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ABSTRACT

The availability of training data remains a significant obstacle for the implementation of machine learning in scientific
applications. In particular, estimating how a system might respond to external forcings or perturbations requires
specialized labeled data or targeted simulations, which may be computationally intensive to generate at scale. In
this study, we propose a novel solution to this challenge by utilizing a principle from statistical physics known as the
Fluctuation-Dissipation Theorem (FDT) to discover knowledge using an AI model that can rapidly produce scenarios for
different external forcings. By leveraging FDT, we are able to extract information encoded in a large dataset produced
by Earth System Models, which includes 8250 years of internal climate fluctuations, to estimate the climate system’s
response to forcings. Our model, AiBEDO, is capable of capturing the complex, multi-timescale effects of radiation
perturbations on global and regional surface climate, allowing for a substantial acceleration of the exploration of the
impacts of spatially-heterogenous climate forcers. To demonstrate the utility of AiBEDO, we use the example of a
climate intervention technique called Marine Cloud Brightening, with the ultimate goal of optimizing the spatial pattern of
cloud brightening to achieve regional climate targets and prevent known climate tipping points. While we showcase the
effectiveness of our approach in the context of climate science, it is generally applicable to other scientific disciplines
that are limited by the extensive computational demands of domain simulation models. Source code of AiBEDO
framework is made available at https://github.com/kramea/kdd_aibedo. A sample dataset is made available
at https://doi.org/10.5281/zenodo.7597027. Additional data available upon request.
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1 INTRODUCTION
Machine learning has greatly benefited a variety of scientific disciplines through its ability to extract valuable insights
from large datasets. Notable examples include the use of deep learning for numerical weather prediction Bochenek
and Ustrnul (2022); Ren et al. (2021); Markovics and Mayer (2022), medical imaging diagnosis Shen et al. (2017);
Razzak et al. (2018); Erickson et al. (2017); Chan et al. (2020); Litjens et al. (2017), classification of astronomical
images Carrasco-Davis et al. (2019); Hansen and Takahashi (1984), and drug discovery with specific properties Chen
et al. (2018); Stephenson et al. (2019); Dara et al. (2022); Patel et al. (2020). These applications involve direct application
of machine learning algorithms on large datasets in order to achieve a specific goal. Additionally, we have seen a rise in
the use of surrogate models, such as data-driven models trained on simulation data, which can instantaneously reproduce
output for a given set of inputs, thereby significantly increasing process efficiency Bárkányi et al. (2021). Despite these
achievements, these use cases still represent only a small subset of problems studied by scientists.

A commonly researched topic in systems analysis, science, and engineering is how a system responds to external
forcing. This can encompass a wide range of questions, such as how a bridge or aircraft responds to wind Matsumoto
et al. (1995); Siringoringo and Fujino (2012), how a certain material responds to electrical conductivity or magnetic
forces Reyne et al. (1987); Zukoski (1993), or how a financial market responds to geopolitical instability Hoque and
Zaidi (2020); Sohag et al. (2022). As these inquiries often fall outside of the training data distributions, they are typically
addressed through targeted simulation scenario runs. However, the complexity of the domain simulation model can
significantly impact the computational time required for a single simulation run, ranging from a few hours to several
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months, which can impede the ability to rapidly evaluate ”what-if” scenarios and gain insights into the system’s response
to various external forcings.

This limitation is particularly acute in climate science due to the high computational cost of Earth System Models
(ESM). ESMs are comprehensive simulation models that integrate the physics of Earth’s myriad processes to improve
our understanding of the interactions between the atmosphere, oceans, land surface, and ice. These models are used for
studying future changes in the Earth’s climate Flato (2011); Giorgi and GAO (2018). The related concept of climate
intervention refers to proposed methods aimed at reducing the effects of climate change by manipulating the Earth’s
environment Mah et al. (2020); Lee et al. (2019); Valentini and Rudisill (2006). One key category of intervention
strategies is Solar Radiation Management Robock (2020); Nicholson et al. (2018), which involves reflecting sunlight
back into space to cool the Earth. There are two main approaches that have been proposed to increase the reflection
of sunlight on planetary scales: (a) Stratospheric Aerosol Injection (SAI) Pope et al. (2012); Hulme (2012) and (b)
Marine Cloud Brightening (MCB) Stjern et al. (2018b); Latham et al. (2012a,b). SAI involves the introduction of aerosol
particles such as sulphates into the stratosphere, while MCB involves the spraying of sea salt aerosols into low clouds in
the lower atmosphere. While SAI generally has similar climate impacts irrespective of injection site, the effects of MCB
are regional and spatially heterogenous. Both techniques necessitate extensive research and an in-depth understanding
of their impacts on the Earth System, such as identifying possible unintended consequences of interventions. Moreover,
because MCB is applied regionally, an immense number of different intervention scenarios are possible, making it an
ideal use case for a rapid screening tool to evaluate efficacy before running costly ESM simulations.

