
Multitask Ranking System for Immersive Feed and No More
Clicks: A Case Study of Short-Form Video Recommendation

Qingyun Liu
Google DeepMind

Mountain View, California, USA
qyl@google.com

Zhe Zhao
Google DeepMind

Mountain View, California, USA
zhezhao@google.com

Liang Liu
Google Inc

Mountain View, California, USA
liangliu@google.com

Zhen Zhang
Google Inc

Mountain View, California, USA
zgzhen@google.com

Junjie Shan
Google Inc

Mountain View, California, USA
junjieshan@google.com

Yuening Li
Google Inc

Mountain View, California, USA
yueningl@google.com

Shuchao Bi
Google Inc

Mountain View, California, USA
shuchaobi@google.com

Lichan Hong
Google DeepMind

Mountain View, California, USA
lichan@google.com

Ed H. Chi
Google DeepMind

Mountain View, California, USA
edchi@google.com

ABSTRACT
In recent years, social media users spend significant amount of time
on Short-Form Video (SFV) platforms. Its success in creating an
immersive viewership experience is not only from the content, but
also due to its unique UI innovation: instead of providing choices for
users to click, SFV platforms actively recommend content to users to
watch one at a time. In this paper, we highlight unique challenges
rooted from such UI changes for SFV recommendation system
design. Firstly, there is yet much unexplored for sources of system
biases under the new UI, as there are no clicks nor the common
click-based position biases. Additionally, when training multiple
types of user activities, positive labels for activities like sharing and
commenting can be much sparser and more skewed than traditional
click-based recommendation systems, as the latter can filter non-
click impressions when generating “post-click” activities.

To tackle these challenges, we introduce a unified multi-task
ranking framework which puts two novel components all together
into an overall system for SFV recommendation. First, we iden-
tify that there are position biases of SFVs in the recommendation
sequence, namely “watch trail biases”, and introduce biases cor-
rection using trail-related information. Second, to get the most
benefits from multi-task learning, especially co-training tasks with
extremely skewed and sparse labels, we adapt a disentangle reg-
ularization to mitigate task conflicts, introduce loss upweighting
for sparse task co-training and adopt a meta-learning algorithm for
efficient weight selection. We demonstrate the effectiveness and
efficiency of the framework on one of today’s largest SFV platforms.
Our framework has been deployed to the production system for
more than 6 months.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0124-5/23/10.
https://doi.org/10.1145/3583780.3615489

CCS CONCEPTS
• Information systems→Retrievalmodels and ranking;Rec-
ommender systems; • Computing methodologies → Multi-
task learning.

KEYWORDS
Short-form Video; Recommender Systems; Multi-task Learning

ACM Reference Format:
Qingyun Liu, Zhe Zhao, Liang Liu, Zhen Zhang, Junjie Shan, Yuening Li,
Shuchao Bi, Lichan Hong, and Ed H. Chi. 2023. Multitask Ranking System
for Immersive Feed and No More Clicks: A Case Study of Short-Form Video
Recommendation. In Proceedings of the 32nd ACM International Conference
on Information and Knowledge Management (CIKM ’23), October 21–25, 2023,
Birmingham, United Kingdom. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3583780.3615489

1 INTRODUCTION
Recent years have witnessed the evolution of online recommenda-
tion from information filtering to multi-stage deep learning based
retrieval and ranking systems [13, 18, 19, 45, 51]. While many of
the innovations target at challenges from scalability and efficiency
on user generated content [13, 16, 17, 31], we want to spotlight
one recent innovation in the UI and viewership experience called
“immersive feed”. Instead of providing different options for users to
choose from (e.g. by clicking), Short-Form Video (SFV, videos with
less than one minute length) platforms often actively recommend
content to users to watch one at a time [47]. It takes extremely
low cost for users to interact with the item, e.g. loop, swipe, do
engagements such as like, share, comment. With such engaging
experience for users, SFV platforms have risen to be the latest social
media stars, e.g. YouTube Shorts, TikTok, Instagram Reels.

The innovative immersive feed posts unique challenges to the
recommendation system design. The quality for users’ lean-back
experience (i.e. users receive information in a passive way) relies
heavily on the system’s ability to capture user interests and pro-
vide satisfying recommendations. Specifically, recommendation

4709

https://doi.org/10.1145/3583780.3615489
https://doi.org/10.1145/3583780.3615489
https://doi.org/10.1145/3583780.3615489
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583780.3615489&domain=pdf&date_stamp=2023-10-21

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Qingyun Liu, et al.

systems often have biases as models are trained with user logs
generated from the existing systems [18, 47], and such biases are
actually training data biases needed to be account for. It is essential
to understand sources for system biases in SFVs as there are no
click-based position biases [21], a common cause in traditional rec-
ommendation systems. Additionally, when capturing different types
of user behaviors, positive labels for behaviors like commenting and
sharing are more sparse and skewed than traditional click-based
recommendation systems. This is because click-based systems can
filter non-click impressions when generating “post-click” activi-
ties [6, 12, 34]. For example, jointly learning from users’ watching
and commenting signals can be quite challenging, as comments
happen on average less than once per thousand videos watches,
which can introduce severe task conflicts in multitask learning.

In this paper, we focus on the ranking stage of recommendation
systems which sorts a few hundred candidates generated by the
previous retrieval stage. To meet the above mentioned challenges,
we introduce an efficient architecture based on the widely adopted
multi-task learning (MTL) framework [12, 41, 51] that naturally cap-
tures different user behaviors. Specifically, an MTL ranking model
have multiple prediction tasks and each task is to predict one type
of user behaviors, e.g. watches, comments, likes. MTL optimizes
multiple tasks simultaneously. Figure 1 shows our MTL framework
for SFV ranking where user logs are processed as training data.
Input features are consumed by a shared bottom layer, followed
by Multi-gate Mixture-of-Experts (MMoE) [18, 33] module. MMoE
shares multiple expert sub-models across different tasks and trains
a gating network for each task to selectively combine the experts.
Outputs from MMoE are consumed by task-specific parameters
(e.g.MLP) to produce task predictions, which are compared to la-
bels extracted from user behavior signals. We highlight two novel
components in this MTL framework:

Biases correction (red components in Figure 1). We identify
the existence of watch trail biases in SFV systems, and alleviate
them by applying a learnt bias term for each task as a normalizer
or regularizer to the main model.

Task conflicts reduction (blue components). Facing tasks with
extremely skewed and sparse distributions in SFVs, we first adapt a
disentangle-based regularization [20] to MMoE for overall model
generalization. We then overcome degraded sparse task learning
with task importance upweighting. Finally, we efficiently select
weights for sparse tasks based on a meta-learning algorithm.

