
state-of-the-art CTR methods, including FiBiNet. The source code
is in https://github.com/recommendation-algorithm/FiBiNet.

CCS CONCEPTS
• Information systems→ Recommender systems.

KEYWORDS
Recommender System; Click-Through Rate
ACM Reference Format:
Pengtao Zhang, Zheng Zheng, and Junlin Zhang. 2023. FiBiNet++: Reducing
Model Size by Low Rank Feature Interaction Layer for CTR Prediction.
In Proceedings of the 32nd ACM International Conference on Information
and Knowledge Management (CIKM ’23), October 21–25, 2023, Birmingham,
United Kingdom. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/
3583780.3615242

1 INTRODUCTION
Click-through rate (CTR) prediction plays important role in per-
sonalized advertising and recommender systems[4, 5, 7, 11, 13]. In
recent years, a series of deep CTR models have been proposed to
resolve this problem such as Wide & Deep Learning[2], DeepFM[6],
DCN[17], xDeepFM [12], AutoInt[16], DCN v2[18] and FiBiNet[9].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0124-5/23/10. . . $15.00
https://doi.org/10.1145/3583780.3615242

Specifically, Wide & Deep Learning[2] jointly trains wide linear

Figure 1: The Framework of FiBiNet++

models and deep neural networks to combine the benefits of mem-
orization and generalization for recommender systems. DeepFM[6]
replaces the wide part of Wide & Deep model with FM and shares
the feature embedding between the FM and deep component. Some
works explicitly introduce high-order feature interactions by sub-
network. For example, Deep & Cross Network (DCN)[17] and DCN
v2[18] efficiently capture feature interactions of bounded degrees
in an explicit fashion. The eXtreme Deep Factorization Machine
(xDeepFM) [12] also models the low-order and high-order feature
interactions in an explicit way by proposing a novel Compressed
Interaction Network (CIN) part. Similarly, FiBiNet[9] dynamically
learns the importance of features via the Squeeze-Excitation net-
work (SENET) and feature interactions via bi-linear function.

Though many models have been proposed, seldom works fairly
compare these models’ performance. FuxiCTR[22] performs open
benchmarking for CTR prediction and experimental results[22]
show that FiBiNet is one of the best performance models, which
outperforms all other 23 models on Avazu dataset.

However, we argue that FiBiNet has too many model parameters,
which hinders its wider usage in real-life applications. In real-world
systems, both the smaller size and the cost of training and inference
times are important factors to be considered. Therefore, our works
aims to redesign the model structure to greatly reduce model size
while improving its performance.

In this paper, we propose a novel FiBiNet++ model to address
these challenges as shown in Figure 1. First, we reconstruct the
model structure by removing the bi-linear module on SENet and
the linear part in FiBiNet, which directly reduces model parame-
ters. More importantly, we upgrade the bi-linear function into the
bi-linear+ module by changing the hadamard product to inner prod-
uct and bringing a "Low Rank Layer" on feature interaction into it.

ar
X

iv
:2

20
9.

05
01

6v
2

 [
cs

.I
R

]
 2

1
A

ug
 2

02
3

https://github.com/recommendation-algorithm/FiBiNet
https://doi.org/10.1145/3583780.3615242
https://doi.org/10.1145/3583780.3615242
https://doi.org/10.1145/3583780.3615242

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Pengtao Zhang, Zheng Zheng, & Junlin Zhang

In Section 3.2, we will demonstrate that the proposed "Low Rank
Layer" is primarily responsible for high model compression ratio.
Our inspiration for this approach stems from the LoRA[8], which
reveals that LLM models possess a low rank "intrinsic dimension,"
enabling them to learn effectively even after undergoing random
projection into a smaller subspace. We put forth the hypothesis that
feature interactions in CTR models similarly exhibit a low intrin-
sic rank during training and propose incorporating a "Low Rank
Feature Interaction Layer" into bi-linear+ modules, which greatly
reduces model parameters while keeps model’s performance. Fi-
nally, we introduce feature normalization and the upgraded SENet+
module to further enhance model performance.

