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ABSTRACT
Online recommender systems (RS) aim to match user needs with
the vast amount of resources available on various platforms. A key
challenge is to model user preferences accurately under the condi-
tion of data sparsity. To address this challenge, some methods have
leveraged external user behavior data from multiple platforms to
enrich user representation. However, all of these methods require a
consistent user ID across platforms and ignore the information from
similar users. In this study, we propose RUEL, a novel retrieval-
based sequential recommender that can effectively incorporate
external anonymous user behavior data from Edge browser logs to
enhance recommendation. We first collect and preprocess a large
volume of Edge browser logs over a one-year period and link them
to target entities that correspond to candidate items in recommen-
dation datasets. We then design a contrastive learning framework
with a momentum encoder and a memory bank to retrieve the most
relevant and diverse browsing sequences from the full browsing
log based on the semantic similarity between user representations.
After retrieval, we apply an item-level attentive selector to filter out
noisy items and generate refined sequence embeddings for the final
predictor. RUEL is the first method that connects user browsing data
with typical recommendation datasets and can be generalized to var-
ious recommendation scenarios and datasets. We conduct extensive
experiments on four real datasets for sequential recommendation
tasks and demonstrate that RUEL significantly outperforms state-of-
the-art baselines. We also conduct ablation studies and qualitative
analysis to validate the effectiveness of each component of RUEL
and provide additional insights into our method.
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1 INTRODUCTION
Recommender systems (RS) play a vital role in various online appli-
cations by matching user needs with a large number of candidates
(called items). A key challenge for RS is to accurately characterize
and understand users’ interests and preferences, which are often
sparse and noisy in user-item interactions. To enhance the rec-
ommendation performance, recent studies have leveraged various
types of side information to enrich the representation of users
and items, such as spatial-temporal information [22], user/item
attributes [52], knowledge graph [41, 43] and cross-domain behav-
ior [36, 45, 49].

Web browsing behavior data can reveal user interests and pref-
erences that are useful for recommender systems. For example,
many online users search for information they need using web
browsers such as Chrome and Edge. The browsing data and search
queries collected by these browsers can cover a large and diverse
user population. However, most existing methods for leveraging
browsing data in recommender systems only focus on the users
who are also in the recommendation datasets [36, 45, 49]. This
limits the applicability and effectiveness of these methods for two
reasons. First, they require a unified user identifier across multiple
domains, which is not always available or feasible. Second, they
ignore the potential benefits of using the browsing data of other
anonymous users who may have similar interests to the target user.
Motivated by the recent advances in open-domain question an-
swering using dense retrieval [30, 33] and some knowledge-based
recommendation methods [41, 43], we aim to bridge the gap be-
tween the Edge browsing log and entity-related recommendation
tasks such as movie, book and music recommendations. The overall
procedure is illustrated in Figure 1. However, the browsing log is
very noisy and sparse, and many webpages may not be relevant
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Figure 1: Illustration of the overall procedure on movie rec-
ommendation. Webpages browsed by users are first linked
to entities by entity linking technology. Then these entities
are mapped to items based on item name, publish years and
etc. Finally, a well-trained retriever will search for useful
browsing sequence and feed them into recommender.

to the candidate items. The key challenge is how to select and rep-
resent useful browsing data in the presence of noise. To address
this challenge, we propose a novel retrieval-augmented sequential
recommender based on Edge browsing log, named RUEL, which
stands for Retrieval-Augmented User Representation with Edge
Browser Logs for Sequential Recommendation. First, we apply an
augmented contrastive learning framework to the encoder that
takes the current user behavior sequence as input. We generate two
augmented views from each user behavior sequence and feed them
into a transformer encoder. The objective of contrastive learning is
to maximize the agreement between the two views from the same
sequence. This has two advantages: (1) it improves the embedding
space and reduces anisotropy [29], and (2) it enhances the model
robustness to noise by using data augmentation techniques [25, 47].
Moreover, we construct a momentum encoder and a memory bank
for browsing sequences. The momentum encoder encodes brows-
ing sequences and stores their embeddings in the memory bank.
All embeddings in the memory bank are used as negative samples
in contrastive learning. The encoder is trained to distinguish the
augmented original user behavior sequence from a large number
of browsing sequences. Finally, we convert all browsing sequences
into a retrieval index using the retriever for fast retrieval. At infer-
ence time, we retrieve top k browsing sequences from the index for
each user, and assign them different weights by an item-level atten-
tive selector. The predictor aggregates multiple weighted sequence
embeddings by attention mechanism, and predicts the target item.
In summary, our main contributions are as follows.