We summarize our contributions as follows:
• We identify recommendation system design challenges cre-
ated from the UI innovation of SFVs, i.e. an immersive feed
without clicks. By actively recommending one SFV at a time
instead of providing many options, it introduces challenges
like new system biases and more severe task conflicts com-
pared to traditional click-based recommendation systems.

• We conduct analysis to study biases created by the new UI
design, and identify the existence of biases in user watch
trails. We model such watch trail biases as a learnt bias term
to be applied to the main model.

• When developing aMTL framework that jointly learns differ-
ent types of user behaviors, we focus on co-training scenar-
ios with both dense and extremely sparse tasks. Specifically,
we introduce disentangle regularization to mitigate general

Training

 Debias
Shallow
Tower

 Debias
Shallow
Tower ...

Serving

Multi Objectives
Sigmoid ...

ReLU

ReLU

Shared Bottom Layer

Sigmoid

Embeddings for sparse features, e.g. query,
candidate, user, context

Input Features

Weighted Combination

Ranking ScoreUser Logs

User behavior signals and features

Sigmoid

Upweight

Disentangle Loss

 Debias
Shallow
Tower

Logits for Trail Bias

Softmax
Gates

...

Dense Features
Trail Bias

features, e.g.
trail depth

ReLU

ReLU

Softmax
Gates

(Sparse Task) (Sparse Task) (Dense Task)

Upweight

Gating Networks Mixture-of-Experts

MMoE

Logits for Task Logits for Task Logits for Task

Figure 1: Architecture of themulti-task learning framework
for SFV ranking, with novel components on watch trail bi-
ases correction (red), and task conflicts reduction (blue).

task conflicts, apply task upweighting to improve sparse task
performance during co-training, and adopt a meta learning
based strategy for efficient sparse task weight selection.

• We conduct extensive offline and live experiments to show
the effectiveness and efficiency of the framework, on one of
today’s largest SFV recommendation system. Our framework
(as shown in Figure 1) has been deployed to production for
more than 6 months.

2 RELATEDWORK
2.1 Industrial Recommendation Systems
Many industry-scale systems adopt multi-stage recommendations
where a ranking stage follows a candidate retrieval stage, such
as YouTube [12], Google Play [45], Facebook [19], Pinterest [13].
Multitask learning (MTL) has been widely adopted in ranking sys-
tems [12, 18, 41, 51] as it efficiently optimizes different objectives
by training a single model [7], and MMoE is a popular modeling
choice [18, 33, 51] that helps mitigate task conflicts.

With the growing attention on SFV recommendations, despite
some potential ethical concerns [36], SFVs are reported to provide
significant benefits and support in various areas such as socializ-
ing [32], emotional support [32], book reading [37], tourism [29],
and education [49]. Specifically, [28] designs a recommendation
system for relevant SFVs after users clicking like buttons. [5, 6]
adopt Reinforcement Learning techniques to optimize goals such as
user retention or watch-time. [17] develops a real-time reranking
system for server-side recommendation. Here we highlight chal-
lenges introduced by SFV systems’ unique UI design, i.e. providing
users one SFV at a time instead of making them choose from many
options, resulting in no clicks. We target at optimizing users’ overall
experience instead of single metric.

Selection biases often exist in industrial-level systems [18, 47,
51] with the wide adoption of implicit feedbacks as their training
data. Position biases [1, 21, 43] are most commonly discovered
and conventionally click based [21, 34]: items ranked at top are
more likely to be clicked and treated as of good quality in training,
regardless of their actual qualities. For SFVs, [47] identifies video
duration biases and proposes Duration-Deconfounded Quantile-
based (D2Q) watch-time prediction, while we examine whether
position biases still exist without any clicks. Though propensity-
weighted methods are popular to correct for biased distribution [43,

4710

Multitask Ranking System for Immersive Feed and No More Clicks CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

46], for real-world recommendation systems we adapt an efficient
strategy from [51] to fast adjust to data distribution changes.

2.2 Task Conflicts and Multitask Weights
As in SFV modeling tasks may have extremely skewed and sparse
distributions, we study existing work related to task conflicts [40]
and deep learning with class imbalance [22]. To reduce task con-
flicts that often cause degraded performance, one type of solution
is using flexible model architectures, e.g. MMoE [33], attention-
based [30] design, under-parameterized self-auxiliaries [44]. Others
focus on the optimization process, e.g. drop conflict gradient [11],
look ahead to capture task interactions [14]. We adapt a decorrela-
tion regularization technique [20] in a light-weighted way on top
of MMoE to meet efficiency challenges in industrial applications.

For imbalance learning [22], one main remediation is on data-
level to process data distributions and decrease the imbalance
level, e.g. re-sampling [3, 42], transfer learning [26]. Another is
on algorithm-level to modify the learning or decision process and
focus more on the minority class, e.g. cost-sensitive learning that
adjusts the class-specific weight [25, 48], applying new loss func-
tions [27, 39] like Focal Loss [27] to focus more on hard examples.
The novel challenge we face in SFV systems is the extremely imbal-
ance distributions under MTL set-up with large-scale data.

Another related area is multitask weighting as MTL usually com-
bines tasks by a weighted sum of losses. Weights can be adjusted
adaptively based on predefined heuristics like gradient descent,
e.g. Gradnorm [10], Uncertainty Reweighting [24]. Besides, Pareto
Optimization based methods cast MTL as multi-objective optimiza-
tion [38]. Recently, meta learning [15, 50] is applied to task weight-
ing, e.g. [35] optimizes the generalization performance estimated
by the test losses. Differently, we target at extremely sparse task
scenarios, and need algorithms to be efficient for large-scale data,
e.g. learn weights additively without retraining the whole model.

3 SYSTEM OVERVIEW
We follow a similar ranking problem definition andmulti-task learn-
ing (MTL) framework as [12, 18, 51], where a ranking system sorts a
few hundred candidate videos by their utility to users. To estimate
a candidate utility, we apply MTL to model multiple objectives,
or “tasks”, to predict different user behaviors simultaneously, e.g.
watches, comments, likes. Specifically, tasks can be classification
problems, e.g. whether a user comments on a SFV, or regression
problems, e.g. how long a user watches a SFV. Then these predicted
user behaviors will be merged by a manually tuned or learned
combination function to user utility towards the candidate.

We generate training data from user logs as shown in Figure 1.
Models are sequentially trained to consume data from earlier days
to recent days chronologically, while data samples from the same
day are randomly shuffled. Input features can be related to the can-
didate (e.g. video information and statistics), the query (e.g. user’s
watch history), and the context (e.g. devices, user demographics).
Outputs are the predictions on different tasks such as watches,
comments, likes. Those predictions are then combined in weighted
multiplication as the final ranking score for each candidate video
in serving, where such weights can be manually tuned or learnt.

