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Abstract
Online bidding and auction are crucial aspects of the online ad-

vertising industry. Conventionally, there is only one slot for ad

display and most current studies focus on it. Nowadays, multi-slot

display advertising is gradually becoming popular where many ads

could be displayed in a list and shown as a whole to users. However,

multi-slot display advertising leads to different cost-effectiveness.

Advertisers have the incentive to adjust bid prices so as to win

the most economical ad positions. In this study, we introduce bid

shading into multi-slot display advertising for bid price adjustment

with a Multi-task End-to-end Bid Shading (MEBS) method. We

prove the optimality of our method theoretically and examine its

performance experimentally. Through extensive offline and online

experiments, we demonstrate the effectiveness and efficiency of our

method, and we obtain a 7.01% lift in Gross Merchandise Volume, a

7.42% lift in Return on Investment, and a 3.26% lift in ad buy count.

1 Introduction
Online advertising serves as one of the most important income

sources of Internet companies [8]. The Real-Time Bidding (RTB)

paradigm enables the automated matching of advertisements with

target audiences and facilitates transactions on a per-impression

basis [32]. The RTB system comprises critical components, includ-

ing advertisers, demand-side platforms (DSP), Ad exchanges (AdX),

supply-side platforms (SSP), publishers, and data management plat-

forms (DMP) [36, 37]. The SSP aids publishers in managing and

pricing their ad inventories [35]. The DSP assists advertisers by

providing bids and targeting potential audiences in the market. The

AdX arranges auctions with buyers in DSP and sellers in SSP by

allocating ad impression opportunities. Advertisers try to submit

optimal bid prices in auctions with the best bidding strategy, which

attracts attention from both the industry and academia [1, 5, 40].

Typical display advertising goes with only one ad slot sold each

time, which is single-slot display advertising. But there is another

emerging scene that many ad slots are shown together and sold

together in one auction, which is called multi-slot display adver-

tising (MSDA). The single-slot and multi-slot display advertising

are shown in Figure 1. Under the prevalent generalized second-

price (GSP) auction setting, each advertiser pays the next highest

advertiser’s bid [8], and the advertiser with the highest bid wins the

first ad position and pays the second-highest bid price in MSDA, the

advertiser with the second-highest bid wins the second ad position

and pays the third-highest bid price, and so on. Ads in different

positions enjoy different levels of user attention. The top positions
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Figure 1: Examples of single-slot andmulti-slot display adver-
tising are shown in the blue dashed and green dotted boxes.
are usually more attractive [13] but more expensive. And the Click-

Through Rate (CTR) varies according to the ad position [6]. In

pay-per-click (PPC) mode [8, 30], the ad platform calculates pay-

ment according to whether the ad is clicked. However, conversion

rates (CVR) do not vary much with ad position [2]. It is easily

explicable that CVR is independent of the ad position in the pre-

vious displaying page because the conversion happens when the

user browses the next page after a click. This leads to different

cost–effectiveness for different ad slots. A lower position with a

lower price but similar CVR could be a bargain for advertisers,

which means advertisers may profit more if competing for those

lower cheaper ad slots. Consequently, advertisers are incentivized

to cut bid prices and bid on lower but more economical positions.

Bid shading methods are widely adopted to adjust the bid price to

avoid overpaying in first-price auctions (FPA). Bid shading estimates

shading ratio (the ratio of cutting bid price) or searches for the

optimal bid price. It is also potentially feasible to find the most

economical bid price with the help of bid shading in multi-slot

display advertising, though bid shading in MSDA is rarely studied

by the community. Like FPA with bid shading [14], MSDA with

bid shading could also be decoupled into three parts: impression

valuation, campaign control, and bid shading. Impression valuation

estimates the effective cost per mille (eCPM) as ad value, and the

eCPM estimation includes the modeling of CTR [25, 41, 42] and

CVR [16, 17, 20, 33]. Campaign control generates control signals

to adjust ad value according to constraints like budget, and the

adjusted ad value serves as the original bid price before bid shading

under single-slot GSP setting [11, 12, 44]. Bid shading estimates

the optimal bid price to save costs for MSDA. Since impression

valuation and campaign control have been widely investigated in

previous literature, we focus on bid shading in this work.

There are a few challenges in MSDA involved by bid shading.

The optimality of bidding strategy with bid shading in MSDA has



not been proven by any previous work. Bid shading lowers down

the bid price, and it is only meaningful to the winnable samples

whose bid prices are high enough to win auctions. Bid shading

also leads to varying CTR. Modeling of winnable samples and CTR

change faces the data sparsity problem since winnable samples are

rare when bidding is fierce and clicks are far fewer than bidding

actions. Optimal bid price has no ground truth since CTR changing

is unknowable solely based on dataset and the calibrated predicted

CTR (pCTR) is only available after being estimated with a model.

Traditional bid shading methods [9, 43] focus on modeling the

optimal bid price distribution, and they estimate the optimal shad-

ing ratio or search for the optimal bid price according to the dis-

tribution. And they regard the highest competing bid price (the

minimum winning price) as the label of optimal bid price. Under

single-slot FPA settings, lowering down original bid price to the

minimum winning price saves more cost, but the auction is still

winnable. All samples in one auction share the same optimal bid

price, so the distribution modeling is relatively easy and feasible.