Due to the complexity of modern ESMs, a single ESM simulation can take weeks to months to obtain sufficient
sample sizes for analysis. Thus, past evaluations of SAI and MCB interventions have only considered a small number
of scenarios, which are often involve simplified interventions Kravitz et al. (2015). This is particularly true of MCB,
where only a handful of cloud perturbation scenarios have been considered Rasch et al. (2009); Jones et al. (2009);
Stjern et al. (2018a). As a result, a complete set of ESM simulation runs for MCB that can be used to query a number
of “what-if” scenarios does not exist. Given the large number of possible combinations of spatial and temporal cloud
perturbations, studying them using ESMs is likely a computationally intractable task. While machine learning has been
used in a variety of climate modeling contexts, such as improving and accelerating ESMs through the use of data-driven
and hybrid physics-informed surrogate models Reichstein et al. (2019); Ardabili et al. (2020); Zhu et al. (2022); Lu and
Ricciuto (2019); Weber et al. (2020), the problem of determining the outcome of an external forcing (i.e., the outcome
in a system due to an external cloud perturbation in the case of MCB) remains a challenge as it is a complex problem
with limited data sets to train on. This makes direct application of machine learning approaches difficult, and requires a
creative solution.

We present AiBEDO, an AI model, rooted in an innovative application of the Fluctuation-Dissipation Theorem
(FDT). FDT is a fundamental principle in statistical physics that states that the forced response of a system mirrors its
internal fluctuations Kubo (1966). FDT has been successfully used in many fields–brownian motion and drag in moving
objects Tsekov (2010); Sharma and Patankar (2004), protein folding in biological systems Hayashi and Takano (2007);
Mo (2006); Huang (2008) and assessing climate sensitivity in ESMs Leith (1975); Gritsoun et al. (2002); Cionni et al.
(2004); Dymnikov and Gritsun (2005); Gritsun and Branstator (2007). Past implementations of FDT in the scientific
machine learning community mainly involve utilizing it to ensure the consistency of the physical dynamics of a system.
Recently, Lee et al. (2021) Lee et al. (2021) apply FDT in machine learning to ensure thermodynamic consistency while
learning reversible and irreversible dynamics of physical systems. A related but distinct study illustrates the conservation
of the stationary equilibrium of parameters of the ML model using FDT by connecting measurable quantities and
hyperparameters in the stochastic gradient descent algorithm Yaida (2018).

Our use of FDT in machine learning differs from the previous work and is grounded in the fundamental application
of learning from internal variability, intrinsic chaotic fluctuations in a complex system, to estimate a forced response.
Performing this operation in the traditional modeling sense requires large sample sizes and is limited by the use of linear
response functions. Our work illustrates a novel pathway to improve this baseline through the help of AI models. To
achieve this goal, we train the model on the climate response over a wide range of natural fluctuations in the cloud
radiative forcing Ramanathan et al. (1989). The training data is derived from a large ensemble of ESM simulations,
amounting to a total of over 100,000 model months. The model can then estimate responses to forced changes in
radiation, obviating the need to run many simulation runs and saving millions of core hours of computing resources. We
validate the model and verify that it can plausibly project climate responses by comparing it with targeted ESM runs
with regional MCB-like forcing. Key contribution of our work are listed as follows:

• We have showcased a novel method for developing a scenario analysis tool using the principle of Fluctuation-
Dissipation Theorem to develop an AI model trained on noise to answer scientific queries requiring simulation
runs with external forcings.
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Variable Description Role in AiBEDO
cres Net TOA shortwave cloud radiative effect input
crel Net TOA longwave cloud radiative effect input
cresSurf Net Surface shortwave cloud radiative effect input
crelSurf Net Surface longwave cloud radiative effect input
netTOAcs Net TOA clear-sky radiative flux input
netSurfcs Net surface clear-sky radiative flux plus all-sky surface heat flux input
lsMask Land fraction input
ps Surface pressure output
tas Surface air temperature output
pr Precipitation output

Table 1. CESM2 LE variables used in AiBEDO. TOA - top of atmosphere. All radiative and heat fluxes are positive
down

• Our AI framework maps the relationship between cloud perturbations and the climate response, including large-
scale circulation and regional climate patterns. To the best of our knowledge, this is a pioneering application of
AI for scenario analysis of global-scale marine cloud brightening climate interventions.

• We have extensively evaluated the performance of AiBEDO against targeted simulation runs of ESMs and show
that our model can reproduce the results with high fidelity, but three orders of magnitude faster than ESMs.

• We have developed an interactive post-hoc analysis platform to examine the results and facilitate rapid proto-
typing of MCB what-if scenarios for downstream decision-making.

The remainder of the paper is organized as follows. Section 2 introduces the problem statement and details of how
FDT is applied in AiBEDO. In Section 3, we see the details of different components of the MCB climate intervention
framework. In Section 4, we evaluate the performance of the data-driven emulation component of AiBEDO against
ESM runs, and we demonstrate the utility of AiBEDO in an FDT-like approach to perform MCB intervention scenarios.
Finally, in Section 5, we discuss our results, limitations, and future directions.