Our system adopts point-wise losses [4] due to efficiency concern
at serving time.

4 MODELING TRAIL BIASES
We identify the existence of watch trail biases and propose a simple
yet effective bias correction method to mitigate the issue.

4.1 Identify Watch Trail Biases
To explore biases introduced by SFV’s innovative UI design, i.e. im-
mersive feed, we focus on position biases, which are most common
for implicit feedback training [21, 47, 51]. While position biases are
conventionally click based [21, 34], there are no clicks in SFVs as
we only present one item at a time to the user sequentially. Instead,
a new concept of “watch trail” is introduced: consecutive video
watches connected by the user’s swiping ups and downs, from the
very first watch (i.e. start of the trail) till the user quits the platform.

To evaluate trail biases, we conduct analysis of user behaviors
on trail positions with randomly promoted SFV recommendations.
Figure 2 shows relative movement of three types of user behaviors
(e.g. looping/swiping) for a certain trail position to the first trail
position. A value close to 1 means user behavior doesn’t change by
trail positions, <1 means users interacting more at the beginning of
the trail, and vice versa. We see that relative metrics keep deviating
from 1 along the trail, which proves the existence of trail biases.

20 40 60 80 100
0

0.5
1

1.5
2

2.5
3

Trail(%)

Re
la
tiv

e
M
ov
em

en
t User Behavior 1 User Behavior 2 User Behavior 3

Figure 2: Relative movement of different user behaviors at
trail position x% to the 1st trail position for randomly pro-
moted SFVs, which keeps deviating from 1 along the trail.

4.2 Modeling Trail Biases
In the context of a real-world recommendation system, the approach
for modeling biases should be efficient for large-scale data and
effective in fast adaptation to changing user data distributions.
Inspired by how [51] models click biases, we model trail biases
directly from training data and apply the bias terms as regularizers
to the main model.

The high level idea is to have the model learn a calibration
factor that offsets biases based on features related to trail biases.
This allows the model to focus on a fair comparison of candidate
qualities. As shown in the red components in Figure 1, given a task,
the bias term is learnt through a shallow tower and then added
to the task logits to serve final predictions. The inputs are trail
bias related features which can be non-serving, i.e., features treated
as missing at serving time. We apply a 10% drop-out for all those
features during training to alleviate training-serving skewness.

5 MITIGATING SFV TASK CONFLICTS
To capture various user behaviors in SFV, we co-train tens of tasks.
Unique challenges includemore severe task conflicts with extremely

4711

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Qingyun Liu, et al.

skewed user behavior signals, and degraded sparse task quality
when co-training with dense tasks. To tackle these challenges, we
first introduce a regularization loss to disentangle the representa-
tions of each expert in our MMoE structure. Then we empirically
find that upweighting the losses of sparse tasks can improve sparse
task performance without hurting (too much) on dense tasks. At
last, we adopt a simple meta learning algorithm to learn the optimal
weight of the sparse tasks.

5.1 Disentangle for Multitask Learning
Compared with training single tasks, multitask learning (MTL) [18,
41, 51] becomes the choice for many industry systems as it improves
learning efficiency by sharing parameters among tasks. MTL is also
expected to improve generalization of tasks with inductive transfer.
However, MTL in SFVs faces additional challenges compared to
traditional click-based recommendations. First, as SFVs are built for
users’ lean-back experience, user behavior signals can be extremely
skewed, which might hurt generalization of some tasks. Figure 3
shows the distribution for an example regression task, whose skew-
ness is intensified by looping (i.e. one SFV is automatically repeated
unless users swipe or engage). Second, with an increasing number
of tasks, the risks of task conflicts rise. It also increases potential
spurious correlation between features and tasks according to a
recent research [20], where a causal feature for task A might be
spurious for task B.

To improve overall MTL generalization, one intuition is to make
the shared latent representation space more structured. We adapt
the Multi-Task Causal Representation Learning (MT-CRL) [20] by
applying a disentangle regularization alone over the shared MMoE
structure. It aims to make latent expert representations more in-
dependent of each other, i.e. more disentangled. Specifically, for
an MMoE structure where 𝑍𝑖 denotes the latent representation for
expert 𝑖 , we first calculate the inter-latent representations’ Pearson
correlation 𝜌 between 𝑖 and other experts, say expert 𝑗 :

𝜌 (𝑍𝑖 , 𝑍 𝑗) =
𝐶𝑜𝑣 (𝑍𝑖 , 𝑍 𝑗)√

𝐶𝑜𝑣 (𝑍𝑖 , 𝑍𝑖) ·𝐶𝑜𝑣 (𝑍 𝑗 , 𝑍 𝑗))

where 𝐶𝑜𝑣 (𝑍𝑖 , 𝑍 𝑗) = [𝑍𝑖 − 𝑍 𝑖]𝑇 [𝑍 𝑗 − 𝑍 𝑗]. We then regularize
such correlation by minimizing its Frobenius norm and treat the
regularization as an additional loss 𝐿𝑟𝑒𝑔 to be added to the final
loss calculation 𝐿:

𝐿 = 𝐿𝑚𝑜𝑑𝑒𝑙 + 𝜆 · 𝐿𝑟𝑒𝑔 = 𝐿𝑚𝑜𝑑𝑒𝑙 + 𝜆 ·
∑
𝑖< 𝑗

| |𝜌 (𝑍𝑖 , 𝑍 𝑗) | |2𝐹

𝐿𝑚𝑜𝑑𝑒𝑙 denotes the groundtruth loss (i.e. loss between predictions
and labels). We tune a multiplier 𝜆 for 𝐿𝑟𝑒𝑔 to decide its importance.

5.2 Upweighting Sparse Task Losses
Another challenge for SFV ranking comes from training dense
and extremely sparse tasks together. Specifically, consider a binary
classification task with labels {0, 1}. e.g. to model how likely a user
likes/dislikes a SFV, given a (user, item) pair, assign 1 if the user
liked/disliked this item and 0 vice versa. Label mean is the count of
1 over the count of all examples. Dense tasks usually have balanced
label mean (∼ 0.5). Sparse tasks have much smaller label mean,
i.e., much fewer positives compared to negatives. Specifically, label
mean for sparse tasks in SFVs usually < 1𝑒−2, and can be extremely

small to the scale of 1𝑒−4 or 1𝑒−5. Compared to traditional click-
based recommendations, negative labels can be filtered by click
impressions and such “post-click” tasks are usually denser. Co-
training them is inherently challenging as gradient updates from
sparse tasks can be swamped by dense tasks on the shared layers [6].

