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ABSTRACT
Graph neural networks (GNNs) have gained significant attention
across diverse areas due to their superior performance in learning
graph representations. While GNNs exhibit superior performance
compared to other methods, they are primarily designed for ho-
mogeneous graphs, where all nodes and edges are of the same
type. Training a GNN model for large-scale graphs incurs high
computation and storage costs, especially when considering the
heterogeneous structural information of each node. To address the
demand for efficient GNN training, various sampling methods have
been proposed. In this paper, we propose a sampling method based
on bandit sampling, an online learning algorithm with provable
convergence under weak assumptions on the learning objective. To
the best of our knowledge, this is the first bandit-based sampling
method applied to heterogeneous GNNs with a theoretical guaran-
tee. The main idea is to prioritize node types with more informative
connections with respect to the learning objective. Compared with
existing techniques for GNN training on heterogeneous graphs, ex-
tensive experiments using the Open Academic Graph (OAG) dataset
demonstrate that our proposed method outperforms the state-of-
the-art in terms of the runtime across various tasks with a speed-up
of 1.5-2x, while achieving similar accuracy.
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1 INTRODUCTION
Heterogeneous graphs are extensively employed to model complex
network systems, where objects are involved in distinct interactions.
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For example, the Open Academic Graph (OAG) [17] consists of five
types of nodes: papers, authors, institutions, venues, and fields, as
well as different types of relationships between them.

GNNs employ deep neural networks to aggregate feature infor-
mation from neighboring nodes, which enhances the power of the
aggregated embedding. There have been several attempts to apply
GNNs to heterogeneous networks [5, 10, 16]. However, comput-
ing the loss across a mini-batch of nodes and the corresponding
mini-batch gradients is extremely expensive due to the neighbor
explosion problem. This problem arises because the embedding of
a node at the current message passing layer recursively depends on
the embeddings of its neighbors at the previous layer. As a result,
the complexity grows exponentially with the number of message
passing layers.

To address the neighbor explosion problem, various sampling
techniques have been proposed. In particular, one approach aims to
reduce the number of nodes involved in message passing for Graph
Convolutional Networks (GCNs). This approach outperforms many
graph deep learning models in several graph-based tasks. Example
techniques include node-wise sampling [7, 14] and subgraph sam-
pling [6, 15]. Despite the empirical success of these sampling meth-
ods, recent studies have shown that the use of inaccurate mini-batch
gradients hampers the convergence of GCNs [12, 18]. Additionally,
existing approaches lack asymptotic convergence guarantees on
the sampling variance, limiting the utilization of the embedding.

In this paper, we propose a multi-armed bandit (MAB)-based
sampling method with a convergence guarantee. Specifically, we
initially focus on exploration during the early iterations, assigning
equal importance to all node types. Then, based on the feedback
collected through updates during training, the algorithm transitions
to exploitation. Our objective is to minimize the variance of the
stochastic gradient, as it is the primary bottleneck for convergence
speed. By prioritizing more informative node types according to the
learning objective, the bandit sampler can efficiently select node
types that guide optimization towards the optimal solution. We
also demonstrate that the MAB-based sampling method guarantees
that the accumulated gradient variance approaches the optimal
distribution within a constant factor, under practical assumptions.

The main contributions of this paper are:

• We present the first MAB-based sampling method with prov-
able convergence for heterogeneous GNNs.

• Experiments on the large-scale benchmark tasks demon-
strate that our proposed method significantly outperforms
state-of-the-art sampling methods in terms of training time.

The rest of this paper is organized as follows: Section 2 provides
an overview of heterogeneous graph mining and sampling methods
for GNNs. Section 3 presents the background of a GNN model and
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explains the sampling process in GCN training. Section 4 defines
the heterogeneous sampling problem for efficient training. Section 5
presents a detailed description of our proposed algorithm for fast
sampling in heterogeneous GNNs. Section 6 presents numerical
results that validate the performance of the proposed algorithm.
Finally, Section 7 concludes the paper.

2 RELATEDWORK
In this section, we discuss some literature related to heterogeneous
graph mining and sampling methods for graph neural networks.

Heterogeneous graphmining. In recent years, numerous stud-
ies have focused on investigating heterogeneous graphs for various
applications, such as personalized recommendation [9, 13]. For ex-
ample, Zhang et al. [16] proposed a heterogeneous graph neural
network model to handle the issue of the structural information
in heterogeneous graphs and attributes or contents correlated to
each node. Hu et al. [10] designed a heterogeneous mini-batch
graph sampling method to train web-scale heterogeneous graph
efficiently.