2 PROBLEM STATEMENT
The goal is to create a framework that one can use to rapidly generate MCB intervention impacts for a given spatial
and temporal extent of cloud perturbations (external forcing). The problem will be addressed in two phases. In the first
phase, we develop an AI emulator to map relationships between a set of designated input and output variables. This will
involve the creation of a series of mappings that are performed at different time-lagged intervals. In the second phase,
we sum them using an FDT operator to obtain a time-integrated outcome, which estimates the regional impact of the
external forcing.

2.1 Phase 1: AI Emulator of simultaneous and time-lagged mappings
Let us denote an input field of cloud and clearsky radiation anomalies at time t as~x(t) and denote the corresponding
output field of surface climate anomalies after a time delay of τ as~y(t + τ). Our task is then to develop a model Aτ

to predict y(t + τ) from ~x(t), i.e, ~y(t + τ) = Aτ(~x(t)). Formally, the input tensor δ~x(t) ∈ Rd×cin , and output tensor
~y(t + τ) ∈ Rd×cout consist of 1-D climate data of size d with corresponding channels of size cin and cout . Input channels,
cin, are composed of 7 climate variables empirically selected to achieve best performance of the model Aτ , and output
channels, cout , are composed of 7 climate variables. The list of climate variables used for input and output is shown in
Table 1.

2.2 Phase 2: Time-integrated output using Fluctuation-Dissipation theorem
One common method of applying FDT involves assuming the metrics of interest have Gaussian statistics and constructing
an FDT operator L using the covariance matrix C(t) Cionni et al. (2004); Liu et al. (2018). The climate mean response
δ 〈y〉 to a constant forcing δ~f is then computed as

〈δy〉= L−1
δ~f =

[∫
∞

0
C(τ)C(0)−1dτ

]
δ~f (1)
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Noting that FDT is limited to the linear component of the climate response, we use an AI model with the intention
of capturing non-linear components of the response and loosening some of the conditions required by classical FDT
(namely that the probability density function of the relevant climate statistics must be Gaussian or quasi-Gaussian Cionni
et al. (2004); Majda et al. (2010)). Thus, replacing the linear FDT operator L with a set of AiBEDO operators, Aτ , at a
series of time-lags (τ), we construct an estimate of the response as

〈δ~y(t)〉=
Tmax

∑
τ=0

1
N

N

∑
i=0

(
Aτ(~xi +δ~f (t− τ))−Aτ(~xi)

)
(2)

where ~xi are randomly sampled internal fluctuations of the input variables, N is the number of samples of internal
fluctuations used, and Tmax is the upper lag limit set at the point when the response to a perturbation approximately
converges to noise. For testing purposes we use the first 6 months and for the full lag integration we choose 48 months.

3 MCB CLIMATE INTERVENTION USING AIBEDO: DATA AND METHODS
The MCB climate intervention framework consists of three main components: (1) datasets for training and verification,
which includes a large ensemble of Earth System Model output data; (2) AiBEDO, which serves as the framework’s
central component is an AI model incorporating data-driven models; (3) an interactive visualization interface featuring
dual functionality allowing users to execute rapid “what-if” scenarios and enabling modelers to inspect and provide
explanations for the associated outcomes. A schematic of the AiBEDO framework is shown in Figure 1.

Figure 1. Schematic view of MCB Climate Intervention framework

3.1 Data
Our training data consists of a subset of the most recent sixth generation of Coupled Model Intercomparison (CMIP)
ESM outputs. As FDT requires a large amount of climate noise (i.e. internal variability or chaotic fluctuations) for
training, we use the Community Earth System Model 2 Large Ensemble (CESM2-LE) as a source for internal climate
noise (Rodgers et al., 2021, ; Table 2). Specifically, we use the 50-member ensemble of historical simulations with
smoothed biomass burning emission between 1997 and 2014 at nominal 1 degree spatial resolution and at a monthly
temporal resolution. Each simulation the large ensemble is identical to one others except in their initial conditions,
meaning they differ only in the chaotic fluctuations internal to the climate system. Thus, this provides one of the largest
data sets of simulations from a single CMIP6-generation ESM from which we can obtain internal variability to train and
test our model on, as it provides a total of nearly 100,000 months of data. Additionally, we use a set of novel CESM2
simulations which estimate the climate response to MCB-like perturbations (described in Appendix 7.2. These are used
to evaluate AiBEDO’s ability to estimate the climate response to a forcing.

3.1.1 Spherical Sampling
Earth System Model data is typically stored on 2D latitude-longitude gridded meshes, which have non-uniform area
over the globe with smaller areas at the poles and larger areas at the equator, complicating their use in ML. Specifically,
the rotational symmetry of the Earth is difficult to represent using two-dimensional meshes, resulting in inaccurate
representations of significant climate patterns in ML models that assume a two-dimensional format of data, such as
Convolutional Neural Networks (CNNs) or U-Nets. To address this limitation, we have adopted a geodesy-aware
spherical sampling technique that converts the 2D rectangular grid to a 1D spherical icosahedral mesh, following the

4/20



strategy suggested in the recent work Defferrard et al. (2020). The icosahedral grids consist of equiangular triangles that
form a convex polygon such that the triangles are formed by equally spaced grid points on a sphere. The number of grid
points is defined by their level, with the level-0 grid being an icosahedron, and the number of grid points increasing as
demonstrated in Equation 3:

