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ABSTRACT

Uplift modeling is a collection of machine learning techniques for

estimating causal effects of a treatment at the individual or sub-

group levels. Over the last years, causality and uplift modeling

have become key trends in personalization at online e-commerce

platforms, enabling the selection of the best treatment for each

user in order to maximize the target business metric. Uplift mod-

eling can be particularly useful for personalized promotional cam-

paigns, where the potential benefit caused by a promotion needs

to be weighed against the potential costs. In this tutorial we will

cover basic concepts of causality and introduce the audience to

state-of-the-art techniques in uplift modeling. We will discuss the

advantages and the limitations of different approaches and dive

into the unique setup of constrained uplift modeling. Finally, we

will present real-life applications and discuss challenges in imple-

menting these models in production.

CCS CONCEPTS

• Computing methodologies → Causal reasoning and diagnos-

tics; • Information systems→ Personalization; •Theory of com-

putation → Mathematical optimization.
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1 INTRODUCTION

Upliftmodels [4] are commonly used to estimate the expected causal

effect of a treatment on the outcome of individuals, such as sub-

scribing to a service, completing a purchase or responding to a

medical treatment. This can be achieved by estimating the Con-

ditional Average Treatment Effect (CATE), defined as the expected

increment in a user’s outcome probability caused by the treatment,

given the individual’s characteristics. It is particularly useful in the

e-commerce setup, where we are interested in estimating the re-

sponse to website changes for each of the users, in order to per-

sonalize their experience.

In the real world we can observe the outcome of a user only un-

der the treatment she actually received and we will not know what

would have happened, had she received a different treatment. As a

result, we cannot directly calculate the treatment effect for any in-

dividual user. This problem, known as the fundamental problem of

causal inference [11], poses challenges in CATE estimation, since

contrary to classical supervised machine learning, there is no la-

belled data available.

VariousCATE estimation techniques in the literature try to over-

come this problem in different ways, falling under two broad cate-

gories:meta-learners and tailoredmethods [32].Meta-learning tech-

niques, such as the two-models approach [9], the X-learner [18]

and outcome response transformations [2, 8, 23] allow using clas-

sical machine learning techniques for estimating the CATE. Tai-

loredmethods, such as uplift trees [26] and various neural network

based approaches [12, 21, 31], modify well-known machine learn-

ing algorithms to be suitable for CATE estimation.

Over the recent years uplift modeling has become popular in

web and e-commerce applications, such as in Facebook, Amazon,

Criteo, Uber and Booking.com [5, 6, 22, 34] . In such applications,

product improvements and promotions are typically tested via large-

scale A/B testing, which allows estimating the overall treatment ef-

fect [14]. The data collected during the A/B tests can subsequently

be used for uplift modeling, in order to distinguish between the

voluntary buyers, who would purchase even without receiving the

treatment, and the persuadables, who would only purchase as a re-

sponse to the treatment [19].

In the context of uplift modeling, an intriguing problem arises

when the costs associated with different treatments vary among

individuals [10, 29]. In such scenarios, the objective often revolves

around maximizing the overall incremental outcome while adher-

ing to a total cost constraint. To address this, a constrained opti-

mization problem can be solved by combining CATE estimations
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for both the outcome and the cost [6]. Numerous recent studies

have approached the issue of treatment allocation using various

strategies. These include estimating the marginal uplift [33], incor-

porating net value optimization within meta-learners [34], explor-

ing the causal effect through bandits [20], modeling the optimiza-

tion task as a min-flow problem [22], and treating the problem as

an online multiple-choice knapsack formulation [1, 30].

Implementing uplift models in production environments gives

rise to several operational challenges. For instance, models that

are trained offline might be biased towards historical data and re-

quire dynamic calibration [35] according to long-term changes and

seasonality trends, which are particularly common in the travel

industry [24] and in promotional campaigns in general [16]. An-

other challenge is understanding and trust. It can be solved by

providing global and local explainability [17]. This makes bridg-

ing between the underlying theory and practical implementations

peculiarly relevant to applied data science research.