Subgraph-wise Sampling Methods. Subgraph-wise sampling
methods involve sampling a mini-batch and constructing the same
subgraph at different message passing layers. GraphSAINT [15]
and Cluster-GCN [6] construct the subgraph induced by the sam-
pled mini-batch, utilizing graph clustering methods to encourage
connections between sampled nodes.

Node-wise and Layer-wise Sampling Methods. Both node-
wise and layer-wise sampling methods recursively sample neigh-
bors over message passing layers and then construct different com-
putation graphs for each layer. Node-wise sampling methods [4, 7]
aggregate messages from a subset of sampled neighbor nodes at
each layer to alleviate the exponentially growing computation.
Layer-wise sampling [19] sample nodes for each message passing
layer independently and then reduce variance by using importance
sampling, so that the sample size in each layer remains constant.

Bandit Sampling Methods. Bandit sampling methods [12, 18]
have explored the application of bandit algorithms to sample neigh-
boring nodes during the aggregation, which takes the sum of the
neighbor embeddings. Liu et al. [12] propose a novel formulation of
neighbor sampling as multi-armed bandit problem (MAB) and apply
EXP3 [1] and its variants to update sampler and reduce variance.
They provide an asymptotic regret analysis on sampling variance,
which show that the regret of their estimator, BanditSampler, ap-
proximates the optimal sampler within a factor of 3. Zhang et al. [18]
propose a numerically-stable reward function that trades bias with
variance, which enables the connection to sampling approximation
error.

3 BACKGROUND
In the following section, we introduce the formal notations that
define our problem setting and provide an overview of graph neural
networks, as well as the framework of their sampling problem.

3.1 Basic Notations
AgraphG = (V, E) is defined by a set of nodesV = {𝑣1, 𝑣2, . . . , 𝑣𝑛}
and a set of edges E among these nodes. Let (𝑣𝑖 , 𝑣 𝑗 ) ∈ E denote an
edge going from node 𝑣𝑖 ∈ 𝑉 to node 𝑣 𝑗 ∈ V , denote 𝑁 (𝑣𝑖 ) = {𝑣𝑖 ∈

V | (𝑣𝑖 , 𝑣 𝑗 ) ∈ E} as the neighborhood of node 𝑣𝑖 . Assume that
G is undirected, that is, 𝑣 𝑗 ∈ 𝑁 (𝑣𝑖 ) if and only if 𝑣𝑖 ∈ 𝑁 (𝑣 𝑗 ). Let
𝑁 (𝑇 ) = {𝑣 ∈ V | (𝑣𝑖 , 𝑣 𝑗 ) ∈ E, 𝑣𝑖 ∈ 𝑇 } denote the neighborhoods
of a set of nodes 𝑆 . [𝐿] denotes {1, . . . , 𝐿} for a positive integer 𝐿.

3.2 Graph Neural Networks
Formally, given a graph G = (V, E), the forward propagation of a
GNN is formulated as

h(ℓ+1)𝑣,𝑡 = 𝜎
©«

∑︁
𝑖∈N(𝑣)

𝑎𝑣𝑖h
(ℓ )
𝑖,𝑡

𝑊
(ℓ )
𝑡

ª®¬ (1)

for the node 𝑣 ∈ V at training iteration 𝑡 . Here h(ℓ )
𝑖,𝑡

∈ R𝑑 is the hid-

den embedding of node 𝑖 at the layer ℓ , h(0)
𝑖,𝑡

= x𝑖 is the node feature,
and 𝜎 (·) is the activation function. 𝑎𝑣𝑖 > 0 is the edge weight be-
tween node 𝑣 and 𝑖 .𝑊 (ℓ )

𝑡 ∈ R𝑑×𝑑 is the GNNweightmatrix, learned
by minimizing the stochastic loss L̂ with SGD. Finally, we denote
z(ℓ )
𝑖,𝑡

= 𝑎𝑣𝑖h
(ℓ )
𝑖𝑡

as the weighted embedding, [𝐷𝑣] = {𝑖 | 1 ≤ 𝑖 ≤ 𝐷𝑣}.
For a vector 𝑥 ∈ R𝑑0 , we refer to its 2-norm as ∥𝑥 ∥; for a matrix𝑊 ,
we refer to its spectral norm as ∥𝑊 ∥.