N = 10×22g +2 (3)

where g refers to the desired grid level, and N represents the number of points in the grid that form the icosahedron.
This re-sampled icosahedral mesh provides data with uniform density across the sphere. In this study, we utilize a level-5
icosahedral grid, equivalent to a 1-D vector of size 10242 with a resolution of approximately 220 km. We employ the
PyGSP library in Python to perform the grid transformation. This library is widely utilized for various graph operations
in signal processing and social network analysis, such as the Erdős-Rényi network Rozemberczki et al. (2020). To
convert to spherical grid, we first develop of a backbone structure for the icosahedral coordinate system, where the
properties of the spherical coordinates (levels), are specified as inputs. At this stage, the coordinates are represented as
graph networks. Next, latitude and longitude values are assigned to the graph network points (x, y) such that they can
be expressed in a geographical coordinate system. Since the points in the icosahedral backbone do not exactly align
with the positions in the 2D gridded Earth System Model data, we use bilinear interpolation to interpolate the ESM
data with the icosahedral backbone, obtaining the final spherically-sampled data. Figure 2 shows a schematic of grid
transformation in the icosahedral spherical sampling process.

Figure 2. Spherical sampling of ESM data following icosahedral grid.

3.1.2 Data-preprocessing
Prior to use by AiBEDO, the CESM2 LE input and output data are preprocessed by subtracting the ensemble mean for
each month and grid point in the data set. This removes the seasonal cycle of the variables, such that we consider the
month-to-month deviations from the climatology, and removes the secular trend effects due to external forcings, such
that we only consider internal climate variability. As we are using a LE ensemble mean, we are able to filter out the
forced signal across all time scales, including short-term fluctuations such as anthropogenic aerosol forcing and volcanic
eruptions Rodgers et al. (2021).

3.2 Data-driven Models of AiBEDO
We develop a function Aτ to map global perturbation of cloud at time t (input: δ ft ∈ Rd×cin ) to corresponding climate
response with time-lag l (output δ 〈yt+l〉 ∈ Rd×cout ). To tackle this, we formulate the problem as a pixel-wise regression
problem, learning a mapping from input to output, Al : Rd×cin → Rd×cout . We develop separate models for different
time-lags from 0 (simultaneous) to 6 months at monthly intervals, and estimate climate response δ 〈y〉 using a truncated
version of equation 2 with τmax = 6 months.

We utilize three machine learning methods to model Aτ which are proven to be effective for spatio-temporal modeling
of ESM data: (1) Spherical Multilayer Perceptron (S-MLP) Park et al. (2019); Wang et al. (2014), (2) Spherical U-Net
(S-Unet) Mabaso et al. (2006); Ge et al. (2022); Dunham et al. (2022); Trebing et al. (2021) and (3) Spherical Adaptive
Fourier Neural Operator (S-AFNO) Kurth et al. (2022); Li et al. (2020). Then, we use S-MLP for our MCB application,
since S-MLP performs best out of all three methods. We describe the three ML methods we employed further below. A
schematic of the three methods is shown in Figure 3. All machine learning models in our work are trained on a single
NVIDIA Tesla V100-SXM2 GPU using 16GB VRAM.

5/20



Figure 3. Schematic view of three machine learning methods utilized for AiBEDO model, Al : (a) Multilayer
Perceptrons (MLPs), (b) U-Net, (c) Adaptive Fourier Neural Operator (AFNO).

3.2.1 Spherical Multilayer Perceptron (S-MLP)
: MLP is a representative structure of Deep Neural Networks (DNNs) consisting of input and output layer inter-connected
with multiple hidden layers. Each node in a layer is fully connected with all nodes in previous layer. The connection
between two nodes represents a weighted value that passes through the connection signal. Each node contains a
non-linear activation function to represent non-linearity of correlation between two connected nodes. The operation
between consecutive layers is defined as multiplication between nodes in previous layer and corresponding weight
parameters, and applying activation function.

We combine our model architecture with spherical sampling described earlier to create Spherical Multilayer Percep-
tron (S-MLP). The S-MLP architecture has four hidden layers, each containing 1024 nodes. Layer normalization Ba
et al. (2016) and Gaussian Error Linear Units (Gelu) activation Hendrycks and Gimpel (2016) were employed in each
layer. The decoupled weight decay regularization optimization method, AdamW Loshchilov and Hutter (2017) was
utilized to train our model in an iterative manner. The learning rate was initially set to 2× 10−4 and exponentially
decayed at a rate of 1×10−6 per epoch. We train model for 15 epochs with a batch size of 10. Our S-MLP models have
∼ 108M trainable parameters, and it takes around 1 minute per single epoch for training on the historical CESM2-LE
dataset.

3.2.2 Spherical U-Net (S-Unet)
: U-Net is a symmetric U-shaped convolutional neural network for image-to-image prediction, and consists of a
encoder-decoder scheme structure. The encoder extracts visual features from the input by reducing dimensions in every
layer, and the decoder increases the dimensions and predict output with same size as input. Encoder and decoder are
connected with long skip-connections allowing high-resolution features from the encoder are combined with the input of
the decoder for better localizing visual feature in prediction. We chose to explore U-net architecture as they are generally
known to capture fine spatial features in images, and are proven to do well in biomedical image segmentation Yin et al.
(2022), and satellite image analysis McGlinchy et al. (2019).