But these methods no longer suit MSDA due to ad position effects.

Bid shading leads to the change of slots, causing variations in CTR.

Consequently, the optimal bid price is no longer solely determined

by the minimum winning price. Modeling changes in CTR for bid

shading becomes necessary to find the optimal bid price in MSDA.

In this work, we apply a multi-task end-to-end bid shading

method to MSDA. We propose an optimal bid shading strategy

for MSDA and provide a proof of its optimality. After modeling

the change of win rate and CTR during adjusting bid price, MEBS

estimates the optimal shading ratio. Multi-task learning helps solve

data sparsity problem for pCTR calibration and shading ratio esti-

mation. Andwe directly maximize the cost saved for advertisers (i.e.,

surplus) in an end-to-end paradigm, making shading ratio estima-

tion feasible even if the label of optimal shading ratio is unknowable.

And we successfully help improve the bidding in MSDA and get

promising results from both offline and online experiments.

2 Related Work

2.1 Bid Shading Methods

There are mainly three kinds of traditional bid shading methods:

Shading Ratio Regression Method [9]: Gligorijevic et al. [9] re-

gard shading ratio estimation as a regression task and directly

predict the optimal shading ratio, which is defined as the ratio

of optimal bid price label and original bid price. And the optimal

shading ratio is utilized as the training label for the regression task.

However, this method suffers from data sparsity problem, since

the label is only valid for winnable samples [43]. And the label of

optimal bid price that the method relies on is unknowable in MSDA.

Two-step Bid ShadingMethods [23, 28, 43]: Two-step bid shading

has two steps: estimating the winning price distribution, and then

searching for the optimal bid price to maximize surplus. The search-

ing process harms inference efficiency and also limits effectiveness

in turn. For example, Zhou et al. [43] choose the inferior FwFM [22]

model as online model due to online latency constraints, though

DeepFM [10] outperforms FwFM in their offline experiments.

Non-parametricMethod: MEOW [39] proposes a non-parametric

method for bid shading using dynamic binning. It constructs bins to

divide impressions into small groups and determines the bid price

Table 1: Notations used throughout the paper.

Notation Definition

𝑉 ad value if clicked (truthful bid price)

E(𝑉 ) the expected gained value of an ad

𝜇∗
0

the optimal control signal

𝑏 bid price

𝑆 surplus (the cost saved for advertisers)

E(𝑆 ) expected surplus

𝑟 shading ratio

𝑤𝑝 minimum winning price

𝑁 total amount of samples

𝑁+ total amount of positive samples

𝒙 input features except for bid price

𝐵 budget of an advertising campaign

𝐶 (𝑏 ) cost of the bid to win an ad with bid price 𝑏

E(𝐶 ) the expected cost

𝑃 (𝒙, 𝑏 ) win rate (the probability that 𝑏 ≥ wp)

𝑦WR the label of win rate estimation

𝑢𝑘 average CTR in the k-th slot

𝑝𝐶𝑇𝑅 (𝒙 ) pCTR irrespective of ad position

𝑝𝐶𝑇𝑅𝑘 (𝒙, 𝑏 ) pCTR of the k-th slot won with bid price 𝑏.

𝑦
Calib

the label of pCTR calibration

𝐹 (𝒙, 𝑏 ) probability of auction is won and ad is clicked

based on the located bins. This method is space-efficient because

only a few bins are required. But it also relies on the optimal bid

price label for surplus calculation in its binning process.

2.2 Multi-task Learning
ESMM [20] is proposed to relieve the data sparsity problem and

attracts a lot of attention. ESMM combines CTR modeling task with

CVR estimation task by sharing embedding. The CTR task is trained

in the entire space with samples of all impressions, which helps the

CVR task with the data sparsity problem. And 𝐸𝑆𝑀2
[33] introduces

more active post-click user behaviors to further solve data sparsity

problem. Zhang et al. [38] and Wang et al. [31] improve multi-task

learning from a causal perspective. Apart from above methods,

MMoE [19], DUPN [21], and PLE [29] are also widely adopted.

2.3 Multi-slot Adverting
Most studies about multi-slot advertising focus on bidding and auc-

tion of sponsored search [1, 7, 27]. Auctions for sponsored search are

usually held for each individual ad slot instead of all slots on a whole

page. So bidding for multi-slot sponsored search does not take the

predicted CTR change into account. These keyword-level bidding

strategies neglect critical individual impression features (e.g., clicks

and positions), which are indispensable in display advertising.