• We propose a novel approach to mine useful patterns from
anonymous browsing data to improve recommender systems.
We bridge the gap between anonymous webpage browsing
data and various recommendation tasks.
• We use a momentum contrastive learning framework on user
behavior sequences and anonymous browsing sequences to
train a powerful retriever, and design an attentive selector to
generate fine-grained weights for each retrieved sequence.

Table 1: Interaction information statistics for browsing
datasets. We present the total browsing webpage numbers of
each dataset after preprocessing of three stages.

Dataset Raw Stage 1 Stage 2 Stage 3

ML-1m 32b 871m 537m 22m
ML-20m 32b 871m 537m 95m
Amazon-Book 32b 108m 75m 27m
Last FM 32b 978m 538m 14m

• We conduct extensive experiments on four real-world datasets
to demonstrate the effectiveness and robustness of our pro-
posed approach.

2 RELATEDWORK
Our work is related to the following research directions.

Sequential Recommendation. By modeling high-order depen-
dency between between each items, sequential recommenders aims
to recommend appropriate items to users. Previous [3, 12, 35] ef-
forts utilize MCs to identify first-order transition relationships.
Subsequently, with the rapid growth of deep learning techniques,
numerous works [13–16, 21, 31] has been developed to apply deep
models to SR. GRU4Rec [14] first introduces RNN to the SR task,
taking into account practical features of the task and a number of
modifications to standard RNNs, such as a ranking loss function.
Caser [38] uses convolutional filters to learn sequential patterns as
local features of the image. In addition, influenced by the success
of the attention mechanism and Transformers in other domains
[2, 8, 24, 32, 39, 42, 48], SASRec [17] has achieved significant perfor-
mance improvements by first utilizing self-attention to represent
the interplay of past interactions. Then, BERT4Rec [37] models
user behavior sequences using deep bidirectional self-attention by
adopting the Cloze objective to SR. ReDA[1] generates relevant
and diverse augmentation by the related information from similar
users.

Contrastive Learning. Self-supervised learning (SSL) has attracted
widespread attention in past several years, [4, 9, 11, 20, 26, 27].
MoCo [11] design a momentum mechanism to enhance memory
bank mechanism and SimCLR [4] proposes a simple contrastive
learning framework without memory bank and any specialized ar-
chitectures. SimSiam [5] is a conclusive work on doing contrastive
learning with convolutional neural networks. S3-Rec [52] is built
on self-attention architecture, and proposes to use attribute in-
formation to produce self-supervision signals and augment data
representations. SGL [46] generates multiple views of a subgraph,
and maximizes the agreement between different views of the same
node in two subgraphs CLS4Rec [47], DuoRec [29], MMInfoRec [28],
CoSeRec [25] and ContraRec [40] proposes to utilize contrastive
learning to empower sequential recommendation.

3 PREPROCESSING
We preprocess the browsing data in three stages: entity linking,
session segmentation, and item alignment. In the first stage, we use
Microsoft Satori to link webpages to entities based on their title and
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main text. We build a billion-level webpage-entity dictionary by
retrieving and ranking candidate entities for each webpage using
BM25 and a roberta-based ranking model. The best entity with a
ranking score model above 0.9 is selected. With the webpage-entity
dictionary, we filter raw browsing data by only keeping webpages
that are linked to Movie/Book/Artist entities. In the second stage,
we split the browsing log of each user into sequences with lengths
greater than 4 using a 4-hour time interval. Then we use side infor-
mation in the dataset to match these entities to candidate items in
three datasets [50]. For Movie-lens dataset, we compare the release
year and movie name. For Amazon-book dataset, we use the author
name, and book name. For the Last FM dataset, we use the artist’s
name. We choose the top-1 candidate after verification for each
item. Table 1 shows the statistics of the browsing data after each
stage.