We summarize our major contributions as below: (1) The pro-
posed FiBiNet++ greatly reduces model size of FiBiNet by 12x to
16x on three datasets. (2) Compared with FiBiNet, our proposed
FiBiNet++ model increases mode’s training and reference efficien-
cies by +37.50% to 81.03% on three datasets. (3) FiBiNet++ yields
remarkable improvements compared to state-of-the-art models.

2 PRELIMINARIES
DNN model is always used as a sub-component in most current
DNN ranking systems[3, 6, 9, 12, 14, 17, 19] and it contains two
components: feature embedding and MLP.

(1) Feature Embeddding. We map one-hot sparse features
to dense, low-dimensional embedding vectors and obtain feature
embedding v𝑖 for one-hot vector x𝑖 via: v𝑖 = W𝑒x𝑖 ∈ R1×𝑑 , where
W𝑒 ∈ R𝑛×𝑑 is the embedding matrix of 𝑛 features and 𝑑 is the
dimension of field embedding.

(2) MLP. To learn high-order feature interactions, multiple feed-
forward layers are stacked on the concatenation of dense fea-
tures represented as H0 = 𝑐𝑜𝑛𝑐𝑎𝑡 [v1, v2, ..., v𝑓], where 𝑓 denotes
field number. Then, the feed forward process of MLP is H𝑙 =

𝑅𝑒𝐿𝑈 (W𝑙H𝑙−1 + 𝛽𝑙) , where 𝑙 is the depth and ReLU is the ac-
tivation function. W𝑙 , 𝛽𝑙 ,H𝑙 are weighting matrix, bias and output
of the 𝑙-th layer.

For binary classifications, the loss function of CTR prediction is
the log loss:

L = − 1
𝑁

𝑁∑︁
𝑖=1

𝑦𝑖 log(𝑦𝑖) + (1 − 𝑦𝑖) log(1 − 𝑦𝑖) (1)

where 𝑁 is the total number of training instances, 𝑦𝑖 is the ground
truth of 𝑖-th instance and 𝑦𝑖 is the predicted CTR.

3 OUR PROPOSED MODEL
The architecture of the proposed FiBiNet++ is shown in Figure 1.
The original feature embedding is first normalized before being
sent to the following components. Then, Bi-linear+ module models
feature interactions and SENet+ module computes bit-wise feature
importance. The outputs of two branches are concatenated as input
of the following MLP layers.

3.1 FiBiNet++
Feature Normalization. We introduce feature normalization into
FiBiNet++ to enhance model’s training stability as follows:

N(V) = 𝑐𝑜𝑛𝑐𝑎𝑡 [N(v1),N(v2), ...,N(v𝑓)] ∈ R1×𝑓 𝑑 (2)

where N (·) is layer normalization[1] for numerical feature and
batch normalization[10] operation for categorical feature.

Bi-Linear+ Module. FiBiNet models interaction between fea-
ture x𝑖 and feature x𝑗 by bi-linear function which introduces an
extra learned matrixW as follows:

p𝑖, 𝑗 = v𝑖 ◦W ⊗ v𝑗 ∈ R1×𝑑 (3)

where ◦ and ⊗ denote inner product and element-wise hadamard
product, respectively. In order to effectively reduce model size, we
upgrade bi-linear function into bi-linear+ module by following two
methods. First, the hadamard product is replaced by another inner
product as: p𝑖, 𝑗 = v𝑖 ◦W ◦ v𝑗 ∈ R1×1 . We think the feature inter-
action is rather sparse and one bit information as representation is
enough instead of a vector. It’s easy to see the parameters of p𝑖, 𝑗
decrease greatly from d dimensional vector to 1 bit for each feature
interaction. Suppose the input instance has 𝑓 fields and we have
the following vector after bi-linear feature interaction:

P = 𝑐𝑜𝑛𝑐𝑎𝑡 [p1,2, p1,3,, p𝑓 −1,𝑓] ∈ R1×
𝑓 ×(𝑓 −1)