We built our S-Unet Autoencoder architecture based on the DeepSphere model proposed by Defferrard et al.
(2020)Defferrard et al. (2020). The decoder and encoder of the S-Unet were comprised of six Chebyshev Graph Convo-
lutional LayersBoyaci et al. (2022), followed by spherical Chebyshev pooling, which performs spherical convolution on
1-D data considering the icosahedral geometry of the graph structure. The kernel size was set to [64,128,256,512,512,512]
for the encoder and decoder, respectively. The output of the model was processed through a softmax activation. The
S-Unet was trained using the AdamW optimization method Loshchilov and Hutter (2017), with a learning rate of
5×10−4 that was exponentially decayed at a rate of 1×10−6 per epoch. The model was trained for 30 epochs, and had
approximately 5.8 million trainable parameters. The training of the S-Unet model took approximately 1.5 minutes per
epoch in our computing environment.

3.2.3 Spherical Adaptive Fourier Neural Operator (S-AFNO):
Motivated by the recent successes of transformer-based architectures in climate domain, we adopt the FourcastNetKurth
et al. (2022) employing Adaptive Fourier Neural Operator (AFNO) Guibas et al. (2021) to tackle our problem. Fourcast-
Net is a weather forecasting model using the multi-layer transformer architecture employing AFNO inside. The input
is first divided into multiple patches which are embedded in a higher dimensional space with larger number of latent
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channels and corresponding positional embeddings. Then, positional embeddings are formulated as the sequence of
tokens. Tokens are spatially mixed using AFNO followed by subsequent mixing of latent channels accordingly. Mixed
embeddings are passed by MLP to learn higher level feature. We repeat this process for each transformer layer. After
this process, a linear decoder reconstruct the patches from final embedding.

Instead of the token projection technique employed in ForecastNet, which involves the composition of tokens from a
two-dimensional grid patch of climatic data, we project all elements of a spherically resampled one-dimensional input as
tokens. These tokens, together with a positional encoding, are then inputted into a sequence of AFNO layers. Each layer,
upon receiving an input tensor of tokens, performs spatial mixing followed by channel mixing. We name our model
Spherical Adaptive Fourier Neural Operator (S-AFNO). For S-AFNO model, we used 4-layered transformer Vaswani
et al. (2017), and set the size of embedding of token as 384. We use GeLu activationHendrycks and Gimpel (2016)
for the output of MLP layers while applying layer normalization techniques Ba et al. (2016) to stabilize training. The
S-AFNO model was trained using the AdamW optimization Loshchilov and Hutter (2017), with a learning rate of
5×10−4 that was exponentially decayed at a rate of 1×10−6 per epoch. The model was trained for 50 epochs, and had
approximately 9 million trainable parameters. The training of the S-AFNO model took approximately 12 minutes per
epoch using CESM2-LE training data in our computing environment.

Figure 4. The performance of AiBEDO in emulating CESM2-LE data using different ML models including S-MLP,
S-Unet, S-AFNO. The persistence curve illustrates the temporal deviation of the reference output, quantified as the
discrepancy between the ground-truth output at each lag compared with no lag (when lag = 0).
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Figure 5. Time correlation scores of simultaneous (0-lag) AiBEDO S-MLP (left column), S-Unet (middle column),
and S-AFNO (right column) emulation versus baseline CESM2 data for surface temperature (top row), precipitation
(middle row), and surface pressure (bottom row).

Figure 6. Time correlation scores of one-month lag AiBEDO S-MLP (left column), S-Unet (middle column), and
S-AFNO (right column) emulation versus baseline CESM2 data for surface temperature (top row), precipitation (middle
row), and surface pressure (bottom row).
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3.3 AiBEDO Marine Cloud Brightening Experiments
To evaluate how well AiBEDO estimates climate responses, we compare the impact of MCB-like forcing in the
lag-integrated AiBEDO response to fully coupled CESM2 simulations Hirasawa et al. (2022). These simulations are
summarized in Table 2 in the Appendix along with a description of how the MCB forcing perturbations are computed
from CESM2 for AiBEDO. Our experiments focus on perturbing three main regions (shown in Figure 8) for MCB
experiments: NEP (North East Pacific - 0 to 30N and 150W to 110W), SEP (South East Pacific - 30S to 0 and 110W to
70W) and SEA (South East Atlantic - 30S to 0 and 15W to 25E) regions. Following equation 2, for each lag we calculate
the AiBEDO response by taking the mean of the difference between the AiBEDO output for an N = 480-month sample
of CESM2 internal variability perturbed with the MCB radiation anomalies Aswathy et al. (2015) minus the AiBEDO
output for that same 480-month sample without perturbations. We use this protocol rather than simply running AiBEDO
with the radiation anomaly fields, because the near-zero anomalies outside the perturbation regions cause artifacts in the
AiBEDO output, as such a field is entirely unlike any fields the model is trained on.

