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ABSTRACT
In many real-world scenarios, distribution shifts exist in the stream-
ing data across time steps. Many complex sequential data can be
effectively divided into distinct regimes that exhibit persistent dy-
namics. Discovering the shifted behaviors and the evolving patterns
underlying the streaming data are important to understand the dy-
namic system. Existing methods typically train one robust model
to work for the evolving data of distinct distributions or sequen-
tially adapt the model utilizing explicitly given regime boundaries.
However, there are two challenges: (1) shifts in data streams could
happen drastically and abruptly without precursors. Boundaries of
distribution shifts are usually unavailable, and (2) training a shared
model for all domains could fail to capture varying patterns. This
paper aims to solve the problem of sequential data modeling in
the presence of sudden distribution shifts that occur without any
precursors. Specifically, we design a Bayesian framework, dubbed
as T-SaS, with a discrete distribution-modeling variable to capture
abrupt shifts of data. Then, we design a model that enable adapta-
tion with dynamic network selection conditioned on that discrete
variable. The proposed method learns specific model parameters for
each distribution by learning which neurons should be activated in
the full network. A dynamic masking strategy is adopted here to
support inter-distribution transfer through the overlapping of a set
of sparse networks. Extensive experiments show that our proposed
method is superior in both accurately detecting shift boundaries to
get segments of varying distributions and effectively adapting to
downstream forecast or classification tasks.
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1 INTRODUCTION
Deploying machine learning models [15, 23, 26, 29] in real-world
systems often presents the challenge of distribution shift. This oc-
curs when the statistical characteristics of newly incoming data
differ from those observed by the model in a dynamically changing
environment [3, 13, 17, 21, 32]. Generally, the shift can happen
without any precursor, be unknown to users, cause dramatic per-
sonal injury for systems like self-driving [8], robotics [24, 31], sleep
tracking [22] and irreparable economic damage on financial trading
algorithms [16, 20, 22, 27]. At any moment, the model is expected
to 1) provide early warnings when the data distribution changes
and 2) make accurate predictions by adapting to new data. Several
approaches have been proposed to develop adaptive models for
sequential data in dynamic environments, e.g., transfer learning
[14, 21, 22, 28], continual learning [9, 18]. However, they are unable
to deal with sudden or irregular shifts due to parameter-sharing
strategies, which limits their model capacity. Besides, these algo-
rithms mainly assume that the data stream is explicitly divided
into different regimes [21] (tasks or domains) according to given
change points. In the real world, changes often occur without pre-
cursors and explicit temporal segments are unavailable.

Addressing these challenges, we propose an incremental model
selection approach in the form of a dynamic network to handle
sequentially shifting data. In this paper, we introduce T-SaS, a novel
Bayesian-based approach that combines dynamic network selec-
tion with a shift points estimation scheme for sequentially evolving
data [12]. This approach enables the modeling of distinct distribu-
tions by evolving the network structure [30] and facilitates positive
knowledge transfer across complex dynamic regimes. By back-
propagating through the change point estimation, our proposed
method learns a predictive model that can both capture the under-
lying distribution changes and quickly adapt to it. We leverage the
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principle that each specific data distribution should correspond to
a sparse subset of the computation graph [25] of the full neural
network, and adaptation to shifts can be modeled as a new network
selection strategy. Different related tasks share different subsets of
model parameters and follow corresponding dynamic routes along
the obtained network structures. To incorporate automatic distri-
bution shift detection,we introduce a discrete change variable to
estimate the compatibility between the current and previous data
distributions. The main contribution of this paper are as follows:

• We propose a novel Bayesian-based method that can detect
abrupt distribution shifts automatically and enable knowl-
edge adaption on the evolving changed data.

• We utilize change point detection to estimate abrupt distri-
bution changes and propose a dynamic masking strategy to
learn specific model parameters for each distribution.