4 TASK FORMULATION
We consider a sequential recommendation task with a set of users
U = {𝑢1, · · · , 𝑢 |U | } and a set of items V = {𝑣1, · · · , 𝑣 |V | }. The
user-item interaction matrix 𝑌 = {𝑦𝑢𝑣 |𝑢 ∈ U, 𝑣 ∈ V} captures
the implicit feedback of users, where 𝑦𝑢𝑣 = 1 indicates that user 𝑢
has interacted with item 𝑣 , and 𝑦𝑢𝑣 = 0 otherwise. The interaction
can be any type of behavior such as clicking, watching, browsing,
etc. For each user 𝑢, we can also obtain the interaction sequence
𝑠𝑢 = (𝑣1, ..., 𝑣 𝑗 , ..., 𝑣𝑙𝑢 ), where 𝑠𝑢 ∈ C, 𝑣 𝑗 is the item that 𝑢 has
interacted with at time step 𝑗 , and 𝑙𝑢 is the length of the interaction
history for user 𝑢.

Moreover, we assume that we have access to a large amount of
webpage browsing data D from Edge browser, which consists of
numerous webpage sequences 𝑠𝑟

𝑖
, where 𝑖 denotes the 𝑖-th browsing

session of anonymous users from D. Based on these definitions,
we formulate the retrieval-augmented recommendation problem
as follows. Given the interaction sequence 𝑠𝑢 = (𝑣1, ..., 𝑣𝑡 , ..., 𝑣𝑙𝑢 ) of
user 𝑢, and the webpage browsing data D from Edge browser, our
goal is to predict the next item 𝑣𝑡 that user 𝑢 will interact with.

5 THE RUEL MODEL
In the section, we present the proposed RUEL: Retrieval-Augmented
User Representation with Edge Browser Logs for Sequential Recommen-
dation. Figure 2 illustrates our model framework, which consists of
three main components: 1) Contrastive learning with multiple data
augmentation strategies; 2) Momentum encoder and memory bank.
They help the encoder learn to discriminate positive sample from
enormous browsing negative samples; and 3) prediction module,
which consists of an attentive selector on item-level and a predic-
tor combines retrieved information and current item sequence to
predict the next item.

5.1 Transformer-based Recommender
Following previous work [17, 29, 37], we also choose transformer
encoder [39] as modeling tool 𝑓 (·) of input sequence 𝑠𝑢 , which
has been widely applied to numerous CV and NLP tasks. For a
browsing sequence 𝑠𝑖 , we use 𝒉𝑢 to denote its representation gen-
erated by transformer encoder. Furthermore, we use 𝒉𝑢,𝑗 to denote
embedding of 𝑗-th item in 𝑢-th user in C, and use 𝒉𝑟

𝑖, 𝑗
to denote

embedding of 𝑗-th item in 𝑖-th browsing session in D.

Encoder 𝑓(∙)

𝑠𝑢 𝑠1
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Figure 2: The overall architecture of the RUEL model. 𝑓 (·)
is trained to maximize agreement between positive pairs,
and discriminate positive pairs from enormous negative em-
beddings generated by momentum encoder 𝑓𝑘 (·). Blue part
depicts browsing sequences are sent into 𝑓𝑘 (·), and converted
into negative embeddings in memory bank. After first stage
training, all browsing sequences are encoded into embed-
dings to construct full retrieval index.

5.2 Contrastive Learning for Sequential
Modeling

Wefirst introduce the data augmentationmethods used in this paper.
Then, we explain the technical aspects of momentum contrastive
learning on browsing sequences.

5.2.1 Sequential Augmentation. Given current items sequence 𝑠𝑢 ,
we directly introduce some typical sequence-based augmentations [25].
We randomly select an operator from Mask, Crop, Reorder in each
augmentation.
• Mask(M). The item masking approach [6, 47, 52] randomly
replaces each token with special token [Mask] by a probabil-
ity 𝛾 ∈ (0, 1). This augmentation strategy can be formulated
as: 𝑠𝑀

𝑢
′ = [𝑣1, 𝑣[Mask], · · · , 𝑣𝑙𝑢 ].