As mentioned in Sec 2.2, there are many imbalance learning (IL)
algorithms and it is costly to explore all on real-world datasets.
To choose candidate algorithms that work for extremely sparse
scenario, we construct a synthetic dataset for empirical study. In-
spired by [23, 33, 42], we generate two tasks in a MTL set-up with
one dense and one sparse task (label mean ranging from 1𝑒−6 to
1𝑒−2). We follow Sec 2.2 to cover popular algorithms from each
IL category: e.g. sampling [3], cost-sensitive learning [25], apply-
ing new losses. We generate 1M examples and multiple runs for
each algorithm, and show the top algorithm for each category in
boosting sparse task performance in Figure 4. We omit results for
dense task as the impact are negligible, and discuss their real world
impact in Sec 6.3.2. We find that: (1) without applying IL strategies
(black triangle), sparse task suffers from co-training and the more
sparse, the more suffering; (2) upweighting sparse task losses (red
dot) generates best performance.

Formally, given an existing task set 𝑇𝑒𝑥𝑖𝑠𝑡 = {𝑡1, 𝑡2, ...} in a MTL
set-up, 𝑇𝑠𝑝𝑎𝑟𝑠𝑒 (𝑇𝑑𝑒𝑛𝑠𝑒) contain all sparse (dense) tasks in 𝑇𝑒𝑥𝑖𝑠𝑡 .
With sparse task upweighting, the groundtruth loss 𝐿𝑚𝑜𝑑𝑒𝑙 is:

𝐿𝑚𝑜𝑑𝑒𝑙 = 𝐿𝑑𝑒𝑛𝑠𝑒 + 𝐿𝑠𝑝𝑎𝑟𝑠𝑒 =
∑

𝑡𝑖 ∈𝑇𝑑𝑒𝑛𝑠𝑒
𝐿𝑖 +

∑
𝑡𝑖 ∈𝑇𝑠𝑝𝑎𝑟𝑠𝑒

𝑤𝑖𝐿𝑖

𝐿𝑖 is loss for task 𝑡𝑖 , and𝑤𝑖 > 1 is 𝑡𝑖 ’s loss weight if 𝑡𝑖 ∈ 𝑇𝑠𝑝𝑎𝑟𝑠𝑒 .

0 2e3 4e3 6e3 8e3 1e4
100

102

104

106

Task Label Value

Fr
eq
ue
nc
y

Figure 3: Extremely skewed
distribution for an example
regression task.

0 2e-5 4e-5 6e-5 8e-5 1e-40.5
0.6
0.7
0.8
0.9
1.0

Label Mean for Sparse Task

A
U
C
on

Sp
ar
se

Ta
sk

Upweight Task Loss
Down-Sample
Focal Loss
w/o IL

Figure 4: Compare imbal-
ance learning (IL) algorithms
on a synthetic dataset.

5.3 Meta Learning for Weight Selection
Finding proper weights for sparse tasks is non-trivial due to trade-
off between sparse tasks vs. dense tasks. Existing research [24, 38]
that tries to learn weights of task losses in a MTL setup might not
be directly applicable to extremely imbalance task co-training. To
avoid grid-search which is not realistic on large-scale recommen-
dations, we adopt a simple meta learning strategy to select proper
weights for new sparse tasks using limited data points [15, 35].

With 𝑇𝑒𝑥𝑖𝑠𝑡 and a new sparse task 𝑡𝑛𝑒𝑤 , we train a meta learner
𝐺 to select loss weight𝑤𝑛𝑒𝑤 for 𝑡𝑛𝑒𝑤 from a given weight set𝑊 .
We define the combined metrics 𝑀 (𝑤) for co-training 𝑇𝑒𝑥𝑖𝑠𝑡 and
𝑡𝑛𝑒𝑤 given a specific𝑤 ∈𝑊 used for upweighting 𝑡𝑛𝑒𝑤 in training:

𝑀 (𝑤) =
∑

𝑡𝑖 ∈{𝑡𝑛𝑒𝑤 }∪𝑇𝑒𝑥𝑖𝑠𝑡
𝛼𝑖 ·𝑀𝑡𝑖 (𝑤)

𝑀𝑡𝑖 (𝑤) is the metric for task 𝑡𝑖 , e.g. AUC [2], given𝑤 as loss weight
for 𝑡𝑛𝑒𝑤 in co-training. Note that using different𝑤 can affect the
metrics significantly for not only 𝑡𝑛𝑒𝑤 but also 𝑇𝑒𝑥𝑖𝑠𝑡 , due to task
conflicts. 𝛼𝑖 is the importance for 𝑡𝑖 to emphasize on different tasks.

4712

Multitask Ranking System for Immersive Feed and No More Clicks CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

For simplicity, we use 1.0 for our experiments. 𝐺 predicts the com-
bined metrics as𝑀 , with feature vector 𝑓 and parameters 𝜃𝐺 :

𝑀 (𝑤) = 𝐺 (𝑓 (𝑡𝑛𝑒𝑤), 𝑓 (𝑇𝑒𝑥𝑖𝑠𝑡),𝑤 ;𝜃𝐺)

𝐺 ’s features include per-task gradients from each layer of the co-
training model, task label means and loss weights, and their crosses.
We use a simple MLP with ReLU layers of size [256, 1] for𝐺 , and 𝜃𝐺
are learnt through back propagation of minimizing losses between
𝑀 and𝑀 . To generate training examples for 𝐺 , which is a pair of
new sparse task and existing tasks, we enumerate each sparse task
from 𝑇𝑒𝑥𝑖𝑠𝑡 with different upweights, and the rest in 𝑇𝑒𝑥𝑖𝑠𝑡 . After
𝐺 is trained, we choose𝑤𝑛𝑒𝑤 that optimizes 𝐺 ’s predictions:

𝑤𝑛𝑒𝑤 = arg max
𝑤∈𝑊

𝐺

For each 𝑡𝑛𝑒𝑤 we repeat 10 runs and select final𝑤𝑛𝑒𝑤 by majority
vote for better robustness.

6 EXPERIMENTS
We describe how we evaluate the ranking framework through both
offline and live experiments on one of today’s largest SFV platforms.

6.1 Experiment Setup and Evaluation Metrics
Our model is built upon a real-world SFV platform with tens of
billions of user interactions on a corpus of millions of items. It trains
tens of tasks simultaneously, which label mean can be as sparse as
1𝑒−4 or 1𝑒−5. We use TFRS1 to build models and Tensor Processing
Units (TPUs) for training. Similar to the set-ups in other industrial
recommendation systems [8, 12, 45], we search for optimal hyper-
parameters (e.g. learning rate, batch size) by live experiments. The
proposed multi-task learning (MTL) framework in Figure 1 has
been deployed to the production system for more than 6 months.