3 Preliminaries
We define the necessary notations shown in Table 1. In impression

valuation, we estimate the predicted CTR 𝑝𝐶𝑇𝑅(𝒙) with features

𝒙 regardless of the ad slot and obtain ad value 𝑉 . The adjusted ad

value 𝜇∗
0
𝑉 serves as the unshaded bid price and it is got by campaign

control with the optimal control signal 𝜇∗
0
. As for bid shading, we

generate a bid price shaded by multiplying the shading ratio 𝑟 with

the adjusted ad value, and we know the saved cost called surplus

𝑆 . Bidding consumes the budget 𝐵 set by advertisers, and its cost

is denoted as 𝐶 (𝑏). The minimum bid price to win the auction is

defined as 𝑤𝑝 , which is the bid price that wins the last slot. The
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bid price
Figure 2: Demonstration of E(𝑆) and 𝐹 (𝒙, 𝑏).

total amount of all samples is denoted with 𝑁 , and 𝑁+ refers to the

amount of winnable samples whose bid prices are higher than𝑤𝑝 .

Apart from shading ratio estimation, MEBS also involves win

rate estimation and pCTR calibration. The probability of winning

the auction is denoted as the win rate 𝑃 (𝒙, 𝑏). And the label of

win rate estimation 𝑦WR indicates whether the auction is won.

Following Aggarwal et al. [3], we decompose the pCTR of the ad

in the k-th slot into two parts: the ad-specific slot-independent

pCTR (𝑝𝐶𝑇𝑅(𝒙)) and the slot-specific factor
𝑢𝑘
𝑢𝑖
. And 𝑢𝑘 is the

average CTR in the k-th slot. Assume that we win the k-th slot

instead of the original i-th slot after bid shading, the calibrated

pCTR for the k-th slot is derived as

𝑝𝐶𝑇𝑅𝑘 (𝒙, 𝑏 ) =
𝑢𝑘

𝑢𝑖
𝑝𝐶𝑇𝑅 (𝒙 ) . (1)

And 𝑦
Calib

stands for whether the ad is clicked after winning the

k-th slot in the auction with bid price 𝑏. Combining win rate with

the calibrated pCTR, we define the probability that the auction is

won and the ad is also clicked as 𝐹 (𝒙, 𝑏) = 𝑃 (𝒙, 𝑏) · 𝑝𝐶𝑇𝑅𝑘 (𝒙, 𝑏).
And the expected surplus is

E(𝑆 ) = (𝜇∗
0
𝑉 − 𝐶 (𝑏 ) )𝐹 (𝒙, 𝑏 ) .

The more the bid price is shaded, the more costs are saved, but the

less likely to win the auction, and the slot’s CTR is lower.

The expected surplus shown in Figure 2 is usually unimodal

based on our statistics, and it increases first and then decreases with

a rising bid price. The win rate 𝑃 (𝒙, 𝑏) is a positive function, and it

is strictly monotonically increasing with the bid price 𝑏. And the

slot-specific pCTR 𝑝𝐶𝑇𝑅𝑘 (𝒙, 𝑏) is positive and not decreasing with

the bid price 𝑏. So, 𝐹 (𝒙, 𝑏) is also a strictly monotonically increasing

and positive function. Besides, cost 𝐶 (𝑏) is also obviously positive

and not monotonically decreasing with bid price 𝑏.

4 Optimal Bidding Strategy
As for MSDA, the bidding objective is to maximize the cumulative

expected gained value subject to the finite ad campaign budget. We

may formulate the optimization problem as:

max

𝑏𝑖

𝑁∑︁
𝑖=1

E(𝑉𝑖 ), 𝑠 .𝑡 .
𝑁∑︁
𝑖=1

E(𝐶𝑖 ) ≤ 𝐵 .

The expected gained value can be represented as the multiplication

of the probability that the auction is won and the ad is clicked

with the ad value, which is E(𝑉 ) = 𝐹 (𝒙, 𝑏)𝑉 . Under PPC mode, the

expected cost is E(𝐶) = 𝐹 (𝒙, 𝑏)𝐶 (𝑏) since payments are counted

according to clicks. The optimization problem is reformulated as:

max

𝑏𝑖

𝑁∑︁
𝑖=1

𝐹 (𝒙, 𝑏𝑖 )𝑉𝑖 , 𝑠 .𝑡 .
𝑁∑︁
𝑖=1

𝐹 (𝒙, 𝑏𝑖 )𝐶 (𝑏𝑖 ) ≤ 𝐵 . (2)

The bidding optimization problem in Eq. (2) could be transferred

to the following two optimization problems (campaign control and

bid shading) shown in Theorem 4.1.

Theorem 4.1. The optimal bid price 𝑏∗ got by bid shading in
Eq. (2) satisfies the following two optimal strategies (𝜇∗

0
, 𝑏∗) for all

sample 𝑖 of the non-cooperative, non-zero sum, infinite game:

𝜇∗
0
= argmin

𝜇0

(
𝑁∑︁
𝑖=1

𝐹 (𝒙, 𝑏𝑖 )𝐶 (𝑏𝑖 ) − 𝐵

)
,

𝑏∗𝑖 = argmax

𝑏𝑖

(𝜇∗
0
𝑉𝑖 − 𝐶 (𝑏𝑖 ) )𝐹 (𝒙, 𝑏𝑖 ) ,

(3)

where 𝜇∗
0
is the optimal control signal for budget pacing in campaign

control and𝑏∗
𝑖
is the optimal bid pricemaximizing the expected surplus

in bid shading.
If the expected surplusE(𝑆) = (𝜇0𝑉𝑖−𝐶 (𝑏𝑖 ))𝐹 (𝒙, 𝑏𝑖 ) is a unimodal

function with a unique maximum for all samples 𝑖 and all control
signals 𝜇0, then the bid price 𝑏∗ for any sample 𝑖 is the unique optimal
bidding strategy solving the optimization problem in Eq. (2).