• Reorder(R). Different item orders may reflect the same user
interests[6, 47]. We can shuffle a continuous sub-sequence
[𝑣𝑟+1, · · · , 𝑣𝑟+𝑙𝑟 ] to [𝑣

′
𝑟 , 𝑣

′
𝑟+1, · · · , 𝑣

′

𝑟+𝑙𝑟 ], where 𝑙𝑟 = 𝜇 ∗ 𝑘 is
the sub-sequence length and 𝜇 ∈ (0, 1).
• Crop(C). Given a current behavior sequence 𝑠𝑢 , we randomly
select a sub-sequence 𝑠𝐶

𝑢
′ = [𝑣𝑐+1, · · · , 𝑣𝑐+𝑙𝑐 ] with length

𝑙𝑐 = 𝜂 ∗ 𝑙𝑢 , where 𝜂 ∈ (0, 1) is a length hyper-parameter.

5.2.2 Momentum Contrastive Learning. Moreover, we adopt mo-
mentum contrastive learning, which uses a large memory bankwith
many negative examples, and maintains a consistent encoder for
generating negative embeddings with a momentum-based update
mechanism. The memory bank is updated in a FIFO (First-In-First-
Out) fashion. At each iteration, the representation 𝒉𝑟

𝑖
is generated

by a key encoder 𝑓𝑘 (·) that has the same structure as 𝑓 (·). Then 𝒉𝑟
𝑖

is added to𝑴 , and the oldest representation in the memory bank is
removed. Notably, our memory bank 𝑴 stores the embeddings of
browsing sequences as negative examples to enhance the discrimi-
native power of the query encoder. Using a queue-based memory
bank allows us to increase the size of negative samples in each loss
computation, but it prevents us from updating the key encoder 𝑓𝑘 (·)
via back-propagation (the gradient is disconnected for all samples
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in the queue). Following [11], the parameters of the key encoder
𝜃𝑘 are updated by following those of the query encoder 𝜃𝑞 with
a momentum coefficient𝑚, resulting in stable representations for
similar sequences. Formally, we have:

𝜃𝑘 ←𝑚𝜃𝑘 + (1 −𝑚)𝜃𝑞, (1)

where𝑚 ∈ [0, 1) is a hyper-parameter. Back-propagation only mod-
ifies 𝜃𝑞 . The momentum update in Equation 1 makes 𝜃𝑘 evolve more
smoothly than 𝜃𝑞 . We simply set𝑚 to 0.999 following [11]. Based
on the memory bank, we optimize the sequence representation
with a momentum contrastive loss function as:

L𝑠𝑢 ,𝑠𝑢′ = − log
exp(𝒉𝑢 · 𝒉𝑢′ /𝜏)∑2𝑁

𝑖=1 1[𝑢≠𝑖 ] exp(𝒉𝑢 · 𝒉𝑖/𝜏) +
∑𝐾
𝑘
′
=1

exp(𝒉𝑢 · 𝒉𝑟
𝑘
′ /𝜏)

,

(2)
where 𝜏 is a temperature hyper-parameter, 𝐾 is the size of mem-
ory bank. This loss is equivalent to minimizing the negative log
likelihood of a (2𝑁 + 𝐾)-way softmax classifier that tries to distin-
guish j-th sequence from other sequences in the batch and many
browsing sequences in the memory bank.

L𝐶𝑇𝑆 =
∑︁
𝑢∈D
L𝑠𝑢 ,𝑠𝑢′ (3)

In above equation, 𝑠𝑢 denotes each behavior sequence in dataset
C, and we use 𝑠𝑢′ to denote augmented view of it.

5.3 Retrieval-augmented Sequential Modeling
In this section, we present our retrieval-augmented sequential rec-
ommendation model, which uses the observed user behavior ses-
sion data 𝑠𝑢 to retrieve top-k browsing sequences {𝑠𝑟1, 𝑠

𝑟
2, ..., 𝑠

𝑟
𝑘
} and

use them as additional context for sequential recommendation. As
shown on the right of Figure 2, after top-k sessions are retrieved
from full index, we perform fine-grained attentive selection on item
level. For each retrieved behavior sequence, its final representation
is computed by a weighted sum of its item representations. Then, a
predictor takes both weighted retrieved sequence embedding and
current user sequence embedding as input, and predicts target item.