4 RESULTS AND DISCUSSION
We evaluate model functionality through two phases of AiBEDO development. The first phase involves developing an
AI emulator of simultaneous and time-lagged mappings. As described in the previous sections, we developed three AI
models (S-MLP, S-UNet, S-AFNO) and compared their performance in how well they could emulate the mappings. The
second phase encompasses an analysis of the results from MCB experiments conducted in selected regions on CESM2,
along with the time-integrated outputs generated by AiBEDO through the application of an FDT-like function. We
also compared the time-integrated results across the three AI models to analyze the performance of different model
architectures.

4.1 Comparison between AiBEDO ML algorithms (Phase I)
Each machine learning model was trained individually with different monthly time-lags ranging from 0 to 6 months. The
quantitative comparison of emulation performance of AiBEDO using different ML models are reported in Figure 4. We
evaluate Root Mean Squared Error (RMSE) and spatial correlation score of prediction with ground truth of our models
based on the persistence scores of the ground truth data. Persistence at a time-lag t is essentially the temporal deviation
of the ground truth outputs at t months from the zero time-lag instances. The persistence curve at different time-lags
is overlaid with performance curve from our model in Figure 4, which lets us evaluate the ML models performance
over lagged duration. As shown in Figure 4, we can observe that as the time-lag increases, the predictive accuracy
of the model decreases as anticipated. Notably, the model consistently outperforms persistence across all time-lags,
implying that AiBEDO has learned the temporal dynamics patterns beyond the simple memory of 0-month temperature
anomalies.

Figures 5 and 6 demonstrate the spatial correlation scores of the emulation of each ML model (S-MLP, S-Unet and
S-AFNO) for simultaneous and one-month time-lagged model. The corresponding qualitative comparison of sample
timesteps is shown in Figures 10 and 11 in the Appendix. Despite S-AFNO achieving comparable score to S-MLP in
terms of RMSE and spatial correlation for simultaneous AiBEDO results, as demonstrated in Figures 5 and 10, S-MLP
was found to outperform the other models in capturing global response patterns in all three variables. The quality
deviation of output between the models becomes evident in the time-lagged response even after a single month (Figure
6), showing higher performance of S-MLP. The qualitative results with a time-lag demonstrate that S-MLP significantly
outperforms the other two models, S-AFNO and S-Unet, even though RMSE scores are comparable across the models.

The superior performance of S-MLP model can be attributed to its significantly larger number of trainable parameters
and its fully connected network structure. This allows the model to consider the correlation of each element in the
input, thereby enhancing its ability to regress the results. The fully connected network structure enables the output to be
regressed by multiplying the different weights of all input elements, which enhances its ability to capture long-range
interactions between locations, potentially driven by the “butterfly effect”. The subpar performance of the S-Unet can
be attributed to the loss of important information regarding global climate patterns, particularly related to long-range
interactions, during the spherical convolution and pooling processes. Consequently, machine learning models based
on the assumption of spatial locality, such as the S-Unet, underperform models that allow for global attention. While
S-AFNO performed better than S-Unet, the model still underperforms compared to S-MLP. The amount of training data
used in this study may not be sufficient for training a transformer-based S-AFNO model, which typically requires a
large amount of data. Moreover, the time taken to complete one epoch in S-AFNO was already significantly higher than
time per epoch for S-MLP. Adding more parameters and/or data can only increase the computational requirement for
S-AFNO. As a result, S-MLP was utilized in the subsequent experiments described in this paper.
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4.2 Response to MCB perturbations (Phase II)

Here, we compare the impact of MCB-like forcing in three regions in the subtropics on the climate in CESM2 and
lag-integrated AiBEDO. Figure 8 shows the spatial maps of the surface temperature anomalies for the response to each
of the three regions (NEP, SEP, and SEA). The goal of comparing the response of the CESM2 model and the AiBEDO
model to MCB-like perturbations is to determine if AiBEDO can accurately estimate the forced climate response. Figure
7 shows that the S-MLP model within AiBEDO has better performance compared to the other two models, reproducing
the climate response pattern with a correlation score of 0.68 for temperature (tas), 0.51 for precipitation (pr), and 0.47
for pressure (ps). The correlation score improves with increased time-integration. However, there are differences in the
magnitude of the responses, which is likely due to missing lags in the integration.

The S-MLP model successfully estimates remote teleconnected responses to MCB forcing, such as a La Niña-like
temperature signal in the Pacific. It also captures drying in northeast Brazil, central Africa, and southern North America
and Europe, and wetting in the Sahel, south and southeast Asia, Australia, and central America. The S-Unet and
S-AFNO models capture some aspects of the responses, such as tropical Pacific drying and high pressure anomalies in
the Pacific mid-latitudes. However, they miss many key aspects of the response patterns. These responses can be used to
assess the risk of regional tipping points, such as Amazon dieback and Sahel region in North Africa greening McKay
et al. (2022) or the reduction in the risk of coral dieoff due to cooling in the tropical oceans. However, due to the lower
performance of AiBEDO at high latitudes, it may be challenging to evaluate key cryospheric tipping points such as
permafrost loss in Eurasia and North America.