Proof. First, we transform the optimization problem in Eq. (2)

to a dual problem. Let 𝜆 denote the dual variable of budget 𝐵. The

Lagrangian function of optimization problem in Eq. (2) is:

L =

𝑁∑︁
𝑖=1

𝐹 (𝒙, 𝑏𝑖 )𝑉𝑖 − 𝜆

(
𝑁∑︁
𝑖=1

𝐹 (𝒙, 𝑏𝑖 )𝐶 (𝑏𝑖 ) − 𝐵

)
=

𝑁∑︁
𝑖=1

(𝑉𝑖 − 𝜆𝐶 (𝑏𝑖 ) )𝐹 (𝒙, 𝑏𝑖 ) + 𝜆𝐵 .

According to Lagrangian optimization theory [26], if there exist

bid price 𝑏𝑖 for any sample 𝑖 , and 𝜆 ≥ 0 such that L is maxi-

mized and 𝜆

(∑𝑁
𝑖=1 𝐹 (𝒙, 𝑏𝑖 )𝐶 (𝑏𝑖 ) − 𝐵

)
= 0, then 𝑏𝑖 is the solution

to Eq. (2) [18]. If 𝜆 = 0, L is maximized when 𝑏𝑖 → +∞, and it is

obviously impossible to submit an infinitely large bid price every

time when bidding opportunities are sufficient and unlimited. Oth-

erwise, the bidder will win all the opportunities and the cost will

also be infinite contradicting the fact that the budget is finite. So

𝜆

(∑𝑁
𝑖=1 𝐹 (𝒙, 𝑏𝑖 )𝐶 (𝑏𝑖 ) − 𝐵

)
= 0 leads to the necessary conditions

that 𝜆 > 0 and the budget is all spent as shown in Eq. (4):

𝑁∑︁
𝑖=1

𝐹 (𝒙, 𝑏𝑖 )𝐶 (𝑏𝑖 ) = 𝐵 . (4)

Secondly, we prove that estimating optimal control signal 𝜇∗
0
by

campaign control and optimal bid price 𝑏∗ via bid shading in Eq. (3)

are the necessary conditions of the optimization problem in Eq. (2).

According to the Karush-Kuhn-Tucker conditions [4], we know

𝜕L
𝜕𝜆

= −
(∑𝑁

𝑖=1 𝐹 (𝒙, 𝑏𝑖 )𝐶 (𝑏𝑖 ) − 𝐵

)
= 0. So the optimal lambda 𝜆∗

is 𝜆∗ = argmin𝜆0

(∑𝑁
𝑖=1 𝐹 (𝒙, 𝑏𝑖 )𝐶 (𝑏𝑖 ) − 𝐵

)
. We generate a control

signal with lambda as 𝜇0 = 1/𝜆. So the optimal control signal 𝜇∗
0
is:

𝜇∗
0
= argmin

𝜇0

(
𝑁∑︁
𝑖=1

𝐹 (𝒙, 𝑏𝑖 )𝐶 (𝑏𝑖 ) − 𝐵

)
. (5)

Since 𝐹 (𝒙, 𝑏𝑖 ) and 𝐶 (𝑏𝑖 ) are always positive, the cumulative cost∑𝑁
𝑖=1 𝐹 (𝒙, 𝑏𝑖 )𝐶 (𝑏𝑖 ) is also positive. Consequently, the cumulative

cost corresponding to the optimal control signal equals budget 𝐵.

Assume that bidders are independent of each other and we obtain

the optimal lambda 𝜆∗ (i.e., the optimal control signal 𝜇∗
0
), we may

cancel the sum in L, ignore the constant 𝜆𝐵, and derive the optimal

bid price 𝑏∗ for each sample independently as Eq. (6). Bid price is

optimal when E(𝑆) = (𝜇∗
0
𝑉𝑖 −𝐶 (𝑏𝑖 ))𝐹 (𝒙, 𝑏𝑖 ) is maximum.

𝑏∗𝑖 = argmax

𝑏𝑖

(𝑉𝑖 − 𝜆𝐶 (𝑏𝑖 ) )𝐹 (𝒙, 𝑏𝑖 ) = argmax

𝑏𝑖

(
𝑉𝑖

𝜆∗
0

− 𝐶 (𝑏𝑖 )
)
𝐹 (𝒙, 𝑏𝑖 )

= argmax

𝑏𝑖

(𝜇∗
0
𝑉𝑖 − 𝐶 (𝑏𝑖 ) )𝐹 (𝒙, 𝑏𝑖 ) .

(6)

Consequently, Eq. (5) and (6) are the necessary conditions for 𝑏∗
𝑖

to be the optimal solution to Eq. (2).