We conducted extensive offline and live experiments to evaluate
the MTL framework, especially for the novel components on trail
biases correction, and task conflicts reduction. For offline experi-
ments, we measure model quality by AUC for classification tasks
and RMSE for regression tasks. For live experiments, we carry out
A/B tests where a portion of real user traffic is diverted to both
control and treatment models for over 2 weeks. To measure user
performance, we focus on two types of live metrics:

• Overall Enjoyment for users on the platform [8, 9].
• Task-specific metrics for certain type of user behaviors,
e.g., number of user likes/dislikes.

For all tables in this paper, we use bold numbers to denote the best
result for a given metric, and * for numbers significant with 95%
Confidence Interval (CI).

6.2 Modeling Trail Biases
To evaluate the impact of modeling trail biases, we compare:

Control: the MTL-based model in Figure 1 without trail biases
correction (i.e. without red components).

Treatment: the Control model adding trail biases correction
technique described in Sec 4.2. The debias tower can be added to
a single task, or multiple tasks with shared embeddings for trail
biases related features.
1Tensorflow Recommenders: https://www.tensorflow.org/recommenders

Table 1 demonstrates live results for Treatment models against
the Control (offline metrics omitted for brevity). As debiasing for
all tasks outperforms other combination of multiple tasks, we only
show results for all tasks. We see that modeling trail biases boosts
model performance even when it is applied to a single task, while
applied to all tasks generates the highest gain.

Applied Task Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 All Tasks
Overall Enjoyment 0.39%* 0.42%* 0.81%* 0.16% 0.84%* 0.30% 1.96%*

Table 1: Live metrics (the higher the better) on applying de-
bias tower to different tasks, vs. the model w/o debiasing.2

6.3 Mitigating SFV Task Conflicts
We evaluate each technique to improve MTL generalization indi-
vidually: disentangle regularization, upweighting sparse tasks in
co-training, and meta-learning for efficient weight selection.

6.3.1 Disentangle for Multi-task Learning. We compare between:
Control: the MTL-based model in Figure 1 without task conflicts

reduction (i.e. without blue components)
Treatment: the Control model only adding the disentangle reg-

ularization on MMoE, as described in Sec 5.1.
Table 2 shows live results for Treatment models against the

Control, with tuning the multiplier 𝜆 for regularization loss. Besides
Overall Enjoyment, we also add Regression TaskMetric (for the task
mentioned in Figure 3) and Classification Task Metric (e.g. number
of user likes/dislikes) for comparison in a finer granularity. We see
disentangle regularization boosts overall performance as well as
task-specific metrics. 𝜆 is not overly sensitive to Overall Enjoyment,
as long as it is kept within a reasonable range like 0.05 ∼ 1.

Loss Multiplier 𝜆 0.001 0.01 0.05 0.5 1.0 10.0
Overall Enjoyment 0.15%* 0.18%* 0.33%* 0.30%* 0.29%* 0.19%*

Regression Task Metric 0.47%* 0.35%* 0.67%* 0.21%* 0.49%* 0.29%*
Classification Task Metric 0.99%* 0.77%* 1.09%* 1.32%* 0.39%* 0.79%*

Table 2: Live metrics (the higher the better) on adding disen-
tangle loss to the MMoE structure, vs. the model w/o disen-
tangle loss.

6.3.2 Upweighting Sparse Task Losses. For both Control and Treat-
ment models below, we adopt the same MMoE structure as the
Treatment models in Table 2, which has disentangled loss added:

Control (SeparateTraining): train sparse tasks separately upon
input features as shown in Figure 5(a). Each sparse task has its own
task tower (with stop gradient to prevent negative transferring to
embedding layers), and only dense tasks share a bottom layer and
the MMoE structure.

Treatment (Co-Training): co-train sparse and dense tasks with
the shared bottom layer and the MMoE structure as shown in
Figure 5(b). Besides the treatment that applies no imbalance learning
(IL) on sparse tasks, we explore promising IL strategies from Sec 5.2,
including (1) Sampling: down-sample/up-sample to each sparse
task separately. We experimented with random sampling, sampling
based on task metrics, different sampling ratios, and achieved best
results from negative down-sampling [12, 31] with random samples
till each task becomes a balanced class. (2)Upweighting: upweight
the loss for each sparse task in 𝐿𝑚𝑜𝑑𝑒𝑙 as described in Sec 5.2. We
2Notations for all tables in this paper: bold numbers are the best results for a metric,
and numbers with * are significant with 95% Confidence Interval in live experiments.

4713

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Qingyun Liu, et al.

Weight Selection 𝑇𝑛𝑒𝑤 label mean 1e-3 𝑇𝑛𝑒𝑤 label mean 1e-4
Strategy AUC(𝑡𝑛𝑒𝑤) 𝐴𝑈𝐶 (T𝑒𝑥𝑖𝑠𝑡) Overall Enjoyment 𝑡𝑛𝑒𝑤 Metric 𝑇𝑒𝑥𝑖𝑠𝑡 Metric AUC(𝑡𝑛𝑒𝑤) 𝐴𝑈𝐶 (T𝑒𝑥𝑖𝑠𝑡) Overall Enjoyment 𝑡𝑛𝑒𝑤 Metric 𝑇𝑒𝑥𝑖𝑠𝑡 Metric

Handpick (100% data) 0.795 0.792 - - - 0.764 0.795 - - -
US 0.772 0.791 -0.16%* -3.80%* -0.49%* 0.744 0.794 -0.16%* -1.60%* -0.49%*
UR 0.790 0.790 -0.50%* 1.93%* -1.49%* 0.754 0.793 -0.50%* -0.10%* -1.49%*

Ours (5% data) 0.772 0.791 -0.16% -3.80% -0.49% 0.744 0.794 -0.16% -1.60% -0.49%
Ours (10% data) 0.806 0.791 -0.08%* 2.87%* -0.20%* 0.787 0.794 -0.23% 3.91% -0.52%
Ours (20% data) 0.795 0.792 0.00%* 0.00%* 0.00%* 0.764 0.795 0.00%* 0.00%* 0.00%*

Table 3: Offline and live metrics (the higher the better) on different weight selection strategies to add sparse task 𝑡𝑛𝑒𝑤 to the
existing co-training set-up with task set 𝑇𝑒𝑥𝑖𝑠𝑡 . 𝐴𝑈𝐶 is the averaged AUC for a task set. Live metrics are compared against
Handpick (see Sec 6.3.3 for details). Handpick and Ours are noted with the amount of user log data used in weight selection.

grid searched a unified upweight value for all sparse tasks due to
limited training budgets, which worked well in practice.