Figure 7. Comparison of MCB Perturbation Responses in 6-month integrated S-MLP, S-Unet and S-AFNO Models to
CESM2 coupled simulations.
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Figure 8. CESM2 (left column) and lag-integrated AiBEDO (right column) surface temperature anomalies due to
MCB-like forcing in the NEP (top row), SEP (middle row), and SEA (bottom row). AiBEDO responses are computed
using Simpson’s rule integration of anomalies from lag 1, 2, 3, 4, 5, 6, 12, 24, 36, and 48 month models.

The impact of MCB forcing on individual perturbation regions is also evaluated and compared to CESM2 simulations
with similar regional forcing. Figure 8 shows the comparison of perturbation effects on temperature between CESM2 and
S-MLP model of AiBEDO. In general, AiBEDO’s performance is weaker when considering these regional perturbations
compared to when all three regions are perturbed together. AiBEDO performs best for SEP, followed by SEA and
NEP. The NEP response is overestimated substantially, which may indicate the model learns too heavily from the El
Niño-Southern Oscillation climate pattern (variations in ocean temperatures in the Pacific Ocean) at the expense of over
modes of variability. However, AiBEDO correctly identifies the climate responses to the different forcing regions in
several key regions. For example, it correctly identifies that SEP forcing causes La Niña-like cooling (below-average
sea surface temperatures in the central and eastern tropical Pacific Ocean) and that SEA forcing causes tropical Pacific
warming and Amazon drying. Moreover, AiBEDO performs better in the tropics and over oceans compared to higher
latitudes and over land. This aligns with the regions where AiBEDO has the highest emulation skill, indicating that the
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model’s ability to correctly estimate climate responses to MCB forcing is closely linked to its ability to emulate internal
variability.

4.3 Visualization Platform
We developed a front-end interactive visualization platform to facilitate downstream tasks and exploratory analyses using
the suite of trained hybrid AI models. It allows climate scientists to interact directly with the trained models (described
above) and recreate different MCB experiment scenarios. The multi-panel design lets the experts load different Earth
System Model data, interactively run the trained hybrid model in the backend and visualize the model predictions and
inputs using popular geospatial projection schemes. Figure 9 shows an overview of our visualization platform. The
leftmost panel in Figure 9 is the general control panel which permits a subject matter expert to interact with the models
and data source, as well as tune several experiment parameter for analysis. Figure 9(C1) highlights the controls to specify
the specific timestamp from the data and the general visualization projection scheme. Figure 9(C2) corresponds to the
hybrid model controls, which lets us run the trained AI models with specified data directly from this interface, as well as
clear any previous model prediction results from memory. Figure 9(C3) provides the main MCB experiment scenario
controls. It helps to set the important parameters like which geospatial regions to apply MCB over, which input variable
set to perturb and by what extend and running the perturbed data with the AI models. Figure 9(V1) and (V2) highlight the
input and output visualization panels respectively. Using the set geospatial projection scheme (as set in C1) the different
input and output variables are visualized here. In addition, the output panel has the options to show the original AI
model prediction results, results after MCB, and the net difference in results as well. This helps to qualitatively analyze
the output predictions and their likely patterns.

Figure 9. High-level overview of our interactive visual analysis system to work with the trained hybrid models and
drive post-hoc analysis for different MCB scenarios. [source
code:https://github.com/subhashis/aibedoviz, demo
video:https://youtu.be/3dmqYqkSLOo]

Since the perturbed input fields prepared as part of the MCB experiments may lie outside the scope of the input
distribution with which the hybrid models were trained over, it is important to check the out-of-distribution cases. To
address this, in Figure 9(V3) we visualize the low-dimensional projection of the MCB perturbed fields over the input
distribution to show how far off the perturbed fields are from the original data. Another important aspect of our analysis
is to understand the impact of MCB on key regional tipping points. Figure 9(V4) panel shows the seven regional climate
tipping points that we are tracking with each MCB experiment scenarios. A red color on this sites indicates that the
current MCB setting might trigger factors that are directly associated with the risk of tipping points in these sites.

5 SUMMARY AND FUTURE WORK
In this study, we introduce a novel methodology for utilizing the Fluctuation-Dissipation Theorem, a principle derived
from statistical mechanics, in the context of knowledge discovery using AI model to predict the behavior of a system
under external forcing. This approach is particularly useful in scenario analysis in scientific domains where traditional
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models are computationally infeasible. We demonstrate the efficacy of this method through its application in Marine
Cloud Brightening (MCB) climate intervention analysis, where the number of scenarios required is intractable using
traditional computational models. This constitutes a challenging problem in climate science, where Earth System
Models are employed to simulate changes in climate and require weeks to complete a single run, and assessing additional
scenarios necessitates additional runs. Our method of training lagged emulation models of internal variability (noise)
and producing time-integrated outputs using an FDT-like framework presents a viable alternative for fast prototyping of
such scenarios in several scientific domains. In addition to the central contribution of our work, we also present various
components of AiBEDO that is specific to climate intervention: preprocessing techniques for large climate datasets, a
comparison of machine learning methods for time-integrated approach, and a user-friendly visualization interface that
provides explainable insights that helps with model investigation and tipping point analysis, and allows for quick what-if
scenario analysis.