5.3.1 Session-level Retrieval. We use transformer encoders 𝑓𝑘 (·) to
build index of retriever. For each user in browsing data, their records
are split into different sessions by time interval as stated above. The
encoder 𝑓𝑘 (·) takes these sessions as input, and produces dense
embedding 𝒉𝑟

𝑖
for each browsing sequence 𝑠𝑟

𝑖
in D. Then a rele-

vance score 𝑓 (𝑠𝑢 , 𝑠𝑟𝑖 ) = 𝒉𝑇𝑢𝒉
𝑟
𝑖
is calculated between dense session

vector 𝒉𝑢 of user u and browsing sequence vector 𝒉𝑟
𝑖
by inner prod-

uct. Thus, we can employ Maximum Inner Product Search (MIPS)
algorithms to find the approximate top k sessions{𝑠𝑟1, 𝑠

𝑟
2, ..., 𝑠

𝑟
𝑘
}, us-

ing running time and storage space that scale sub-linearly with
the number of browsing sequences. We use faiss1 to implement
above-mentioned retrival procedures.

5.3.2 Attentive Selection. After top 𝑘 sessions are retrieved from
numerous browsing data, we aim to reduce the impact of noisy
items on prediction. Therefore we apply an item-level attention

1https://github.com/facebookresearch/faiss

mechanism to compute attention weight for each item in retrieved
sessions.

𝛼
𝑗
𝑢 =

exp((𝑾1𝒉𝑢 +𝑾2𝒉𝑟𝑖, 𝑗 ))∑𝑙𝑖
𝑗
exp(𝑾1𝒉𝑢 +𝑾2𝒉𝑟𝑖, 𝑗 )

(4)

𝒐𝑖 =
∑︁

𝑗∈{1· · ·𝑙𝑖 }
𝛼
𝑗
𝑢𝒉
𝑟
𝑖, 𝑗 (5)

where 𝑙𝑖 denotes the length of 𝑠𝑟
𝑖
, 𝒉𝑟
𝑖, 𝑗

denotes the output hidden
state of 𝑗-th item in 𝑖-th retrieved browsing sequence 𝑠𝑟

𝑖
, and 𝒐𝑖

denotes the weighted embedding of sequence 𝑠𝑟
𝑖
.𝑾1 and𝑾2 are

learnable parameters. 𝛼 𝑗𝑢 represents the attention weight between
𝑠𝑢 and the 𝑗-th items in 𝑖-th retrieved browsing behavior sequence
𝑠𝑟
𝑖
. After obtaining 𝒐𝑖 for each retrieved sequence, we directly use

the retrieve score 𝑓 (𝑠𝑢 , 𝑠𝑟𝑖 ) as weight of 𝒐𝑖 to compute the final
context vector 𝒐.

𝒐 =
∑︁

𝑖∈{1...𝑘 }
𝑓 (𝑠𝑢 , 𝑠𝑟𝑖 )𝒐𝑖 (6)

where 𝑓 (𝑠𝑢 , 𝑠𝑖 ) is the dot product relevance score generated by re-
triever. In summary, we select top-k retrieved browsing sequences
from both sequence level and item level, and obtain a comprehen-
sive context vector 𝒐 to enhance the predictor.

5.3.3 Prediction and Loss Function. Given the aggregated context
vector 𝒐, we use a two-layer multilayer perceptron (MLP) to capture
the high-level interaction between 𝒐 and 𝒉𝑢 .

𝑝 (𝑣𝑡 |𝑠𝑢 ,D) =
exp(𝒘𝑇𝑡 MLP(𝒉𝑢 ∥ 𝒐))∑𝑁
𝑗=1 exp(𝒘𝑇𝑗 MLP(𝒉𝑢 ∥ 𝒐))

(7)

where𝒘𝑇
𝑗
is a learnable embedding for item 𝑗 , and D denotes the

full set of browsing data. The final loss function is cross entropy,
which can be written as:

L𝐶𝐹 =
∑︁
𝑠𝑢 ∈C

− log 𝑝 (𝑣𝑡 |𝑠𝑢 ,D), (8)

where C denotes the set of all user behavior sequences. 𝑣𝑡 denotes
the target item of behavior sequence 𝑠𝑢 .