Multi Objectives

Shared Bottom Layer

Dense
Task

MMoE

Shared Bottom Layer

MMoE Task
Tower

Task
Tower

Stop Gradient

…Sparse
Task

Imbalance
Learning

…

Input Features

Sparse
Task

Imbalance
Learning

Dense
Task

Input Features

Multi Objectives

Dense
Task

…Sparse
Task

… Sparse
Task

Dense
Task

(a) Sparse Tasks Separately Trained (b) Sparse Tasks Co-trained

Figure 5: Different architectures for sparse task training in
MTL. (a) trains sparse tasks separately from dense tasks
(Control), with only input features shared. (b) co-trains
sparse tasks with dense tasks (Treatment), with most layers
shared and imbalance learning applied to sparse tasks only.

Table 4 presents live results for Treatment models against the
Control. Besides Overall Enjoyment, we present task-specific met-
rics for sparse tasks, e.g. number of user likes/dislikes, and metrics
for dense tasks, e.g. rate of users completing most of the videos.
We have the following observations: (1) Compared to separately
training sparse tasks, co-training sparse and dense tasks without
applying IL techniques greatly degrades model quality. This is con-
sistent with other observations [6]; (2) Co-training with sparse
task upweighting achieves overall better performance than sepa-
rately training sparse tasks; (3) Increasing upweight value tends to
improve sparse task metrics while hurting dense task metrics. A
good trade-off happens around upweight 50. We also find that by
parameter sharing of co-training, model parameters reduce by 60%.

Imbalance Overall Task 1 Metric Task 2 Metric Task 3 Metric
Learning (IL) Enjoyment (Sparse) (Sparse) (Dense)
No IL Applied -0.44%* -7.14%* -9.92%* 1.31%*
Sampling -0.01% -7.46%* -3.24%* 0.08%*

Upweighting 10 0.05% -2.96%* -1.01%* 0.53%*
Upweighting 20 0.12%* -2.72%* -0.09% 0.38%*
Upweighting 50 0.29%* 0.78%* 3.07%* -0.11%*
Upweighting 100 0.24%* 2.26%* 3.40%* -0.21%*
Upweighting 1000 -0.63%* 6.61%* 6.96%* -1.13%*

Table 4: Live metrics (the higher the better) on applying dif-
ferent IL strategies on the sparse task co-trained set-up (Fig-
ure 5(b)), vs. the sparse task separately trained (Figure 5(a)).

6.3.3 Meta Learning for Weight Selection. Despite considerable
model improvement, there are limitations for the upweighting tech-
nique in Sec 6.3.2. First, it applies a unified weight that cannot be
customized for different sparse tasks. Second, weight selection by
grid searching from live experiments is expensive and takes long to
iterate. To investigate efficient weight selection, we follow Sec 5.3
to formally define the problem as: given a co-train set-up as Fig-
ure 5(b), an existing task set 𝑇𝑒𝑥𝑖𝑠𝑡 , a new sparse task 𝑡𝑛𝑒𝑤 to be

added, select a weight𝑤𝑛𝑒𝑤 ∈ [1, 1000] that optimizes the overall
model performance. We compare the following strategies:

Uniform Scaling (US) [38]: 𝑡𝑛𝑒𝑤 is always assigned a uniform
weight 1.0 as all other tasks.

Uncertainty Reweighting (UR) [24]: a popular approach to
learn multitask weights simultaneously by using homoscedastic
task uncertainty (i.e. task-dependent uncertainty).𝑤𝑛𝑒𝑤 is learnt
instead of chosen from𝑊 .

Handpick (Control): grid search𝑤𝑛𝑒𝑤 by livemetrics, i.e.Over-
all Enjoyment and task-specific metrics.

Meta Learner (Ours): train 𝐺 on 𝑇𝑒𝑥𝑖𝑠𝑡 and choose𝑤𝑛𝑒𝑤 that
optimizes 𝐺 ’s prediction of combined metrics𝑀 (Sec 5.3).

For each of the above mentioned method, we train a separate
model with its selected 𝑤𝑛𝑒𝑤 on 100% user logs for offline/live
experiment comparison. For 𝑤𝑛𝑒𝑤 selection, while no additional
training for US and UR, Handpick needs models trained for each
𝑤 ∈𝑊 on 100% user logs. Though Ours method also needs multiple
models to collect training data for 𝐺 , it requires only a portion of
user logs (as offline metrics are more robust to the usage of user
logs) with several 𝑤 values. We report the usage of user logs in
𝑤𝑛𝑒𝑤 selection for Ours and Handpick for efficiency comparison.

We present results on two sparse tasks with different label means
in Table 3, and omit similar results for other tasks. We compare
AUC for offline metrics, and report live metrics compared against
Handpick, as it is supposed to have the best live performance by def-
inition. Live metrics include Overall Enjoyment, and task-specific
metrics. 𝑡𝑛𝑒𝑤 Metric evaluates 𝑡𝑛𝑒𝑤 and varies for the specific task,
e.g. number of user likes/dislikes. 𝑇𝑒𝑥𝑖𝑠𝑡 Metric evaluates existing
tasks and can be consistent across different 𝑡𝑛𝑒𝑤 for fair compari-
son, e.g. metrics from dense tasks like the rate of users completing
most of the SFVs. We have consistent observations: (1) Ours can
achieve comparable live performance with Handpick; (2) Compared
to Handpick, Ours determines weights more efficiently, e.g. us-
ing 20% data and without enumerating on every𝑤 ∈𝑊 . Without
relying on all the training data nor numerous live experiments for
weight selection, it saves iteration time from days to weeks.

7 CONCLUSION
We focus on unique challenges in SFV recommendation with the
absence of clicks and provide solutions for optimizing user engage-
ments. Specifically, we identified the existence of watch trail biases,
and severe task conflicts when co-training extremely sparse and
skewed tasks. We introduced two novel components to a MMoE
based MTL framework to mitigate trail biases and task conflicts in
a light-weighted yet effective way. We evaluated our framework
on a real-world large dataset and launched to production.

4714

Multitask Ranking System for Immersive Feed and No More Clicks CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

REFERENCES
[1] Aman Agarwal, Ivan Zaitsev, Xuanhui Wang, Cheng Li, Marc Najork, and

Thorsten Joachims. 2019. Estimating Position Bias without Intrusive Interven-
tions. In Proceedings of the Twelfth ACM International Conference on Web Search
and Data Mining. ACM, 474–482.

[2] Andrew P Bradley. 1997. The use of the area under the ROC curve in the
evaluation of machine learning algorithms. Pattern recognition 30, 7 (1997),
1145–1159.

[3] Mateusz Buda, Atsuto Maki, and Maciej A Mazurowski. 2018. A systematic
study of the class imbalance problem in convolutional neural networks. Neural
networks 106 (2018), 249–259.