2 (4)

Inspired by LoRA[8], which has demonstrated that LLM models
possess a low "intrinsic dimension" and exhibit efficient learning
despite undergoing random projections to smaller subspaces, we
posit that updates to the feature interaction layer during training
also exhibit a low "intrinsic rank." Therefore, we propose integrat-
ing a thin "Low Rank Layer" into Bi-Linear+, thereby reducing
model parameters significantly while maintaining optimal model
performance. Specifically, we introduce "Low Rank Layer" stacking
on feature interaction vector P as follows:

H𝐿𝑅𝐿 = 𝜎1 (W1P) ∈ R1×𝑚 (5)

where W1 ∈ R𝑚× 𝑓 ×(𝑓 −1)
2 is a learning matrix of thin MLP layer

with small size 𝑚 and 𝜎1 (·) is an identity function. "Low Rank
Layer" projects feature interactions from sparse space into low rank
space to greatly reduce the storage.

SENet+Module. SENet+module consists of four phases: squeeze,
excitation, re-weight and fuse. (1) Squeeze. SENet collects one bit
information by mean pooling from each feature embedding as "sum-
mary statistics". However, we improve the original squeeze step by
providing more useful information. Specifically, we first segment
each normalized feature embedding v𝑖 ∈ R1×𝑑 into g groups, which
is a hyper-parameter, as: v𝑖 = 𝑐𝑜𝑛𝑐𝑎𝑡 [v𝑖,1, v𝑖,2,, v𝑖,𝑔] , where
v𝑖, 𝑗 ∈ R1×

𝑑
𝑔 means information in the j-th group of the i-th feature.

Let k = 𝑑
𝑔 denotes the size of each group. Then, we select the max

value z𝑚𝑎𝑥
𝑖,𝑗

and average pooling value z𝑎𝑣𝑔
𝑖,𝑗

in v𝑖, 𝑗 as representation

of the group as: z𝑚𝑎𝑥
𝑖,𝑗

= max
𝑡

{
v𝑡
𝑖, 𝑗

}𝑘
𝑡=1

and z𝑎𝑣𝑔
𝑖,𝑗

= 1
𝑘

∑𝑘
𝑡=1 v

𝑡
𝑖, 𝑗

. The
concatenated representative information of each group forms the
"summary statistic" Z𝑖 of feature embedding v𝑖 :

Z𝑖 = 𝑐𝑜𝑛𝑐𝑎𝑡 [z𝑚𝑎𝑥
𝑖,1 , z𝑎𝑣𝑔

𝑖,1 , z𝑚𝑎𝑥
𝑖,2 , z𝑎𝑣𝑔

𝑖,2 ,, z𝑚𝑎𝑥
𝑖,𝑔 , z𝑎𝑣𝑔

𝑖,𝑔
] ∈ R1×2𝑔 (6)

Finally, we can concatenate each feature’s summary statistic Z =

𝑐𝑜𝑛𝑐𝑎𝑡 [Z1,Z2,,Z𝑓] ∈ R1×2𝑔𝑓 as the input of SENet+ module.
(2) Excitation. The excitation step in SENet computes each

feature’s weight according to the statistic vector Z, which is a field-
wise attention. However, we improve this step by changing the
field-wise attention into a more fine-grained bit-wise attention.

FiBiNet++: Reducing Model Size by Low Rank Feature Interaction Layer for CTR Prediction CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

Similarly, we also use two fully connected (FC) layers to learn
the weights as follows: A = 𝜎3 (W3𝜎2 (W2Z)) ∈ R1×𝑓 𝑑 , where
W2 ∈ R

2𝑔𝑓
𝑟

×2𝑔𝑓 denotes learning parameters of the first FC layer,
which is a thin layer and 𝑟 is reduction ratio.W3 ∈ R𝑓 𝑑×

2𝑔𝑓
𝑟 means

learning parameters of the second FC layer, which is a wider layer
with a size of 𝑓 𝑑 . Here 𝜎2 (·) is 𝑅𝑒𝐿𝑢 (·) and 𝜎3 (·) is an identity
function without non-linear transformation.In this way, each bit in
input embedding can dynamically learn the corresponding attention
score provided by A.