Sampling in the training of GCN can be formulated as follows:

𝑆𝑁 (𝑘 ) (𝑣) = 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 (𝑘 ) (𝑁 (𝑣)) (2)

𝑎
(𝑘 )
𝑣 = 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 (𝑘 )

(
{ℎ𝑘−1𝑢 : 𝑢 ∈ 𝑆𝑁 (𝑣)}

)
(3)

ℎ
(𝑘 )
𝑣 = 𝐶𝑜𝑚𝑏𝑖𝑛𝑒 (𝑘 )

(
ℎ
(𝑘−1)
𝑣 , 𝑎

(𝑘 )
𝑣

)
, (4)

where 𝑆𝑁 (𝑣) is the sampled neighbors from 𝑁 (𝑣), 𝑎 (𝑘 )𝑣 is the ag-
gregation feature vector of node 𝑣 in the 𝑘-th layer, ℎ (𝑘 )𝑣 is the
representation feature of node 𝑣 in the 𝑘-th layer.

4 PROBLEM DEFINITION
In this section, we define the problem of heterogeneous sampling
and present a problem formulation based on the cluster selection
problem.

Given a heterogeneous graph G = (V, E,OV ,RE ), where OV
represents node type that corresponds to nodes in V , and RE rep-
resents edge types that correspond to edges in E. The heterogeneity
introduces a complex scenario where certain types of nodes might
have significantly more neighbors compared to others. Therefore,
it becomes critical to distinguish between different types of nodes
and compute their effects due to the challenge posed by imbalanced
number of neighbors in different types.

We assume that different types of nodes and edges share the
same feature and representation space. In [11], a general form of
heterogeneous sampling methods can be formulated as follows:

𝐹 (𝑣) = 𝐸𝑓 𝑓 𝑒𝑐𝑡 (N (𝑣),ON(𝑣) , E(𝑣),RE(𝑣) ) (5)

𝑆𝑁 (𝑘 ) (𝑣) = 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 (𝑘 ) (𝐹 (𝑣), 𝑁 (𝑣), 𝐵 (𝑘 ) ), (6)

Here, ON(𝑣) and RE(𝑣) denote sets that consist of node types
and edge types, respectively. 𝐹 (𝑣) is a set that stores the effect of
different types of neighbors on node 𝑣 . 𝑆𝑁 (𝑣) denotes the sampled
neighbors from 𝑁 (𝑣) and 𝐵 is a restrict factor in guaranteeing a
balanced distribution of different types of neighbors. We will focus
on the sampling part based on the pre-computed effect 𝐹 (𝑣).
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Inspired by the cluster sampling based approach [2, 6], we can
describe our problem as follows: SupposeV = V1 ∪V2 ∪ · · · ∪V𝐶

for a graph with 𝐶 = |OV | types. Each V𝑗 is used to construct a
subgraph H𝑗 (V𝑗 , E 𝑗 ), where E 𝑗 is the set of edges that connect
only the nodes in V𝑗 , for any 𝑗 ∈ [𝐶]. Our goal is to provide a
selection strategy for these subgraphs to improve the training time
of the model.

5 METHODOLOGY
In this section, we describe our proposed method and the corre-
sponding Bandit-based sampling scheme.

The objective is to learn the graph neural network parameters
\ . Let LG

\
be the loss function of the graph G and L (𝑢,𝑣)

\
is the

objective function at a given directed edge (𝑢, 𝑣). We employ the
cluster sampling based approach [2, 6]: the nodes are partitioned
into several clustersV1, . . . ,V𝐶 , where each clusterV𝑗 is used to
construct a subgraphH𝑗 such that the set of edges connect only the
nodes in the same cluster. Consider the adjacency matrix of a new
graph that consists of these subgraphs, where each diagonal block
represents the adjacency matrix of the subgraph of each cluster. We
can now decompose the loss function as the sum of different loss
functions at each edge of each of the clusters:

L𝐺
\

=

𝐶∑︁
𝑗=1

LH𝑗

\
=

𝐶∑︁
𝑗=1

∑︁
(𝑢,𝑣) ∈H𝑗

L (𝑢,𝑣)
\

. (7)

Note that the optimal policy of reducing the variance is in-
tractable [2, 18], since it requires computing all the gradients. There-
fore, we propose a multi-armed bandit approach to select the types
by combining exploration and exploitation. We only need to con-
sider the gradient computation used for the gradient update in each
round. In each iteration, we choose one of the subgraphs and calcu-
late the embeddings of the nodes within it. The encoder parameters
are then updated based on the gradient computations performed
on the selected subgraph. We define the bandit sampler where the
regret is proportional to

∇̂L (H𝑗𝑡 ) (\𝑡 )

2
.