5.3.4 Optimization and Training Strategy. We adopt a two-stage
training strategy. In the first stage, we train the transformer encoder
𝑓 (·) by minimizing the contrastive loss in Equation 2, and update
the momentum encoder 𝑓𝑘 (·) by Equation 1. Then we construct a
fixed browsing sequence index using 𝑓𝑘 (·). In the second stage, we
jointly optimize the contrastive loss and the cross entropy loss.

L = L𝐶𝑇𝑆 + L𝐶𝐹 , (9)
Unlike some previous work [10], which rely on a reward to

guide the gradient of the retriever and constantly refresh the index
with the updated retriever, we use a fixed browsing data index,
which allows us to directly optimize the transformer encoder 𝑓 (·)
in the item prediction task by gradient backpropagation. By shar-
ing the encoder in both momentum contrastive learning and item
prediction task, the transformer encoder 𝑓 (·) will also benefit from
the contrastive learning, because a good embedding space is also
conducive to item prediction [25, 29].
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Table 2: Interaction information statistics for datasets. We
use Inter to denote interaction.

Dataset #User #Item #Inter #InterBrowsing

ML-1m 6,040 3,416 1,000,000 22,704,450
ML-20m 138,493 26,744 20,000,000 95,148,210
Amazon-Book 281,428 13,044 3,500,000 27,439,633
Last FM 1,090 3,646 52,538 14,247,218

6 EXPERIMENTS
In this section, we first set up the experiments, and then present
the performance comparison and analysis.

6.1 Experimental Setup

Edge Browser LogMining.Wepresent the details of entity linking
and entity-item mapping in Section 4. Then, we can transform
the user browsing log into a sequence of entities or items. Due
to the limitation of resources, we only use user browsing log of
Edge browser in 2021. We collect more than 32 billion records
and convert them to browsing sequences for four datasets. Table 2
shows detailed information.

Evaluation Metrics. In this paper, we use Normalized Discounted
Cumulative Gain (NDCG) and Hit Ratio (HR) as metrics [7, 19, 23].
We set k=5 and k=10 in experiments.

Task Setting. For data preprocessing, we follow the common prac-
tice in previous work. To ensure the quality of the dataset, we
only keep users with at least five interactions following previous
practice. To evaluate the sequential recommendation models, we
adopt the leave-one-out evaluation (i.e., next item recommenda-
tion) task. For each user, we hold out the last item of the behavior
sequence as the test data and use the item just before the last as
the validation set. The remaining items are used for training. We
implemented our baselines based on the RecBole [51] framework.
All baseline settings and training strategies refer to the original
authors’ implementation and further tune the parameters based on
it. For fairness, the embedding size, layers number and heads num-
ber of all transformer-based models are fixed to the widely used
128, 2 and 2. The size of memory bank K is set as 8096 directly. We
use the Adam optimizer [18] to optimize all models. Moreover, all
models are trained for 500 epochs, and the early stopping strategy
is applied, i.e., premature stopping if ndcg@10 on the validation set
does not increase for 20 successive epochs.

Methods toCompare.We consider the followingmethods for com-
parison: GRU4Rec [16], Caser [47], BERT4Rec [37], CL4Rec [47],
CoSeRec [25]. Shallow models like BPR-MF [34], NCF [44] and
FPMC [44] are omitted due to length limitation. Among these base-
lines, GRU4Rec, Caser and BERT4Rec belongs to typical deep learn-
ing based sequential recommender. CL4Rec and CoSeRec are state-
of-the-art contrastive sequential recommender. The parameters in
all the models have been optimized using the validation set.

Table 3: Performance comparison using four metrics on four
datasets. All the results are better with larger values. With
paired 𝑡-test, the improvement of the RUEL over the best
baselines is significant at the level of 0.05.