[4] Christopher Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole
Hamilton, and Gregory N Hullender. 2005. Learning to rank using gradient
descent. In Proceedings of the 22nd International Conference on Machine learning
(ICML-05). 89–96.

[5] Qingpeng Cai, Shuchang Liu, Xueliang Wang, Tianyou Zuo, Wentao Xie, Bin
Yang, Dong Zheng, Peng Jiang, and Kun Gai. 2023. Reinforcing User Retention in
a Billion Scale Short Video Recommender System. arXiv preprint arXiv:2302.01724
(2023).

[6] Qingpeng Cai, Zhenghai Xue, Chi Zhang, Wanqi Xue, Shuchang Liu, Ruohan
Zhan, Xueliang Wang, Tianyou Zuo, Wentao Xie, Dong Zheng, et al. 2023. Two-
Stage Constrained Actor-Critic for Short Video Recommendation. arXiv preprint
arXiv:2302.01680 (2023).

[7] Rich Caruana. 1997. Multitask learning. Machine learning 28, 1 (1997), 41–75.
[8] Bo Chang, Alexandros Karatzoglou, YuyanWang, Can Xu, Ed H Chi, and Minmin

Chen. 2023. Latent User Intent Modeling for Sequential Recommenders. In
Proceedings of the web conference 2023 Industrial Track.

[9] Bo Chang, Can Xu, Matthieu Lê, Jingchen Feng, Ya Le, Sriraj Badam, Ed Chi, and
Minmin Chen. 2022. Recency Dropout for Recurrent Recommender Systems.
arXiv preprint arXiv:2201.11016 (2022).

[10] Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. 2018.
Gradnorm: Gradient normalization for adaptive loss balancing in deep multitask
networks. In International conference on machine learning. PMLR, 794–803.

[11] Zhao Chen, Jiquan Ngiam, Yanping Huang, Thang Luong, Henrik Kretzschmar,
Yuning Chai, and Dragomir Anguelov. 2020. Just pick a sign: Optimizing deep
multitask models with gradient sign dropout. Advances in Neural Information
Processing Systems 33, 2039–2050.

[12] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks
for YouTube Recommendations. In Proceedings of the 10th ACM conference on
recommender systems. ACM, 191–198.

[13] Chantat Eksombatchai, Pranav Jindal, Jerry Zitao Liu, Yuchen Liu, Rahul Sharma,
Charles Sugnet, Mark Ulrich, and Jure Leskovec. 2018. Pixie: A system for
recommending 3+ billion items to 200+ million users in real-time. In Proceedings
of the 27th International Conference on World Wide Web. 1775–1784.

[14] Chris Fifty, Ehsan Amid, Zhe Zhao, Tianhe Yu, Rohan Anil, and Chelsea Finn.
2021. Efficiently identifying task groupings for multi-task learning. Advances in
Neural Information Processing Systems 34, 27503–27516.

[15] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-
learning for fast adaptation of deep networks. arXiv preprint arXiv:1703.03400
(2017).

[16] Weihao Gao, Xiangjun Fan, Chong Wang, Jiankai Sun, Kai Jia, Wenzhi Xiao,
Ruofan Ding, Xingyan Bin, Hui Yang, and Xiaobing Liu. 2021. Deep Retrieval:
Learning A Retrievable Structure for Large-Scale Recommendations. Proceedings
of the 30th ACM International Conference on Information Knowledge Management
(CIKM), 524–533.

[17] Xudong Gong, Qinlin Feng, Yuan Zhang, Jiangling Qin, Weijie Ding, Biao Li, Peng
Jiang, and Kun Gai. 2022. Real-time Short Video Recommendation on Mobile
Devices. In Proceedings of the 31st ACM International Conference on Information
& Knowledge Management. 3103–3112.

[18] Yulong Gu, Zhuoye Ding, ShuaiqiangWang, Lixin Zou, Yiding Liu, and Dawei Yin.
2020. Deep multifaceted transformers for multi-objective ranking in large-scale
e-commerce recommender systems. In Proceedings of the 29th ACM International
Conference on Information & Knowledge Management. 2493–2500.

[19] Udit Gupta, Carole-Jean Wu, Xiaodong Wang, Maxim Naumov, Brandon Reagen,
David Brooks, Bradford Cottel, Kim Hazelwood, Mark Hempstead, Bill Jia, et al.
2020. The architectural implications of facebook’s dnn-based personalized recom-
mendation. In 2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 488–501.

[20] Ziniu Hu, Zhe Zhao, Xinyang Yi, Tiansheng Yao, Lichan Hong, Yizhou Sun, and
Ed H Chi. 2022. Improving Multi-Task Generalization via Regularizing Spurious
Correlation. The Conference on Neural Information Processing Systems (2022).

[21] Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, Filip Radlinski,
and Geri Gay. 2007. Evaluating the accuracy of implicit feedback from clicks and
query reformulations in web search. ACM Transactions on Information Systems
(TOIS) 25, 2 (2007), 7.

[22] Justin M Johnson and Taghi M Khoshgoftaar. 2019. Survey on deep learning with
class imbalance. Journal of Big Data 6, 1 (2019), 1–54.

[23] Zhuoliang Kang, Kristen Grauman, and Fei Sha. 2011. Learning with whom to
share in multi-task feature learning. In ICML.

[24] Alex Kendall, Yarin Gal, and Roberto Cipolla. 2018. Multi-task learning using
uncertainty to weigh losses for scene geometry and semantics. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 7482–7491.

[25] Salman H Khan, Munawar Hayat, Mohammed Bennamoun, Ferdous A Sohel, and
Roberto Togneri. 2017. Cost-sensitive learning of deep feature representations
from imbalanced data. IEEE transactions on neural networks and learning systems
29, 8 (2017), 3573–3587.

[26] Hansang Lee, Minseok Park, and Junmo Kim. 2016. Plankton classification on
imbalanced large scale database via convolutional neural networks with transfer
learning. In 2016 IEEE international conference on image processing (ICIP). IEEE,
3713–3717.

[27] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. 2017.
Focal loss for dense object detection. In Proceedings of the IEEE international
conference on computer vision. 2980–2988.

[28] Zihan Lin, Hui Wang, Jingshu Mao, Wayne Xin Zhao, Cheng Wang, Peng Jiang,
and Ji-Rong Wen. 2022. Feature-aware Diversified Re-ranking with Disentangled
Representations for Relevant Recommendation. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. 3327–3335.

[29] Jing Liu, Yujie Wang, and Liyan Chang. 2023. How do short videos influence
users’ tourism intention? A study of key factors. Frontiers in Psychology 13 (2023),
1036570.