The high-level implementation of our sampling algorithm pro-
ceeds as follows: first we initialize equal weights to all clusters.
At each time 𝑡 = 1, . . . ,𝑇 , the algorithm samples a cluster H and
several nodes according to the corresponding distribution. The
weight ofH will be updated by using a variant of the EXP3 algo-
rithm [1]. The weight of the other clusters that are not selected
will not change. The sampling distribution is designed based on
the weighted average between the estimation and the uniform dis-
tribution. Our algorithm can be outlined as follows: At each time
𝑡 = 1, . . . ,𝑇 ,

(1) Select a cluster H𝑗𝑡 ∼ 𝑝𝑡 .
(2) Calculate the reward 𝑟 (H𝑗𝑡 ) .

(3) Update the weight𝑤𝑡+1 ( 𝑗) = 𝑤𝑡 ( 𝑗) · exp
(
[𝑟 (H𝑗𝑡 )
𝑝𝑡 ( 𝑗 )

)
.

(4) Compute the distribution

𝑝𝑡 (H𝑗 ) = (1 − 𝛾) 𝑤𝑡+1 ( 𝑗)∑
𝑖 𝑤𝑡+1 (𝑖)

+ 𝛾/𝑛

.
for some learning rate [ > 0 and 𝛾 ∈ (0, 1].

During the exploitation phase, the above algorithm prioritizes
arms with higher weights, followed by uniform random arm selec-
tion. The weights are updated after receiving the regret feedback.
The use of exponential growth function can lead to an increase the
weight of good arms.

5.1 Theoretical Analysis
In this section, we present a theoretical analysis of our bandit esti-
mator and its development process. We also provide a theoretical
evaluation of its performance and compare it to the optimal sam-
pling scheme. Since the optimal sampler involves computations
among all the neighbors, it is crucial to approximate the optimal
sampling distribution without hindering the convergence. Gradient
variance reduction methods have become increasingly popular in
stochastic optimization frameworks [3, 8, 12]. Our goal is to mini-
mize the accumulated variance based on the sampling algorithm.
Following the analysis in [2], define the cost at each round 𝑡 as
follows:

E𝑝𝑡

[∇̂L (H𝑗 ) (\𝑡 )
2
2

]
=
∑︁
𝑗

∇̂L (H𝑗 ) (\𝑡 )
2
2

𝑝 (H𝑗 )
. (8)

At each round 𝑡 , the optimal sampling strategy is to select a cluster
with probabilities proportional to:

𝑝∗𝑡 (H𝑗 ) ∝
∇̂L (H𝑗 ) (\𝑡 )

 (9)

where

𝑝∗𝑡 = argminE𝑝
[∇̂L (H𝑗 ) (\𝑡 )

2
2

]
(10)

This can be derived by looking at the Lagrangian expression of the
optimization problem. To minimize the performance gap between
the designed distribution and the optimal one, the regret can be
defined as: 〈

𝑝𝑡 − 𝑝∗,∇𝑝𝑡E

[∇̂𝐿 (𝐻 𝑗 ) (\𝑡 )
2
2

]〉
, (11)

which can be bounded by the optimal distribution within a fac-
tor of 3, similar to the work by [12]. Due to page limitations, we
present a proof sketch: Note that the expectation term is convex
in 𝑝𝑡 . To minimize the performance gap between our proposed
distribution and the optimal one, we assume that the gradient is
Lipschitz continuous, which enables us to bound the accumulated
gradient variance under the bandit distribution. This observation
follows from the multiplicative weight update algorithms for EXP3
regret [3].