Datasets Metrics GRU4Rec SASRec Caser BERT4Rec CL4Rec CoSeRec RUEL %Imp.

LF

H@5 0.0301 0.0416 0.0385 0.0401 0.0447 0.0484 0.0526* 8.68%
H@10 0.0509 0.0615 0.0582 0.0598 0.0751 0.0778 0.0831* 6.81%
N@5 0.0218 0.0256 0.0249 0.022 0.0326 0.0332 0.0366* 10.24%
N@10 0.0258 0.0319 0.0285 0.0294 0.0442 0.0450 0.0492* 9.33%

AB

H@5 0.0614 0.0975 0.0795 0.0741 0.1086 0.1305 0.1422* 8.96%
H@10 0.1452 0.1806 0.1504 0.1331 0.1951 0.2115 0.2220* 4.96%
N@5 0.0341 0.0614 0.0351 0.0404 0.0693 0.0780 0.0862* 10.51%
N@10 0.066 0.0851 0.0634 0.0681 0.0995 0.1013 0.1106* 9.18%

ML-1M

H@5 0.0763 0.1087 0.0816 0.0733 0.1147 0.1275 0.1403* 10.04%
H@10 0.1658 0.1904 0.1593 0.1323 0.1975 0.2043 0.2231* 9.20%
N@5 0.0385 0.0638 0.0372 0.0432 0.0662 0.0715 0.0804* 12.44%
N@10 0.0671 0.0910 0.0624 0.0619 0.0928 0.0978 0.1046* 6.95%

ML-20M

H@5 0.0825 0.1135 0.0915 0.0801 0.1285 0.1396 0.1487* 6.51%
H@10 0.1865 0.2015 0.1641 0.1401 0.2041 0.2132 0.2301* 7.93%
N@5 0.0425 0.0648 0.0415 0.0501 0.0715 0.0785 0.0866* 10.31%
N@10 0.0731 0.0992 0.0698 0.0665 0.1051 0.1141 0.1215* 6.48%

6.2 Performance Comparison
Table 3 shows the results of the performance comparison between
our RUEL method and the baseline methods on four datasets. We
can observe that RUEL consistently achieves the best performance
on all datasets. Among the baselines, CL4Rec and CoSeRec are
the most competitive ones, especially CoSeRec, which leverages
multiple data augmentation strategies to enhance its contrastive
learning. We can also see that the transformer-based recommenders
have an advantage over other deep learning architectures. Moreover,
we notice that our method has a larger gain on ML-1M than on
ML-20M, indicating that our method is more effective on relatively
small datasets.

Table 4: Ablation analysis on the Amazon-Book and ML-1m
datasets.

Arch.

Amazon-Book ML-1M

Reco Retrieval Reco Retrieval

H@10 N@10 H@10 H@20 H@10 N@10 H@10 H@20

RUEL¬𝑅𝐴 0.2164 0.1026 0.2348 0.3104 0.2044 0.0985 0.1852 0.2494
RUEL¬𝑀𝐶 0.2181 0.1095 0.6591 0.8519 0.2203 0.1015 0.6354 0.8354
RUEL¬𝐷𝐴 0.2194 0.1101 0.7214 0.8984 0.2206 0.1032 0.6774 0.8694
RUEL¬𝐴𝑆 0.2189 0.1084 - - 0.2204 0.1018 - -
RUEL 0.2220 0.1106 0.7249 0.9025 0.2231 0.1046 0.6841 0.8751