(3) Re-Weight. Re-weight step does element-wise multiplication
between the original field embedding and the learned attention
scores as follows: V𝑤 = A⊗N(V) ∈ R1×𝑓 𝑑 , where ⊗ is an element-
wise multiplication between two vectors and N(V) denotes original
embedding after normalization.

(4) Fuse.An extra "fuse" step is introduced in order to better fuse
the information contained both in original feature embedding and
weighted embedding. Specifically, we first use skip-connection to
merge two embedding as follows: v𝑠

𝑖
= v𝑜

𝑖
⊕ v𝑤

𝑖
, where v𝑜

𝑖
donates

the i-th normalized feature embedding, v𝑤
𝑖

denotes embedding
after re-weight step, ⊕ is an element-wise addition operation. Then,
another feature normalization is applied on feature embedding v𝑠

𝑖
for a better representation: v𝑢

𝑖
= LN(v𝑠

𝑖
) . Note we adopt layer

normalization here no matter what type of feature it belongs to,
numerical or categorical feature. Finally, we concatenate all the
fused embeddings as the output of the SENet+ module:

V𝑆𝐸𝑁𝑒𝑡+ = 𝑐𝑜𝑛𝑐𝑎𝑡 [v𝑢1 , v
𝑢
2 , ..., v

𝑢
𝑓
] ∈ R1×𝑓 𝑑 (7)

Concatenation Layer.We concatenate the output of two branches
to form the input of the following MLP layers:

H0 = 𝑐𝑜𝑛𝑐𝑎𝑡 [H𝐿𝑅𝐿,V𝑆𝐸𝑁𝑒𝑡+] (8)

3.2 Discussion
In this section, we discuss the model size difference between FiBiNet
and FiBiNet++. Note only non-embedding parameter is considered,
which really demonstrates model complexity.

The major parameter of FiBiNet comes from two components:
one is the connection between the first MLP layer and the output
of two bi-linear modules, and the other is the linear part. Suppose
we denote ℎ = 400 as the size of the first MLP layer, 𝑓 = 50 as
field number, 𝑑 = 10 as feature embedding size, and 𝑡 = 1𝑚𝑖𝑙𝑙𝑖𝑜𝑛

as feature number. Therefore, the parameter number in these two
parts is nearly 10.8 million:

T𝐹𝑖𝐵𝑖𝑁𝑒𝑡 =
f × (f − 1) × d × h︸ ︷︷ ︸
𝑀𝐿𝑃 𝑎𝑛𝑑 𝑏𝑖−𝑙𝑖𝑛𝑒𝑎𝑟

+ 𝑡︸︷︷︸
𝑙𝑖𝑛𝑒𝑎𝑟

= 10.8𝑚𝑖𝑙𝑙𝑖𝑜𝑛𝑠 (9)

For FiBiNet++, the majority of model parameter comes from follow-
ing three components: the connection between the first MLP layer
and embedding produced by SENet+ module(1-th part), the connec-
tion between the first MLP layer and "Low Rank Layer"(2-th part),
and parameters between "Low Rank Layer" and bi-linear feature
interaction results(3-th part). Let𝑚 = 50 denote the size of "Low
Rank Layer". We have the parameter number of these components

Table 1: Overall performance (AUC) of different models

Avazu Criteo KDD12
Model AUC(%) Paras. AUC(%) Paras. AUC(%) Paras.
FM 78.17 1.54M 78.97 1.0M 77.65 5.46M
DNN 78.67 0.74M 80.73 0.48M 79.54 0.37M
DeepFM 78.64 2.29M 80.58 1.48M 79.40 5.84M
xDeepFM 78.88 4.06M 80.64 4.90M 79.51 6.91M
DCN 78.68 0.75M 80.73 0.48M 79.58 0.37M
AutoInt+ 78.62 0.77M 80.78 0.48M 79.69 0.38M
DCN v2 78.98 4.05M 80.88 0.65M 79.66 0.39M
FiBiNet 79.12 10.27M 80.73 7.25M 79.52 6.41M
FiBiNet++ 79.15 0.81M 81.10 0.56M 79.98 0.40M
Improv. +0.03 12.7x +0.37 12.9x +0.46 16x

as follows:

T𝐹𝑖𝐵𝑖𝑁𝑒𝑡++ =
f × d × h︸ ︷︷ ︸
1−𝑡ℎ 𝑝𝑎𝑟𝑡

+ m × h︸︷︷︸
2−𝑡ℎ 𝑝𝑎𝑟𝑡

+ f × (f − 1)
2

×m︸ ︷︷ ︸
3−𝑡ℎ 𝑝𝑎𝑟𝑡

= 0.28𝑚𝑖𝑙𝑙𝑖𝑜𝑛𝑠

(10)
We can see that the above-mentioned methods to reduce model
size greatly decrease model size from 10.8 million to 0.28 million,
which is nearly 39x model compression. In addition, the larger the
field number 𝑓 is, the larger the model compression ratio we can
achieve. It’s easy to see that "Low Rank Layer" is the key to the
high compression ratio while it can also be applied into other CTR
models with long feature interaction layers such as ONN[20] and
FAT-DeepFFM[21] for feature interaction compression.

4 EXPERIMENTAL RESULTS
4.1 Experiment Setup
Datasets Three datasets are used in our experiments and we ran-
domly split instances by 8:1:1 for training, validation and testing:
(1) Criteo1: As a display ad dataset, there are 26 anonymous cat-
egorical fields and 13 continuous feature fields. (2) Avazu2: The
Avazu dataset contains 23 fields that indicate elements of a single
ad impression. (3) KDD123: KDD12 dataset has 13 fields spanning
from user id to ad position for a clicked data.

Models for Comparisons We compare the performance of the
FM[15], DNN, DeepFM[6], DCN [17], AutoInt [16], DCN V2 [18],
xDeepFM [12] and FiBiNet [9] models as baselines and AUC is used
as the evaluation metric.

Implementation Details For the optimization method, we use
the Adam with a mini-batch size of 1024 and 0.0001 as learning
rates. We make the dimension of field embedding for all models to
be a fixed value of 10 for Criteo dataset, 50 for Avazu dataset and 10
for KDD12 dataset. For models with DNN part, the depth of hidden
layers is set to 3, the number of neurons per layer is 400, and all
activation functions are ReLU. In SENet+, the reduction ratio is set
to 3 and the group number is 2 as the default settings. In Bi-linear+
module, we set size of the low rank layer as 50.

1Criteo http://labs.criteo.com/downloads/download-terabyte-click-logs/
2Avazu http://www.kaggle.com/c/avazu-ctr-prediction
3KDD12 https://www.kaggle.com/c/kddcup2012-track2

http://labs.criteo.com/downloads/download-terabyte-click-logs/
http://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/kddcup2012-track2

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Pengtao Zhang, Zheng Zheng, & Junlin Zhang

Figure 2: Effect of Hyper-Parameters

Figure 3: Comparison of Model Size

4.2 Results and Analysis
Performance Comparison. Table 1 shows the performances of
different SOTA baselines and FiBiNet++. The best results are in bold,
and the best baseline results are underlined. We can see that:(1)
FiBiNET++model outperforms all the compared SOTAmethods and
achieves the best performance on all three benchmarks. (2) Among
all the strong baselines with a similar amount of parameters such as
Autoint+, DCN v2 and DeepFM, FiBiNet++ is the best performance
model on all three datasets. This demonstrates the reason why
FiBiNet++ outperforms other models is because of its designed
components instead of more parameter. (3) Compared with FiBiNet
model, FiBiNet++ can achieve better performance on all datasets
though it has much fewer parameters, which indicates that our
proposed methods to enhance model performance are effective.