[30] Shikun Liu, Edward Johns, and Andrew J Davison. 2019. End-to-end multi-task
learning with attention. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 1871–1880.

[31] Zhuoran Liu, Leqi Zou, Xuan Zou, CaihuaWang, Biao Zhang, Da Tang, Bolin Zhu,
Yijie Zhu, Peng Wu, Ke Wang, et al. 2022. Monolith: Real Time Recommendation
System With Collisionless Embedding Table. arXiv preprint arXiv:2209.07663
(2022).

[32] Xing Lu and Zhicong Lu. 2019. Fifteen seconds of fame: A qualitative study of
Douyin, a short video sharing mobile application in China. In Social Computing
and Social Media. Design, Human Behavior and Analytics: 11th International Con-
ference, SCSM 2019, Held as Part of the 21st HCI International Conference, HCII
2019, Orlando, FL, USA, July 26-31, 2019, Proceedings, Part I 21. Springer, 233–244.

[33] Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan Hong, and Ed H Chi. 2018.
Modeling task relationships in multi-task learning with multi-gate mixture-of-
experts. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. ACM, 1930–1939.

[34] Xiao Ma, Liqin Zhao, Guan Huang, Zhi Wang, Zelin Hu, Xiaoqiang Zhu, and Kun
Gai. 2018. Entire space multi-task model: An effective approach for estimating
post-click conversion rate. In The 41st International ACM SIGIR Conference on
Research & Development in Information Retrieval. 1137–1140.

[35] Yuren Mao, Zekai Wang, Weiwei Liu, Xuemin Lin, and Pengtao Xie. 2022.
MetaWeighting: Learning to Weight Tasks in Multi-Task Learning. In Findings of
the Association for Computational Linguistics: ACL 2022. 3436–3448.

[36] Kevser Zeynep Meral. 2021. Social media short video-sharing TikTok application
and ethics: data privacy and addiction issues. In Multidisciplinary approaches to
ethics in the digital era. IGI Global, 147–165.

[37] Margaret K Merga. 2021. How can Booktok on TikTok inform readers’ advisory
services for young people? Library & Information Science Research 43, 2 (2021),
101091.

[38] Ozan Sener and Vladlen Koltun. 2018. Multi-task learning as multi-objective
optimization. Advances in neural information processing systems 31 (2018).

[39] Abhinav Shrivastava, Abhinav Gupta, and Ross Girshick. 2016. Training region-
based object detectors with online hard example mining. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 761–769.

[40] Trevor Standley, Amir Zamir, Dawn Chen, Leonidas Guibas, Jitendra Malik, and
Silvio Savarese. 2020. Which tasks should be learned together in multi-task
learning?. In International Conference on Machine Learning. PMLR, 9120–9132.

[41] Hongyan Tang, Junning Liu, Ming Zhao, and Xudong Gong. 2020. Progressive
layered extraction (ple): A novel multi-task learning (mtl) model for personalized
recommendations. In Proceedings of the 14th ACM Conference on Recommender
Systems. 269–278.

[42] HaiYing Wang, Aonan Zhang, and Chong Wang. 2021. Nonuniform Negative
Sampling and Log Odds Correction with Rare Events Data. Advances in Neural
Information Processing Systems 34 (2021), 19847–19859.

[43] Xuanhui Wang, Michael Bendersky, Donald Metzler, and Marc Najork. 2016.
Learning to rank with selection bias in personal search. In Proceedings of the 39th
International ACM SIGIR conference on Research and Development in Information
Retrieval. ACM, 115–124.

[44] Yuyan Wang, Zhe Zhao, Bo Dai, Christopher Fifty, Dong Lin, Lichan Hong, Li
Wei, and Ed H Chi. 2022. Can Small Heads Help? Understanding and Improving
Multi-Task Generalization. In Proceedings of the ACMWeb Conference. 3009–3019.

[45] Ji Yang, Xinyang Yi, Derek Zhiyuan Cheng, Lichan Hong, Yang Li, Simon Xiaom-
ing Wang, Taibai Xu, and Ed H Chi. 2020. Mixed negative sampling for learning
two-tower neural networks in recommendations. In Companion Proceedings of
the Web Conference 2020. 441–447.

4715

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Qingyun Liu, et al.

[46] Xinyang Yi, Ji Yang, Lichan Hong, Derek Zhiyuan Cheng, Lukasz Heldt, Aditee
Kumthekar, Zhe Zhao, Li Wei, and Ed Chi. 2019. Sampling-bias-corrected neural
modeling for large corpus item recommendations. In Proceedings of the 13th ACM
Conference on Recommender Systems. 269–277.

[47] Ruohan Zhan, Changhua Pei, Qiang Su, Jianfeng Wen, Xueliang Wang, Guanyu
Mu, Dong Zheng, Peng Jiang, and Kun Gai. 2022. Deconfounding Duration Bias
in Watch-time Prediction for Video Recommendation. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 4472–4481.

[48] Chong Zhang, Kay Chen Tan, and Ruoxu Ren. 2016. Training cost-sensitive deep
belief networks on imbalance data problems. In 2016 international joint conference
on neural networks (IJCNN). IEEE, 4362–4367.

[49] Tongxi Zhang. 2020. A Brief Study on Short Video Platform and Education. In
2nd International Conference on Literature, Art and Human Development (ICLAHD
2020). Atlantis Press, 543–547.

[50] Yin Zhang, Derek Zhiyuan Cheng, Tiansheng Yao, Xinyang Yi, Lichan Hong,
and Ed H Chi. 2021. A model of two tales: Dual transfer learning framework for
improved long-tail item recommendation. In Proceedings of the web conference
2021. 2220–2231.

[51] Zhe Zhao, Lichan Hong, Li Wei, Jilin Chen, Aniruddh Nath, Shawn Andrews,
Aditee Kumthekar, Maheswaran Sathiamoorthy, Xinyang Yi, and Ed Chi. 2019.
Recommending what video to watch next: a multitask ranking system. In Pro-
ceedings of the 13th ACM Conference on Recommender Systems. 43–51.

4716

	Abstract
	1 Introduction
	2 Related Work
	2.1 Industrial Recommendation Systems
	2.2 Task Conflicts and Multitask Weights

	3 System Overview
	4 Modeling Trail Biases
	4.1 Identify Watch Trail Biases
	4.2 Modeling Trail Biases

	5 Mitigating SFV Task Conflicts
	5.1 Disentangle for Multitask Learning
	5.2 Upweighting Sparse Task Losses
	5.3 Meta Learning for Weight Selection

	6 Experiments
	6.1 Experiment Setup and Evaluation Metrics
	6.2 Modeling Trail Biases
	6.3 Mitigating SFV Task Conflicts

	7 Conclusion
	References