• We evaluate our proposed method on both real-world and
synthetic datasets in terms of forecasting and classification
problems. We demonstrate the proposed method is capable
of detecting distribution changes and adapting to evolving
data through experiments on various datasets.

2 METHODOLOGY
Let {D𝑡 }𝑇𝑖=1 be a sequentially arriving dataset for training with
each D𝑡 containing labeled pairs (X𝑡 ,Y𝑡 ). At each time, the con-
tinual learner aims to optimally adapt the model parameters into
𝝎𝑡 for newly incoming data D𝑡 by borrowing statistical strength
from previous data. The goal of our problem setting is to train a
forecasting or classification model that trains on {D𝑡 }𝑇𝑖=1 and can
generalized well to𝑀 arriving data {D𝑡 }𝑀𝑖=𝑇+1. For the classifica-
tion model, the input-output pairs are both given in each D𝑡 . For
the classification model, each D𝑡 is represented as D𝑡 = X𝑡 .

Here, we propose to infuse historical knowledge via posterior of
parameters in a Bayesian online learning framework [9]. Concretely,
the parameter posterior of 𝑡-th dataset is modeled as:

𝑝 (𝝎𝒕 |D1:𝑡 ) ∝
∫

𝑝 (D𝑡 |𝝎𝑡 )𝑝 (𝝎𝑡 |D1:𝑡−1), (1)

Two fundamental elements build up our research problem. First,
𝑝 (D𝑡 ) can be non-stationary and is subject to distribution shift.
Second, domain segmentations are usually unknown. To solve the
two challenges, we design a ShiftNet that simultaneously detects
distribution shift as well as adapts the continual learner to the
inferred changes with an adaptive model structure.

2.1 Latent Shift-Oriented Model Design
Addressing the aforementioned challenges, we design an adaptive
network that accounts for shifts in the data distributions with a
change point detection module and a structure adaptation module.
For every incoming dataset D𝑡 , we need to decide which previous
patterns in D1:𝑡−1 that D𝑡 is more compatible to. To this end, we
introduce a new discrete variable s𝑡 that accounts for distribution
shift. The continual learner can be parameterized as :

𝑝 (𝝎, 𝒔𝑡 |D1;𝑡 ) ∝ 𝑝 (D⊔ |𝝎, ∫⊔)𝑝 (𝝎, 𝑠𝑡 |D1:𝑡−1). (2)

Note that discrete change variables 𝑠𝑡 influence the adaptive
model parameters 𝝎 and are indicative for sudden distribution shift.

Figure 1: Overview of the T-SaS method. We derive a proba-
bilistic framework to infer the distribution shift and mod-
ulate the adaptive model simultaneously. Input X1:𝑇 is feed
into a neural network to infer two variables, i.e., the latent
change point variable 𝒔𝑡 and model posterior parameters 𝝎𝑡 .
The change point variable is conditioned on 𝒔𝑡−1 and X𝑡−1
which encodes the time-dependent relations and can be cal-
culated by exact inference. 𝝎𝑡 is sampled with a dynamic
masking-based strategy to determine the model prediction
𝑝 (Y𝑡 |X𝑡 ,𝝎𝑡 ).

Intuitively, 𝑠𝑡 depends on previous change variable 𝑠𝑡−1 as time-
varying data usually maintains a local smoothness property for
time duration [2], but also depends on previous observation D𝑡−1.
This means the variable 𝑠𝑡 may be triggered by signals from the
environment. To better express the flexible transition of the change
point variable, we reformulate Eq.2 as follows:

𝑝 (𝝎𝑡 , 𝒔𝑡 |D1;𝑡 )
∝𝑝 ( [𝐷𝑡 |𝝎, 𝑠𝑡 ])𝑝 (𝝎, 𝑠𝑡 |D1:𝑡−1)𝑝 (𝑠𝑡 |D1:𝑡−1, 𝑠𝑡−1).