Model Size Comparison. We compare the non-embedding
model size of different methods in Table 1 and Figure 3. FiBiNet++
provides orders of magnitude improvement in model size while
improving the quality of the model compared with FiBiNet. Specifi-
cally, FiBiNet++ reduce the model size of FiBiNet by 12.7x, 12.9x
and 16x in terms of the number of parameters on three datasets,
respectively, which demonstrates that our proposed methods to
reduce model parameter in this paper are effective. Now FiBiNet++

Table 2: Training and reference efficiency comparison

Avazu Criteo KDD12
Model Train(ms) Refer(ms) Train(ms) Refer(ms) Train(ms) Refer(ms)
FiBiNet 97 12 191 58 33 8
FiBiNet++ 40 7 72 11 20 5
Improv. +58.76% +41.66% +62.30% +81.03% +39.39% +37.50%

has a comparable model size with DNN model while outperforms
all other models on three datasets at the same time.

Training/Reference Efficiency. Efficiency is an essential con-
cern in industrial applications and we conduct experiments to com-
pare the training and inference time between our proposed FiBi-
Net++ and FiBiNet. We leverage time(millisecond) of processing
one batch of examples during the training and reference as an effi-
ciency metric. The average training and inference times of the two
models are illustrated in Table 2. Compared with FiBiNet model,
the training efficiency of FiBiNet++ increases by 58.76%, 62.30% and
39.39% while reference efficiency increases by 41.66%, 81.03% and
37.50% on three datasets respectively. Our FiBiNet++ model shows
a significant advantage in training and inference efficiency, which
makes it more practical to be applied in real life.

Hyper-Parameters of FiBiNet++. Next, we study hyperparam-
eter sensitivity of FiBiNet++. (1) Group Number. Figure 2a shows
a slight performance increase with the increase of group number,
which indicates that more group number benefits model perfor-
mance because we can input more useful information in feature
embedding into SENet+ module.

(2) Reduction Ratio. We conduct some experiments to adjust
the reduction ratio in SENet+ module from 1 to 9 and Figure 2b
shows the result. It can be seen that the performance is better if we
set the reduction ratio to 3 or 9. (3) Size of Low Rank Layer. The
results in Figure 2c show the impact when we adjust the size of
the Low Rank Layer in bi-linear+ module. We can observe that the
performance begins to decrease when the size is set greater than
150, which demonstrates the feature interaction represented in low
rank space indeed works.

5 CONCLUSION
In this paper, we propose FiBiNet++ model in order to greatly
reduce the model size while improving the model performance.

FiBiNet++: Reducing Model Size by Low Rank Feature Interaction Layer for CTR Prediction CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

Experimental results show that FiBiNet++ provides orders of mag-
nitude improvement in model size while improving the quality of
the model.

REFERENCES
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normaliza-

tion. arXiv preprint arXiv:1607.06450 (2016).
[2] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,

Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
workshop on deep learning for recommender systems. ACM, 7–10.

[3] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks
for youtube recommendations. In Proceedings of the 10th ACM conference on
recommender systems. ACM, 191–198.

[4] Wei Deng, Junwei Pan, Tian Zhou, Deguang Kong, Aaron Flores, and Guang
Lin. 2021. Deeplight: Deep lightweight feature interactions for accelerating ctr
predictions in ad serving. In Proceedings of the 14th ACM international conference
on Web search and data mining. 922—-930.

[5] Thore Graepel, Joaquin Quinonero Candela, Thomas Borchert, and Ralf Herbrich.
2010. Web-scale bayesian click-through rate prediction for sponsored search
advertising in microsoft’s bing search engine. Omnipress.

[6] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: a factorization-machine based neural network for CTR prediction. arXiv
preprint arXiv:1703.04247 (2017).

[7] Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu, Tao Xu, Yanxin Shi, Antoine
Atallah, Ralf Herbrich, Stuart Bowers, et al. 2014. Practical lessons from predicting
clicks on ads at facebook. In Proceedings of the Eighth International Workshop on
Data Mining for Online Advertising. ACM, 1–9.