3
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Figure 3: Architecture overview of MEBS.
Thirdly, we prove the uniqueness of the optimal bid price 𝑏∗

𝑖
for

any sample 𝑖 via proof by contradiction, and we conclude that the

corresponding bidding strategy is equivalent to our aim in Eq. (2).

Let (𝜇∗′
0
, 𝑏∗′

𝑖
) also be optimal but different from (𝜇∗

0
, 𝑏∗

𝑖
). We may

assume that 𝜇∗′
0

> 𝜇∗
0
without loss of generality, and there is a posi-

tive number 𝛿 satisfying 𝜇∗′
0

= 𝜇∗
0
+𝛿 . With different control signals

𝜇∗
0
and 𝜇∗′

0
, the expected surpluses for any bid price 𝑏𝑖 are E(𝑆𝑖 ) =

(𝜇∗
0
𝑉𝑖 − 𝐶 (𝑏𝑖 ))𝐹 (𝒙, 𝑏𝑖 ) and E(𝑆𝑖 )′ = (𝜇∗′

0
𝑉𝑖 − 𝐶 (𝑏𝑖 ))𝐹 (𝒙, 𝑏𝑖 ) =

(𝜇∗
0
𝑉𝑖 −𝐶 (𝑏𝑖 ))𝐹 (𝒙, 𝑏𝑖 ) +𝛿𝑉𝑖𝐹 (𝒙, 𝑏𝑖 ) = E(𝑆𝑖 ) +𝛿𝑉𝑖𝐹 (𝒙, 𝑏𝑖 ). The opti-

mal bid prices𝑏∗′
𝑖
and𝑏∗

𝑖
are then defined in the following equations:

𝑏∗𝑖 = argmax

𝑏𝑖
E(𝑆𝑖 ) = argmax

𝑏𝑖
(𝜇∗

0
𝑉𝑖 −𝐶 (𝑏𝑖 ))𝐹 (𝒙, 𝑏𝑖 ) ,

𝑏∗′𝑖 = argmax

𝑏𝑖
E(𝑆 ′𝑖 ) = argmax

𝑏𝑖
(E(𝑆𝑖 ) + 𝛿𝑉𝑖𝐹 (𝒙, 𝑏𝑖 )) .

As we assume the expected surplus E(𝑆𝑖 ) is unimodal, E(𝑆𝑖 ) mono-

tonically increases when 𝑏𝑖 < 𝑏∗
𝑖
and monotonically decreases

when 𝑏𝑖 > 𝑏∗
𝑖
. Besides, 𝐹 (𝒙, 𝑏) shown in Figure 2 is strictly mono-

tonically increasing, thus 𝛿𝑉𝑖𝐹 (𝒙, 𝑏𝑖 ) also monotonically increases.

So E(𝑆 ′
𝑖
) monotonically increases when 𝑏𝑖 < 𝑏∗

𝑖
, thus 𝑏∗′

𝑖
≥ 𝑏∗

𝑖
. If

𝑏∗′
𝑖

= 𝑏∗
𝑖
, 𝑏∗′

𝑖
or 𝑏∗

𝑖
is the unique optimal bid price. However, if 𝑏∗′

𝑖
>

𝑏∗
𝑖
, it implies that the cumulative expected cost also follows a strict

inequality relationship

∑𝑁
𝑖=1𝐶 (𝑏∗′𝑖 )𝐹 (𝒙, 𝑏∗′

𝑖
) > ∑𝑁

𝑖=1𝐶 (𝑏∗𝑖 )𝐹 (𝒙, 𝑏
∗
𝑖
)

because 𝐶 (𝑏∗′
𝑖
) ≥ 𝐶 (𝑏∗

𝑖
) and 𝐹 (𝒙, 𝑏∗′

𝑖
) > 𝐹 (𝒙, 𝑏∗

𝑖
). This contradicts

Eq. (4) that the cumulative expected cost corresponding to the opti-

mal control signal should equal the budget. Consequently, we finish

the proof and prove 𝑏∗
𝑖
is the unique optimal bid price.

In conclusion, we demonstrate the optimal bidding strategy for

Eq. (2) is equivalent to optimizing campaign control and bid shading

shown in Eq. (3). As for bid shading, the objective is to find the

unique optimal bid price with the maximum expected surplus. □

5 Methodologies
In this section, we provide an overview of MEBS in Section 5.1 first.

And we introduce each sub-module of MEBS. Finally, we illustrate

the training and inference of MEBS in Section 5.5.

5.1 Overview of MEBS
Figure 3 depicts the architecture of MEBS. We construct three mod-

els: win rate model, pCTR calibration model, and shading ratio

model. To alleviate the data sparsity of pCTR calibration and shad-

ing ratio estimation, we combine these models with multi-task

learning and share embedding. With pre-trained win rate and pCTR

calibration models, we calculate the expected surplus and maximize

it in an end-to-end way optimizing shading ratio model implicitly.

5.2 Win Rate Model
To predict whether the auctionwill be wonwith bid price𝑏, we build

a win rate model to estimate the probability of winning 𝑃 (𝒙, 𝑏).