(3)

Summing over time steps, we can reformulate each term in Eq.2
using Markov Chain to model the joint distribution as:

𝑝 (D1:𝑇 ,𝝎1:𝑇 , 𝒔1:𝑇 )

=

𝑇∏
𝑡=2

𝑝 (D𝑡 |𝜔𝑡 , 𝒔𝑡 )𝑝 (𝝎𝑡 |𝝎𝑡−1, 𝒔𝑡 )𝑝 (𝒔𝑡 |𝒔𝑡−1,D𝑡−1) .
(4)

In this framework, with D𝑡 being modeled as 𝑝 (D𝑡 |𝝎𝑡 , 𝒔𝑡 ), shifts
in data distribution can be encoded with change point indicator 𝒔𝑡
for the problem of evolving data generalization. Next, we will go
into details on the detection module with detected shifts.

2.2 Change Point Detection for Data Stream
When training with a complex dataset, the posterior distribution
is intractable and needs to be inferred [4]. A common approach
to learning latent variables is to maximize the evidence lower
bound (ELBO) on the log marginal likelihood [9]. This is given
by log 𝑝 (D) ≤ E𝑞𝝓 (𝒘,𝒔 ) [log 𝑝𝜽 (D,𝒘, 𝒔) − log𝑞𝝓 (𝒘, 𝒔 |D)], where
𝑝𝜽 (D,𝒘, 𝒔) shows the generative process and 𝑞𝝓 (𝒘, 𝒔 |D) is an ap-
proximation posterior. We define the prior distribution in Eq.4 for
change point variable 𝒔 and model parameter𝒘 as:

𝑝 (𝒘𝒔𝑡
𝑡 ) ∼ N (𝒘𝒔𝑡 |𝝁𝒔𝑡 , 𝚺𝒔𝑡 ),

𝑝 (𝒔𝑡 ) ∼ 𝐶𝑎𝑡 (𝒔𝑡 |𝑆 (𝑓 (𝒔𝑡−1,D𝑡−1))),
(5)



T-SaS: Toward Shift-aware Dynamic Adaptation for Streaming Data CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

where N (·) is a multivariate Gaussian distribution with mean and
Var as 𝝁𝒔𝑡 and 𝚺

𝒔𝑡 . 𝑓 is an non-linear function (MLPs), C𝑎𝑡 (·) de-
notes a categorical distribution and S(·) is a softmax function.

To approximate the prior distribution, we propose to use varia-
tional inference to learn an approximated posterior distribution 𝑞𝝓
over the latent variable and formulate it as:

𝑞𝝓 (𝒘, 𝒔 |𝒙) = 𝑝𝜽 (𝒔 |𝒙)𝑞𝝓 (𝒘 |𝒙, 𝒔), (6)

where𝑝𝝎 (𝒔 |§) is the exact posterior computed by forward-backward
algorithm [4] and 𝑞𝝓 (𝒘 |𝒙, 𝒔) is an approximated posterior. At this
moment, we assume the distribution of 𝑞𝝓 (𝒘 |𝒙, 𝒔) is given. Opti-
mizing the variational parameters 𝝓 corresponds to minimizing the
ELBO at each time step 𝑡 :

L(𝝓𝑡 ) =E𝑞𝝓𝑡 (𝒘,𝒔 |X)𝑝𝝎 (𝒔 |𝒘,X) [− log 𝑝 (X𝑡 |𝒘𝒔𝑡
𝑡 )𝑝𝝎 (𝒔𝑡 |X𝑡 )]

+ log𝑞𝝓𝑡
(𝒘, 𝒔 |X)𝑝𝝎 (𝒔𝑡 |X𝑡 )

=E𝑞𝝓𝑡 (𝒘,𝒔 |X) [− log𝑝 (D𝑡 |𝒘𝒔𝑡
𝑡 )]