6 EXPERIMENTS
In this section, we evaluate the MAB-based sampling method pro-
posed in Section 5 on the Open Academic Graph (OAG), the largest
publicly available heterogeneous dataset. We perform Paper-Field
prediction, Paper-Venue prediction, Author Disambiguation tasks.
All the experiments for the three tasks are evaluated in terms of
Mean Reciprocal Rank (MRR). All baselines are implemented via
PyTorch.
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Table 1: Open Academic Graph (OAG) Statistics

Dataset #nodes #edges #papers (P) #authors (A) #fields (F) #venues (V) #institutes (I) #P-A #P-F #P-V #A-I #P-P
OAG 178,663,927 2,236,196,802 89,606,257 88,364,081 615,228 53,073 25,288 300,853,688 657,049,405 89,606,258 167,449,933 1,021,237,518

6.1 Datasets
Open Academic Graph (OAG) [17] consists of more than 178 million
nodes and 2.236 billion edges, which is far more distinguishable
than widely-adopted small citation graphs in the GNN literature.
We summarize the statistics in Table 1, where P-A, P-F, P-V, A-I,
and P-P represent the edges between paper and author, paper and
field, paper and venue, author and institute, and the citation links
between two papers.

6.2 Tasks and Evaluation
We evaluate our sampling method on three distinct real-world
downstream tasks: Paper-Field prediction, Paper-Venue prediction,
and Author Disambiguation. The objective of the first two tasks is
to predict the fields to which each paper belongs to, or the venue
to which each paper is published at, respectively. For author disam-
biguation, we gather all authors sharing identical names and their
associated papers. The goal is to conduct link prediction between
these papers and candidate authors. After obtaining the representa-
tions from GNNs, we leverage a Neural Tensor Network to compute
the probability of each author-paper pair to be linked.

For all three tasks, we utilize papers that were published prior to
the 2015 as the training set, papers between 2015 and 2016 as the
validation set, and papers between 2016 and 2019 as testing. The
main purpose of this paper is to conduct a comparative analysis
between our samplers and the existing training algorithms. We aim
to evaluate the distinct impacts of our samplers in contrast to other
GNN models.

6.3 Baselines
We compare our MAB-based sampling method proposed in Sec-
tion 5 with several state-of-the-art GNNs, including homogeneous
GCN [7] and heterogeneous GNNs — HetGNN [16] and HGT [10].
We summarize the baselines as follows: HetGNN proposes a het-
erogeneous sampling method based on random walk with restart
(RWR). HGT leverages heterogeneous graphs’ meta-relations to
parameterize weight matrices for several critical steps: heteroge-
neous mutual attention, heterogeneous message passing, and target
specific aggregation. Following the implementation details as in
HGT [10], we set the hidden dimension for the neural networks to
be 256 for all baselines and the head number as 8. For each model,
we train it for 200 epoches, the one with the lowest validation loss
is selected as the model. We adhere to the default parameters as in
the literature without hyperparameter tuning.

6.4 Results
We summarize the experimental results of the proposed method and
baselines in Table 2. It shows that the proposed MAB-based sam-
pling method significantly outperforms the homogeneous baseline
for all the tasks and stays on par with the heterogeneous baselines.
Moreover, our method is faster than all baselines. It suggests that
the bandit sampling speed-up the whole training process.

Table 2: Experimental results of different methods on Open
Academic Graph

GNN Models GCN HetGNN HGT This paper
Paper-Field .527 .601 .636 .647
Paper-Venue .262 .255 .323 .311

Author Disambiguation .724 .802 .827 .793

Table 3 reports the runtime to reach the performance in Table 2.
We evaluate the time taken by our proposed method in comparison
to all the baselines. Since our proposed method possesses the capa-
bility to achieve faster convergence, it is significantly faster than
both HetGNN and HGT, it achieves a with a speed-up of 1.5x for
Paper-Venue.

Table 3: Runtime (mins) of different methods on Open Aca-
demic Graph

GNN Models GCN HetGNN HGT This paper
Paper-Field 281 354 398 279
Paper-Venue 370 516 427 361

Author Disambiguation 91 173 115 85

In summary, our proposed method outperforms the state-of-the-
art baselines — both HetGNN and HGT — in terms of the runtime
on various tasks, including Paper-Field, Paper-Venue, and Author
Disambiguation, while achieving good performance. This empiri-
cally show that our sampling algorithm could converge to better
results faster than existing baselines.

7 CONCLUSION
In this paper, we proposed a multi-armed bandit (MAB)-based
framework with a convergence guarantee to model the neighbor
sampling process in heterogeneous GNNs. We showed that our
MAB-based sampling method guarantees that the accumulated
gradient variance approaches the optimal distribution within a
constant factor under practical assumptions. To the best of our
knowledge, our MAB-based sampling method is the first bandit
sampling method for heterogeneous GNNs with provable conver-
gence. Experiments on the OAG dataset demonstrate that our pro-
posed method significantly outperforms state-of-the-art sampling
methods in terms of training time.
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