The win rate model is input with the bid price 𝑏 and basic fea-

tures 𝒙 . Basic features include user features, impression features,

ad features, and contextual features. The embedding layer gets the

embeddings of these features, which are concatenated together and

fed to the base model. The win rate model utilizes DeepFM [10] as

a base model and estimates the win rate with a Sigmoid function.

We regard the win rate estimation as a binary classification task,

which is supervised with the label of whether the auction is won

𝑦WR. Cross-entropy loss is used for training and it is defined as:

𝐿WR = − 1

𝑁

𝑁∑︁
𝑖=1

𝑦WR𝑃 (𝒙, 𝑏 ) + (1 − 𝑦WR ) (1 − 𝑃 (𝒙, 𝑏 ) ) .

The win rate model is trained with both won and lost samples

in the auction. Thus, the win rate model is less affected by data

sparsity problem, and its feature embedding is well-trained.

5.3 Calibration of pCTR
Since the bid price influences the obtained ad position and CTR for

MSDA, we conduct a bid-aware calibration of pCTR.

The pCTR for a given ad position as shown in Eq. (1) is affected

by the impression itself and the ad position. The ad-specific and

slot-independent 𝑝𝐶𝑇𝑅(𝒙) is estimated by an upstream model in

the impression valuation part before bidding, so it is not aware

of the ad position determined by bid price. Given that the slot-

specific factor in Eq. (1) is not differentiable, we model it in an

end-to-end paradigm instead of using the average actual CTR. Our

model inherently learns which ad slot to win and how it affects

pCTR for any bid price, and it estimates a bid-aware calibration

factor. We regard the logit of the base model as the calibration factor,

and it is the sum of outputs from the FM layer and deep layer in a

DeepFM model. First, assuming that the k-th slot is won, we may

get the calibration factor 𝑓𝑘 (𝒙, 𝑏). Next, we get the original logit of
𝑝𝐶𝑇𝑅(𝒙) from the inverse function of Sigmoid: log

(
𝑝𝐶𝑇𝑅 (𝒙 )

1−𝑝𝐶𝑇𝑅 (𝒙 )

)
,

and we add it with our calibration factor 𝑓𝑘 (𝒙, 𝑏). Finally, we feed
the sum of the original logit and calibration factor to a Sigmoid

function and estimate the pCTR of the k-th slot 𝑝𝐶𝑇𝑅𝑘 (𝒙, 𝑏):

𝑝𝐶𝑇𝑅𝑘 (𝒙, 𝑏 ) = Sigmoid

(
𝑓𝑘 (𝒙, 𝑏 ) + log

(
𝑝𝐶𝑇𝑅 (𝒙 )

1 − 𝑝𝐶𝑇𝑅 (𝒙 )

))
.

However, pCTR calibration faces data sparsity problem.Whereas

the samples that win auctions and get impression opportunities are

fairly rare, the samples clicked by users are far fewer. We alleviate

the problem by sharing the embedding of win rate model with

pCTR calibration model. Note that the shared embedding is frozen,

and it only has forward propagation.

We train the pCTR calibration model with a cross-entropy loss.

On winnable samples, we calculate the loss with label 𝑦
Calib

as:

𝐿
Calib

= − 1

𝑁+

𝑁+∑︁
𝑖=1

𝑦
Calib

𝑝𝐶𝑇𝑅𝑘 (𝒙, 𝑏 ) + (1 − 𝑦
Calib

) (1 − 𝑝𝐶𝑇𝑅𝑘 (𝒙, 𝑏 ) ) .
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Figure 4: Inference of MEBS.

5.4 Shading Ratio Model
As shown in Figure 3, the shading ratio model estimates the optimal

shading ratio and calculates the expected surplus with a DeepFM.

The inputs are adjusted ad value (i.e., the unshaded bid price) and

basic features. Since shading ratio is only defined in winnable sam-

ples, data sparsity also hinders shading ratio model and is alleviated

by sharing the embedding of win rate model.

The label of optimal shading ratio is unknowable in MSDA, and

our model cannot be trained with the mean squared error of the

estimated and the label of shading ratio like shading ratio regression

method [9]. Our shading ratio model learns the distribution of the

optimal bid price and it is implicitly optimized by maximizing the

expected surplus in an end-to-end paradigm. With pre-trained win

rate and pCTR calibration models, we could calculate the expected

surplus as shown in Eq. (7) for every estimated shading ratio.

E(𝑆 ) = (𝜇∗
0
𝑉 − 𝐶 (𝜇∗

0
· 𝑉 · 𝑟 ) )𝑃 (𝒙, 𝜇∗

0
· 𝑉 · 𝑟 )𝑝𝐶𝑇𝑅𝑘 (𝒙, 𝜇∗0 · 𝑉 · 𝑟 ) . (7)

The negative expected surplus loss is 𝐿
surplus

= − 1

𝑁+

∑𝑁+
𝑖=1
E(𝑆𝑖 ).

And then the expected surplus is maximized with gradient descent.