2 TUTORIAL OUTLINE

The tutorial introduces key concepts on causality as well as recent

advances in uplift modeling. The outline of the tutorial is as fol-

lows: First, we introduce basic concepts in causal inference under

the Potential Outcomes framework.We continuewith an overview

of state-of-the-art uplift modeling techniques for evaluating and

estimating conditional average treatment effects. Next, we discuss

constrained uplift problems, a recent addition to the uplift model-

ing literature aimed at enabling cost-aware personalized treatment

assignment. Lastly, we present real-life applications of uplift mod-

eling and discuss challenges in implementing these models in pro-

duction. The total duration of the tutorial is three hours.

2.1 Detailed Schedule

(1) Introduction to Causality (40 min)

• Potential Outcomes Framework

• Average Treatment Effects

• Identifiability of Causal Effects

• Conditional Average Treatment Effects (CATE)

(2) Uplift Modeling (60 min)

• Techniques for CATE Estimation

– Meta-Learners

– Tailored Methods

• Evaluating Uplift Models

(3) Uplift Modeling with Cost Optimization (40 min)

• Types of Costs and Return-On-Investment

• Constrained Optimization

(4) Applications and Implementation Challenges (40 min)

• Application Examples

• Model Robustness

• Exploration

• Adaptiveness

• Explainability

3 RELEVANCE TO THE COMMUNITY

In the past, causal inference has been associated mostly with clini-

cal trials and social science applications. However, over the recent

years, web applications have become increasingly more interac-

tive, raising the need to estimate causal effects of online interven-

tions to advance from correlation-based models to causal models.

Learning the effects of different interventions and adjusting the

personalization strategy accordingly has become a key trend in

the e-commerce industry.

3.1 Intended Audience

The tutorial is targeted to industry practitioners and empirical re-

searchers who are interested in getting causal insights from obser-

vational or interventional data and/or in building personalized e-

commerce applications. As prerequisites, basic knowledge of prob-

ability, statistics and machine learning is expected. No prior knowl-

edge of causal inference is required.

3.2 Related Tutorials

The tutorial is built upon materials from Booking.com’s internal

causal inference and machine learning trainings. Parts of the tuto-

rial cover novel materials on recent research papers, talks, other

tutorials and practical implementations. Throughout the tutorial

we aim to convey our experience from a wide usage of uplift mod-

eling in personalization applications at Booking.com. In our recent

tutorials at WSDM 2021 and WebConf’21 [7, 28], we present key

trends in personalization, including an extended chapter on causal-

ity and uplift modeling. The proposed tutorial is intended to deep

dive into uplift modeling topic, allowing extensive theoretical re-

view and wide coverage of practical applications.

In prior tutorials by Kiciman and Sharma at WSDM 2019 [15]

and CoDS COMAD 2020-2023 [13, 27], the authors cover the im-

portance of causality and pitfalls in conventional machine learning

techniques that rely on correlation analysis. They present the con-

cept of counterfactual reasoning and dive into methods for causal

inference on large-scale online data. These methods set the ground

for uplift modeling applications, providing a controlled training

dataset for machine learning solutions.

Another tutorial by Cui et al. [3] at KDD 2020, introduces the

strong relationship between causality and machine learning and

describe various techniques for treatment effect estimation with

advanced learning methods. Our proposed tutorial will cover simi-

lar techniques and expand on their applications in uplift modeling

and treatment allocation optimization.

Besides these past tutorials, we rely on recent surveys by De-

vriendt et. al [4], Olaya et. al [25] and Zhang et. al [32] that review

state-of-the-art uplift modeling techniques and evaluation meth-

ods and compare their relative performance.

3.3 Tutorial Format

The suggested tutorial is a lecture-style tutorial, covering theoret-

ical and practical aspects of uplift modeling. Tutorial participants

will be provided with supplemental materials, including tutorial

slides, references to relevant literature and open-source libraries

for uplift modeling. The tutorial is build upon Booking.com inter-

nal training which is conducted online and in-person. The interna-

tional team of presenters will give a special attention to interactive

discussions during the session, taking into account the challenges

of introducing the topic to a diverse audience.
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