+ KL(𝑞𝝓𝑡
(𝒘𝒔𝑡 |𝑿 , 𝒔) | |𝑞𝝓𝑡−1 (𝒘

𝒔𝑡 |𝑿 , 𝒔)),

(7)

where the likelihood term EX∼D𝑡
[log𝑝 (X𝑡 |𝒘𝑡 ,X𝑡−1)] can be com-

puted using the forward variable 𝛼𝑡 (𝒔𝑡 ) by marginalizing out the
change point variable 𝒔𝑡 ,

𝑝 (X1:𝑇 ,𝒘1:𝑇 ) =
∑︁
𝒔𝑡

𝛼𝑡 (𝒔𝑡 ) =
𝑇∑︁
𝑡=2

∑︁
𝑗,𝑘

𝛾𝑡 ( 𝑗, 𝑘) [log𝐵𝑡 (𝑘)𝐴𝑡 ( 𝑗, 𝑘)],

(8)
where 𝐴( 𝑗, 𝑘) = 𝑝 (𝒔𝑡 = 𝑗 |𝒔𝑡−1 = 𝑘,X𝑡−1) and 𝐵𝑡 (𝑘) = 𝑝 (X𝑡 |𝝎𝒕 ) ·
𝑝 (𝝎𝑡 |𝜔𝑡−1, 𝒔𝑡 = 𝑘). Here, change point variables can be calculated
from exact inference. The ELBO can be approximated via stochastic
gradient ascent given that 𝑞𝝓𝑡

(𝒘𝒔𝑡 |𝑿 , 𝒔) is reparameterizable.

2.3 Structure Adaptation With Change Points
To improve the adaption on a sequence of evolving data distribution,
the continual learner is equipped with a mixture of dynamically
updated model parameters {𝝎𝒔𝑡

𝑡 }𝐾𝒔𝑡=1, where 𝐾 is the number of
categorical data numbers. Each change point variable 𝒔𝑡 is asso-
ciated with a cluster of similar data distributions, and we define
𝝎𝒔𝑡
𝑡 as the specific model parameters. Notably, our model requires

that parameters can be dynamically updated as future similar data
emerges. To allow room for constantly emerging data, the model
parameters are often easily overparameterized [11]. To regularize
the model parameter to maintain a small size and be immune to
overfit, we assume that only a small number of neurons should be
activated for each distribution. Given the change point variable 𝒔𝑡 ,
the neural network can dynamically search for a shift-oriented sub-
network. The sparsification rather than using the original network
are under two reasons: 1) Lottery Tickets Hypothesis [6] verifies
that a subnetwork can perform as well as a whole network, which
is also verified by current findings on model compression; 2) sub-
network can facilitate the learning of evolving network structure,
therefor be more robust to distribution shift.

To be specific, for each specific model parameter 𝝎𝒔𝑡
𝑡 , we de-

compose it as 𝝎𝒔𝑡
𝑡 = 𝝎𝑡 ⊙ 𝒎𝒔𝒕

𝑡 , an element-wise multiplication of a
global model parameter 𝝎𝑡 and a shift-driven mask matrix𝒎𝒔𝒕

𝑡 . De-
riving the exact posterior distribution for the model parameter𝒘 is
intractable due to the nonlinearities of the model. Here, we assume

a Gaussian distribution with parameters {𝝁𝒔𝑡𝑡 ,Σ
𝒔𝑡
𝑡 } as the posterior

distribution of model parameters𝒘 : 𝑞𝝓 (𝒘𝑡 ) = N(𝒘𝒔𝑡 |𝝁𝒔𝑡 , 𝚺𝒔𝑡 ).
Following the principle of variational continual learning [9], we

assume that the prior of 𝝎𝑠𝑘𝑡 is given by the variational posterior
of 𝝎𝑠𝑘

𝑡−1, i.e., 𝝁
𝒔𝑡
𝑡 = 𝝁𝑠𝑡−1

𝑡−1 , Σ𝒔𝑡
𝑡 = Σ𝑠𝑡−1

𝑡−1 .
Besides, keep in mind that𝒎𝒔𝒕

𝒕 is a learnable model mask param-
eter that determines which neurons should be activated or set as
zeros. To simplify our exposition, we omit script 𝒔𝑡 To model the
sparsity property of mask matrix, we define the prior distribution
of 𝑝 (𝒎𝑠𝑡 ) using the India buffer process [9] : 𝒎 ∼ 𝐼𝐵𝑃 (𝛼), where
𝛼 is the hyperparameters that can control the number of nonzero
elements in 𝒎. Specifically, its truncated stick-breaking process for
each element in 𝒎 can be denoted as :