6.3 Ablation Analysis
We performed ablation experiments on sequential recommendation
and retrieval tasks to examine the contribution of each component
of RUEL. The results are presented in Table 4. For the retrieval task,
we utilized our encoder to generate embeddings for a user behavior
sequence and its augmented counterpart. We then evaluated the
encoder’s ability to retrieve the augmented sequence from numer-
ous browsing sequences using HR@10 and HR@20 metrics. In this
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table, RUEL denotes our full model with all components. RUEL¬𝑅𝐴
eliminates the retriever and the attentive selector components, and
directly infers the target item by employing the output embedding
of the transformer encoder 𝑓 (·). RUEL¬𝐷𝐴 discards all data aug-
mentation strategies. RUEL¬𝑀𝐶 removes the memory bank and
the momentum mechanism, and only retains batch negatives in
contrastive learning. RUEL¬𝐴𝑆 removes the attentive selector, and
simply adopts average pooling to obtain the sequence embedding.
The results in Table 4 indicate that RUEL¬𝑅𝐴 slightly outperforms
CoSeRec, which implies that our momentum contrast and memory
bank are also advantageous for direct recommendation. RUEL¬𝐷𝐴
has a very similar performance to RUEL. It implies that our method
does not depend on manually designed sequence augmentation
strategies. Discarding the momentum mechanism and the memory
bank also deteriorates the model performance. The model needs
to be trained to discriminate the original sequence from numer-
ous browsing sequences. The attentive selector plays a vital role
in enhancing the model robustness and effectiveness by applying
token-level attention. Eliminating this component will substantially
impair the model performance.

Table 5: A/B Test on Bing Movie.

Online Metric Region #1 Region #2 Region #3

WHR +2.9% +2.7% +3.4%
CTR +1.2% +1.3% +1.8%
Short-Term DAU +0.07% +0.11% +0.14%

6.4 Online A/B Test
We have deployed our model on Bing desktop search by replacing
the existed transformer-based sequential ranker with RUEL. To
get a stable conclusion, we observe the online experiment for two
weeks. Three common metrics in desktop search systems are used
to measure the online performance: WHR (Weighted Hover Rate),
CTR (Click Through Rate), Short-Term DAU. As the result shown
in Table 5, the present method RUEL gets overall improvements on
multiple regions in our online A/B test experiment.

6.5 Parameter Analysis
We experiment with RUEL using different 𝑘 values in [3, 5, 10,
20, 30] and report the results in Figure 3(a). The metrics peak at
𝑘=10 on the Amazon-Book dataset and decline afterwards. The
attentive selector performs poorly when 𝑘 is small due to less noise
in the top-ranked items. The performance gap between RUEL and
RUEL¬𝐴𝑆 grows as 𝑘 increases because of more irrelevant items in
the retrieved sequences. We also vary the embedding size in [32,
64, 96, 128] and show the results in Figure 3(b). RUEL consistently
outperforms RUEL¬𝑅𝐴 on the Amazon-Book dataset, especially
when the embedding size is 128. RUEL benefits more from higher
embedding size than RUEL¬𝑅𝐴 .

6.6 Qualitative Analysis
We show how RUEL works in Figure 4. The red frames are retrieved
browsing sequences with popular movies in science fiction and
romance genres. The first sequence has The Shawshank Redemption,
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Figure 3: Effect of retrieval number and embedding size.

Star War: Episode 1, and The Blade Runner. The second sequence
has Roman Holiday, Titanic and Saving Private Ryan. The retriever
finds the 10 most similar browsing sequences using the current
sequence embedding. The attentive selector assigns a weight to
each item in the retrieved sequences. Items that are irrelevant to
the user interests, such as The Shawshank Redemption in sequence
1 and Saving Private Ryan in sequence 2, get lower weights. The
item-level and sentence-level weights are combined to produce a
context vector. Then the enhanced recommender uses the context
embedding and the current sequence embedding to predict the
next item. The Blade Runner and Romance Holiday are the top two
candidates because they match the user interests better.
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Figure 4: Prediction procedure for a sample user in Bing
Movie dataset. We use the red frame to denote useful se-
quences in browsing sequences. For item and sequence-level
attention weights, we use the color darkness to indicate at-
tention weights: darker is larger. For predicting results, we
use the size to represent predicting probability.

7 CONCLUSIONS
This paper proposes a retrieval-augmented sequential recommen-
dation model RUEL to fully utilize Edge browsing information. For
an item sequence in the recommendation dataset, it’s encoded into
a vector, and the vector is used to retrieve similar user behavior
sequences from cross-domain behavior. Then retrieved sequences
are filtered by an item attentive selector, and refined sequences are
used to enhance next item prediction. In future, we will further
explore more heterogeneous cross-domain user behavior data to
enhance user modeling.
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