[8] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2021. Lora: Low-rank adaptation of large
language models. arXiv preprint arXiv:2106.09685 (2021).

[9] Tongwen Huang, Zhiqi Zhang, and Junlin Zhang. 2019. FiBiNET: combin-
ing feature importance and bilinear feature interaction for click-through rate
prediction. In Proceedings of the 13th ACM Conference on Recommender Sys-
tems, RecSys 2019, Copenhagen, Denmark, September 16-20, 2019. ACM, 169–177.
https://doi.org/10.1145/3298689.3347043

[10] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167 (2015).

[11] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 8 (2009), 30–37.

[12] Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and
Guangzhong Sun. 2018. xdeepfm: Combining explicit and implicit feature in-
teractions for recommender systems. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. ACM, 1754–
1763.

[13] H. Brendan McMahan, Gary Holt, D. Sculley, Michael Young, Dietmar Ebner,
Julian Grady, Lan Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, and et al.
2013. Ad Click Prediction: A View from the Trenches. In Proceedings of the 19th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(Chicago, Illinois, USA) (KDD ’13). Association for Computing Machinery, New
York, NY, USA, 1222–1230. https://doi.org/10.1145/2487575.2488200

[14] Yanru Qu, Han Cai, Kan Ren, Weinan Zhang, Yong Yu, Ying Wen, and Jun Wang.
2016. Product-based neural networks for user response prediction. In 2016 IEEE
16th International Conference on Data Mining (ICDM). IEEE, 1149–1154.

[15] Steffen Rendle. 2010. Factorization machines. In 2010 IEEE International Confer-
ence on Data Mining. IEEE, 995–1000.

[16] Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang,
and Jian Tang. 2019. Autoint: Automatic feature interaction learning via self-
attentive neural networks. In Proceedings of the 28th ACM International Conference
on Information and Knowledge Management. 1161–1170.

[17] Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. 2017. Deep & cross network
for ad click predictions. In Proceedings of the ADKDD’17. ACM, 12.

[18] Ruoxi Wang, Rakesh Shivanna, Derek Zhiyuan Cheng, Sagar Jain, Dong Lin,
Lichan Hong, and Ed H. Chi. 2021. DCN V2: Improved Deep & Cross Network
and Practical Lessons for Web-scale Learning to Rank Systems. In WWW ’21:
The Web Conference 2021, Virtual Event / Ljubljana, Slovenia, April 19-23, 2021.
1785–1797.

[19] Jun Xiao, Hao Ye, Xiangnan He, Hanwang Zhang, Fei Wu, and Tat-Seng Chua.
2017. Attentional factorization machines: Learning the weight of feature interac-
tions via attention networks. arXiv preprint arXiv:1708.04617 (2017).

[20] Yi Yang, Baile Xu, Shaofeng Shen, Furao Shen, and Jian Zhao. 2020. Operation-
aware Neural Networks for user response prediction. Neural Networks 121 (2020),
161–168. https://doi.org/10.1016/j.neunet.2019.09.020

[21] Junlin Zhang, Tongwen Huang, and Zhiqi Zhang. 2019. FAT-DeepFFM: Field
Attentive Deep Field-aware Factorization Machine. In Industrial Conference on
Data Mining. https://api.semanticscholar.org/CorpusID:155099971

[22] Jieming Zhu, Jinyang Liu, Shuai Yang, Qi Zhang, and Xiuqiang He. 2020. FuxiCTR:
An Open Benchmark for Click-Through Rate Prediction. ArXiv abs/2009.05794
(2020).

https://doi.org/10.1145/3298689.3347043
https://doi.org/10.1145/2487575.2488200
https://doi.org/10.1016/j.neunet.2019.09.020
https://api.semanticscholar.org/CorpusID:155099971

	Abstract
	1 Introduction
	2 Preliminaries
	3 Our Proposed Model
	3.1 FiBiNet++
	3.2 Discussion

	4 Experimental Results
	4.1 Experiment Setup
	4.2 Results and Analysis

	5 Conclusion
	References