𝑣𝑘 ∼ 𝐵𝑒𝑡𝑎(𝛼, 1), 𝜋𝑘 =

𝐾∏
𝑖=1

𝑣𝑖 , 𝐵𝑑,𝑘 ∼ 𝐵𝑒𝑟𝑛(𝜋𝑘 ), (9)

where 𝐾 is the truncated level and 𝛼 controls the value of 𝐾 . To
represent the approximated posterior of𝑚, we define it as 𝑞(𝒎) =
𝑞(𝒎 |𝑣)𝑞(𝑣). Corresponding to the Beta-Bernoulli hierarchy of Eq.9,
we use the conditional factorized variational posterior family:

𝑞(𝒎 |𝑣) =
𝐷∏
𝑑−1

𝐾∏
𝑘−1

𝐵𝑒𝑟𝑛(𝑚𝑑,𝑘 |ℎ𝑑,𝑘 ), (10)

whereℎ𝑑,𝑘 = 𝜎 (𝜌𝑑,𝑘+𝑙𝑜𝑔𝑖𝑡 (𝜋𝑘 )) and𝑞(𝑣) =
∏𝐾
𝑘=1 𝐵𝑒𝑡𝑎(𝑣𝑘 |𝑣𝑘,1, 𝑣𝑘,2).

Consequently, we obtain a set of learnable variational parameters
{𝑣𝑘,1, 𝑣𝑘,2, {𝜇𝑑,𝑘 , Σ𝑑,𝑘 , 𝜌𝑑,𝑘 }}.

3 EXPERIMENT
3.1 Experimental Setup
3.1.1 Data Description. We select both synthetic and real-world
benchmark dataset to validate the ‘shift detecting’ and ‘shift adapt-
ing’ properties of the proposed method. Experiments are conducted
on 3 mode system [2] and Dancing bees [10]. Second, we evaluate
the ability of the proposed method in adapting to evolving data
streams. Experiments are conducted on two tasks, the forecasting
task (only the evolving feature X1:𝑇 is given to predict X𝑡+1) and
the classification task (learn a mapping from X𝑡 to Y𝑡 . Specifically,
we use four benchmark forecasting datasets [1] including traffic,
exchange, solar and electricity, where various seasonality patterns,
e.g., daily, weekly or monthly are shown, and two challenge classi-
fication datasets MG_1C_2D and optdigits following [19].

3.1.2 Baselines algorithms. Since there are limited studies working
on the same setting with ours, we compared our method with repre-
sentative continual learning methods, domain adaptation methods
via evolving shifted data and other competitive baselines. Specifi-
cally, we conduct experiments on both forecasting and classification
problems on evolving data. (1) JT (joint training): a naive baseline
that train on all the available data ever seen 𝐷1,𝑇 . (2) Adaptive RNN
(AdaRNN) [5]: a two-stage method that follow a ‘segment-adapt’
principle for the evolving shifted data. (3) Meta-learning via online
change point analysis (MOCA) [7]: an approach which augments
a meta-learning algorithm with a differentiable Bayesian change
point detection scheme.
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Table 1: Comparison of effectiveness on shift detection. Accu-
racy, NMI, ARI denote the Normalized Mutual Information,
the Adjusted Rand Index and segmentation accuracymetrics.