In first-price auctions, cost equals bid price 𝐶 (𝑏) = 𝑏, and the loss

is of course differentiable. As for second-price auctions, we may

substitute the cost 𝐶 (𝑏) with the multiplication of bid price 𝑏 and

cost-bid ratio 𝑟
cb

as𝐶 (𝑏) = 𝑏 ·𝑟
cb
. The cost-bid ratio is the statistical

average of the according payment divided by the bid price, and it

could be calculated from statistics in advance. Besides, we also apply

weights and even the scale of loss 𝐿
surplus

in case it is dominated by

samples with extremely large E(𝑆) via dividing it with E(𝑆) whose
gradient is stopped. The final shading ratio model loss is defined as:

𝐿SR = − 1

𝑁+

𝑁+∑︁
𝑖=1

E(𝑆𝑖 )
stop_grad(E(𝑆𝑖 ) )

. (8)

5.5 Training and Inference of MEBS

5.5.1 Training of MEBS: MEBS is trained by optimizing the

above three models in order. First, we train win rate model on all

samples in the auction with loss 𝐿WR. Next, the pCTR calibration

model is trainedwith loss 𝐿
Calib

, and its feature embedding is shared

with the win rate model. Finally, we maximize the expected surplus

and optimize the shading ratio model implicitly with loss 𝐿SR.

Following the idea of multi-task learning, MEBS comprises three

closely intertwined tasks implicitly estimating the bidding land-

scape. Only when the win rate model estimates the minimum win-

ning price well can it judge whether the bid price is able to win the

auction. The pCTR calibration forecasts the relative position of bid

price in the bidding environment and then finds the possible ad slot

to win. Given that the optimal bid price is not too high or too low,

the shading ratio model is also implicitly trained corresponding to

the bidding environment. Since these tasks share a common goal,

employing multi-task learning is not contradictory for them.

5.5.2 Inference of MEBS: The inference of MEBS shown in

Figure 4 only requires shading ratio estimation. Unlike two-step bid

Table 2: Statistics of Dataset.

#Total #Won #Clicked

64557179576 533812872 9641171

shading methods searching for optimal bid price repeatedly, MEBS

estimates shading ratio and directly gets bid price by multiplying

the shading ratio with the adjusted ad value, ensuring significantly

better inference efficiency.

6 Experiments

6.1 Offline Experiments

6.1.1 Experiment Setup
Dataset: We utilize a bidding dataset sampled from the Alibaba

display ad platform, and it consists of data from multi-slot second-

price auctions in two days. The data on the first day and the next

day serve as the training and test datasets respectively. And the

statistics of the dataset are shown in Table 2. The samples win the

auctions (#Won) or get clicked (#Clicked) are far less than the total

samples (#Total) due to data sparsity. Samples in the dataset are

converted from bid logs in our ad platform, and they include labels

and features. Features contain bid price and other basic features,

such as impression, ad, and contextual features. The labels consist

of whether auctions are won and whether ads are clicked.

Implementation Details: We set the embedding dim of sparse

as 32. MEBS uses DeepFM as a base model, whose deep part is a

three-layer MLPwith 256, 64, and 16 nodes each. For model training,

we employ Adam optimizer [15] and set the learning rate to 1e-2.

We set batch size of win rate model to 80,000, and batch sizes of

pCTR calibration and shading ratio model are 40,000.

Evaluation Criteria: Since we prove that the aim of bid shading

is to maximize the expected surplus in Theorem 4.1, we adopt

surplus in Eq. (9) as our metric for overall performance evaluation.

𝑆 = (𝜇∗
0
𝑉 −𝐶 (𝑏))I(𝑏 ≥ wp)𝑝𝐶𝑇𝑅𝑘 (𝒙, 𝑏) , (9)

where 𝐶 (𝑏) is the bid price that wins the next ad position under

the GSP setting on our platform, I(𝑏 ≥ wp) is an indicator function

of whether the auction is won, and 𝑝𝐶𝑇𝑅𝑘 (𝒙, 𝑏) shown in Eq. (1)

is the pCTR calibrated based on the actual ad positions before and

after bid shading. When the slot-specific factor of 𝑝𝐶𝑇𝑅𝑘 (𝒙, 𝑏) is
calculated based on the average CTR in corresponding ad position
and scene, we get Surplus (P&S). When the slot-specific factor is

only calculated for each ad position, we get Surplus (P).
And PCOC (predicted CTR over the true CTR) for ablation study

examines if calibrated pCTR aligns with actual CTR. The closer the

PCOC is to 1, the better the performance of pCTR calibration.

Baselines:We implement bid shading baselines as introduced

in Section 2.1, including shading ratio regression (SRR) method [9],

two-step bid shading (TSBS) methods [23, 43] and non-parametric

method (NPM) [39]. As for TSBS methods, we denote the study by

Zhou et al. [43] as “TSBS-EDDN” and name the paper by Pan et al.