Our next steps include expanding the MCB climate intervention framework into developing optimal pathways for
selected tipping point scenarios. Figure 13 in Appendix shows some of the known tipping points in the climate system
and the associated mitigating strategies that may be used to avoid them. An inverse search of AiBEDO output may be
useful for creating MCB perturbations to achieve such mitigation measures. For example, to avoid the catastrophic
retreat of the West Antarctic ice sheet, potential MCB perturbation sites could push the jet circulation equatorward.
To achieve this, the user might query the model to create a forcing scheme to avoid selected tipping points, and the
model would choose optimal spatiotemporal perturbation MCB sites that could lead to this outcome. We could also
add additional constraints not to tip other climate tipping points in this process. This is a powerful tool that could help
scientists and policymakers understand the climate system’s teleconnections that could trigger unintended consequences
and timely strategies to avoid catastrophic outcomes due to changing climate.
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7 APPENDIX

7.1 Emulation of Climate Noise
AiBEDO emulation performance is evaluated by taking the difference AiBEDO outputs at a given lag to the correspond-
ing preprocessed CESM2 output field at the same lag. Example emulation outputs for a single input time step are shown
for the lag-0 (Figure 10) and lag-1 (Figure 11).

Figure 10. AiBEDO emulation results for a sample input time step with no time-lag (simultaneous run) for surface
temperature (tas), precipitation (pr), and surface pressure (ps) compared with ground truth (first columns) and different
ML models.

Figure 11. AiBEDO emulation results for a sample input time step with time-lag after one month (lag =1) for surface
temperature (tas), precipitation (pr), and surface pressure (ps) compared with ground truth (first columns) and different
ML models.
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7.2 MCB Experiment Design

In addition to the CESM2 LE data used to train the model, we use a set of new CESM2 LE simulations that simulate the
impact of MCB on climate Hirasawa et al. (2022) (Table 2). MCB forcing is imposed by prescribing in-cloud liquid
cloud droplet number concentrations (similar to (Rasch et al., 2009), (Jones et al., 2009) and (Stjern et al., 2018a))
to 600cm−3 in three selected regions in the northeast Pacific, southeast Pacific, and southeast Atlantic. We apply the
MCB perturbations in the three regions separately and all together from 2015 to 2065 against a background Shared
Socioeconomic Pathway 2 - 4.5Wm−2 (SSP2-4.5) scenario. The CESM2 MCB climate response is thus computed as
the difference between SSP2-4.5 plus MCB simulations minus baseline SSP2-4.5 (Shared Socioeconomic Pathway 2 -
4.5Wm−2 forcing) simulations.

To compute the radiation perturbations for AiBEDO MCB responses, we use CESM2 “fixed-sea surface temperature”
(fixed SST) simulations. In these simulations, a MCB forcing identical to that used in the coupled simulations is imposed
in the model with SSTs held to climatological values. This allows the computation of the radiation anomalies in the
absence of any radiative feedbacks due to surface temperature change, which is referred to as the effective radiative
forcing (ERF). Thus, we can compare CESM2 and AiBEDO responses for the same perturbation fields. AiBEDO
perturbation fields are thus calculated as the annual mean anomalies in cres, crel, cresSurf, crelSurf,
netTOAcs, and netSurfcs anomaly fields (Figure 12) between the Y2000 MCB Perturbed minus Y2000 Control
simulations.

Figure 12. Annual mean radiation anomalies calculated from Fixed SST simulations and applied as MCB
perturbations to AiBEDO.
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Experiment Role Forcing Time span N
Historical LE training, testing, validation historical 1850 - 2015 50
Y2000 Control perturbation Year 2000 Fixed SST 1 - 20 N/A

Y2000 MCB Perturbed perturbation
Year 2000 Fixed SST +

MCB in NEP, SEP, and SEA 1 - 10 N/A

SSP2-4.5 LE response validation SSP2-4.5 2015 - 2100 17

SSP2-4.5 + ALL MCB response validation SSP2-4.5 + 600cm−3 CDNC
in NEP, SEP, and SEA 2015 - 2065 3

SSP2-4.5 + NEP response validation SSP2-4.5 + 600cm−3 CDNC in NEP 2015 - 2065 3
SSP2-4.5 + SEP response validation SSP2-4.5 + 600cm−3 CDNC in SEP 2015 - 2065 3
SSP2-4.5 + SEA response validation SSP2-4.5 + 600cm−3 CDNC in SEA 2015 - 2065 3

Table 2. CESM2 simulations used to train and verify AiBEDO. NEP, SEP, SEA denote regions where MCB forcing is
imposed, where NEP - Northeast Pacific (0 to 30N; 150W to 110W), SEP - Southeast Pacific (30S to 0; 110W to 70W),
SEA - Southeast Atlantic (0 to 30N; 25W to 15E). Note the fixed SST simulations use constant climatological
conditions, so we do not note specific years for these simulations.

Figure 13. Climate tipping points and mitigation strategies using AiBEDO framework
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