Bouncing Ball 3 mode system Dancing bees

Accuracy
MOCA 0.93 ± 0.02 0.94 ± 0.04 0.71 ± 0.03
AdaRNN 0.93 ± 0.05 0.90 ± 0.10 0.68 ± 0.01
T-SaS 0.96 ± 0.05 0.97 ± 0.00 0.73 ± 0.14

NMI
MOCA 0.81 ± 0.00 0.83 ± 0.06 0.30 ± 0.04
AdaRNN 0.79 ± 0.01 0.79 ± 0.13 0.57 ± 0.01
T-SaS 0.82 ± 0.011 0.90 ± 0.02 0.61 ± 0.01

ARI
MOCA 0.85 ± 0.02 0.89 ± 0.01 0.38 ± 0.01
AdaRNN 0.84 ± 0.02 0.85 ± 0.11 0.47 ± 0.01
T-SaS 0.86 ± 0.00 0.94 ± 0.01 0.54 ± 0.11

3.2 Experiment Results and Analysis
3.2.1 Shift Detection Comparison. Experiments in this section are
designed to analyze the shift detection behavior of our proposed
method. Experimental results are shown in Table 1 and we also
represent the visualization in Figure 2 and Figure 3, respectively.
Experimental results show that our method achieves significant
improvements over the baselines. From Figure 2, we observe that
AdaRNN apparently struggles to model long-term sequence data
and results in over-segmentation. Additionally, we observe AdaRNN
performs a large variance than MOCA and our method. The obser-
vation shows its inefficiency to detect the shift point for AdaRNN
model, especially for complex sequences. It is also obvious that
MOCA identifies a fluctuated detection in a three mode system
dataset for its inefficiency to model long-term motion patterns. The
observation validates the effectiveness of detecting complex pat-
terns and segmenting the long-term motions for our T-SaS method.
From Figure.3, it is obvious that MOCA fails to identify long

Figure 2: Segmentation visualization on the three mode sys-
tem dataset.

Figure 3: Segmentation visualization on the dancing bee
dataset.

segment duration and results in spurious short-term patterns. Dif-
ferently, our method is able to segment the long-term patterns
quite well by taking the advantage of a latent time duration vari-
able. This observation verifies our motivation that a latent time
duration variable could benefit the learning of long-term patterns.

3.2.2 Drift Adaptation Comparison. In this part, experiments are
designed to understand if and how the proposed method can adapt
to the shifted streaming data. Experiments on forecasting and clas-
sification tasks are shown in Figure 4 and Figure 5, respectively.

(a) Exchange dataset (b) Solar dataset

(c) Electricity dataset (d) Traffic dataset

Figure 4: Forecasting performance across datasets. The lower
the value, the better the performance.

(a) MG_2C_2D dataset (b) optdigits dataset

Figure 5: Classification results through timelines.

From Figure 4, We first observe our method outperforms all the
baselines over all four benchmark datasets. Our method simultane-
ously infers these distribution shifts and adapts the model to the
detected changes with a dynamicmodel structure. Besides, AdaRNN
and MOCA show relatively unsatisfactory performance. The main
reason is AdaRNN andMOCA adapt to shifted data with global shar-
ing model parameters. Parameter sharing facilitates the transfer of
invariance knowledge while penalizing the learning of specialized
information. Figure 5 shows that our method achieves significant
improvements over the baselines and is even comparable with the
Joint Training (JT) method (upper bound of the setting). More-
over, the margin between our method and baselines, i.e., MOCA
and AdaRNN continually increases, indicating our dynamic model
architecture can enrich the model expression capacity.

4 CONCLUSION
This paper addresses the problem ofmodeling low-source streaming
data where data shift boundaries are not given. Additionally, we
expand the assumptions regarding distribution shifts to include
sudden and irregular patterns. In addition, we train a specific mask
matrix to dynamically route a sparse network from the full network.
We propose an adaptive model for the evolving data by introducing
the Bayesian framework with change point variables. Experimental
results on both forecasting and classification tasks demonstrate the
effectiveness of the proposed method.
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