[23] as “TSBS-WR”. To mitigate the influence of the base model,

we implement these methods with DeepFM employed by MEBS

apart from original base models utilized by these baselines, such as

LR[34], FwFM[22], and FM [24]. For non-censored methods relying

on the optimal bid price label, we substitute the label with the bid

price that wins the bottom ad slot (i.e., the minimumwinning price).

6.1.2 Overall Performance Comparison
The overall experiment results are shown in Table 3. MEBS shows
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Table 3: Overall Offline Experiment Results.

Category Model Surplus(P&S) Surplus(P)

Our Method MEBS 16.020743 11.634698

Non-censored

SRR(DeepFM) 14.467197 10.914265

SRR(FM) 13.858914 9.267927

TSBS-EDDN(DeepFM) 9.339563 6.174544

TSBS-EDDN(FwFM) 9.797970 5.743973

NPM 10.234589 6.637969

Censored

TSBS-WR(DeepFM) 10.339686 6.454219

TSBS-WR(LR) 8.089951 4.865804

TSBS-EDDN(DeepFM) 9.826253 6.131234

TSBS-EDDN(FwFM) 9.288596 5.743973
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Figure 5: Surplus in Top Ad Positions and Main scenes.
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at least a 9.7% lift on Surplus (P&S) and a 6.6% lift on Surplus (P),

demonstrating superior performance compared with the baseline

models, including non-censored methods and censored methods.

As shown in Figure 5, we analysis overall surplus performance in

the top 10 ad positions and the 10 scenes with the highest revenue in

Taobao App, such as Guess What You Like and After Purchase, etc.

Compared with the best baseline SRR(DeepFM) in Table 3, MEBS

performs better in almost every top positions, especially in the first

ad slot. And MEBS also shows superiority in most listed scenes.

We also compare the inference efficiency of MEBS with other

parametric baselines in the same computing environment, and the

results are shown in Figure 6. After saving computing graphs and

reloading from checkpoints, we only count operator execution time,

eliminating I/O andmetric calculation interference.We set the batch

size to 5,000,000 and calculate the average inference time per batch

in seconds. Without the searching process, MEBS is more efficient

than TSBS due to end-to-end learning. MEBS and SRR both only

estimate shading ratio, resulting in zero searching time.

In conclusion, MEBS achieves superior performance while main-

taining excellent efficiency.

6.1.3 Ablation Study
The results of our ablation study are shown in Table 4. After re-

moving embedding sharing, we get the results of MEBS without

multi-task learning, whose surpluses decline 15.5~21.1%. As for

MEBS without end-to-end learning, we substitute its shading ratio

estimation loss with mean squared error applied by the SRR base-

line, and its surpluses degenerate to the level of SRR. To examine the

effect of pCTR calibration, we also make an ablation by removing

Table 4: Ablation Study Results.

Model Surplus(P&S) Surplus(P)

MEBS 16.020743 11.634698
MEBS without Multi-task Learning 13.544584 9.174031

MEBS without End-to-end Learning 14.757131 10.623542

MEBS without pCTR Calibration 14.536990 10.051408

Table 5: Online Experiment Results.

Metric GMV ROI BuyCnt CPC

A/B result +7.01% +7.42% +3.26% -8.37%
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Figure 7: Online Performance of Each Day.
it from MEBS, and we observe drops in surplus. Additionally, after

removing pCTR calibration, the PCOC of MEBS degenerates from

1.034566 to 1.104969, indicating a degradation of pCTR accuracy.

The results demonstrate the effectiveness of pCTR calibration.

6.2 Online Experiments
In online A/B tests, we use grossmerchandise volume (GMV), return

on investment (ROI), buy count (BuyCnt), and cost per click (CPC)

as our metrics. GMV indicates the total gained revenue. ROI is cal-

culated by dividing GMV by the cost showing the cost-effectiveness

of advertising. Buy count is the total number of ads that are brought.

CPC is the average cost for a click, implying the payment level of

bidding. As for CPC, the lower the better.

We experiment on the Alibaba display ad platform for six days.

In A/B tests, we choose 10,000 ad campaigns and spare 25% ad

requests for experiments. These ad campaigns and requests are

equally divided into two groups. One group receives the control

and the other group receives the treatment ofMEBS. The percentage

change results of metrics are shown in Table 5. The lift results of

GMV, ROI, and BuyCnt as well as the decline of CPC prove that

MEBS improves advertising performance.

From the results of each day shown in Figure 7, we demonstrate

that MEBS performs well during the experiment period. The incre-

ment percentages of GMV, ROI, and BuyCnt stay positive each day.

And the change percentage of CPC stabilizes around -8%, indicating

MEBS saves costs for advertisers steadily.

7 Conclusion
We propose the MEBS model, which is the first to adapt the bid

shading method to multi-slot display advertising. We prove the

optimality of our bidding strategy with bid shading. Leveraging

multi-task learning, we mitigate the issue of data sparsity that

hampers pCTR calibration and shading ratio estimation. Following

the objective of bid shading in our proof, we directly maximize the

expected surplus to optimize shading ratio estimation in an end-to-

end paradigm. Through extensive offline and online experiments,

we prove the effectiveness and efficiency of MEBS and show its

significant impact on enhancing bidding performance.
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