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ABSTRACT
With surging interest in quantum computing, space applications,
and ultra-fast superconducting processors, the need for compat-
ible cryogenic memory systems is skyrocketing. Among several
concurrent candidates for cryogenic data storage solutions, quan-
tum anomalous Hall effect (QAHE) devices have garnered immense
interest due to having topologically protected variation-tolerant
quantum states. QAHE cells, in addition to being a promising non-
volatile storage technology, have several unique properties that
make them ideal for in-memory computing operations. In this
work, we propose a novel in-memory computing mechanism by
harnessing the intrinsic voltage addition property of a QAHE mem-
ory array, implemented using twisted bi-layer graphene (tBLG)
on hexagonal boron nitride (hBN). In addition, we extensively ex-
plore and implement ternary arithmetic operations utilizing the
series-connected Hall voltages across devices for the first time. We
propose two schemes for in-memory ternary computing namely
IMFE and IMSE, and demonstrate balanced scalar multiplication,
dot product operations, and ternary half adder with QAHE memory
array.
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1 INTRODUCTION
Cryogenic computing has recently gathered a surging interest with
the advent of quantum computing and ultra-fast superconducting
processors [1] [2]. Both the quantum computing systems and super-
conducting computers utilizing Josephson junctions require ultra
low operating temperatures [3] [4]. One major obstacle in realizing
cryogenic computing is the lack of suitable cryogenic memories
[3]. Recent studies show the functionality and retention properties
of DRAM modules at lower temperatures and demonstrate that
DRAMs remains functional at temperatures as low as 77𝐾 [5] and
high-speed serial link can be used to connect DRAM to 4𝐾 do-
main with an additional cost [6]. Considering the future technology
requirements, a cryogenic in-memory computing is desirable.

Recently S. Alam et.al[7] demonstrates a cryogenic memory
device leveraging quantum anomalous Hall effect (QAHE) phenom-
enon. Among several concurrent candidates for cryogenic data
storage solutions, QAHE devices have garnered immense interest
due to having topologically protected variation-tolerant quantum
states. The device uses hall resistance for storage and it exhibits hys-
teritic switching with change in electric current. The ferromagnetic
materials used, interact strongly with applied current, thus enabling
electrical control over the polarization and thus on hall resistance.
These memories are considered ultra-low power, non-volatile and
capable of dense scalable cross point array organizations [7]. In
addition to being a promising non-volatile storage device, QAHE
cells possess some unique characteristics that makes them suit-
able for in-memory computing. Basic bit-wise binary in-memory
operations with QAHE memory array has been demonstrated in
[8].

In this work, we enable compute capability into QAHE cryogenic
memory array by exploiting the series addition of Hall voltages
across each cell for implementing higher level arithmetic opera-
tions. We explore ternary in-memory computing using QAHE cells
and exploit its benefits. Since QAHE cell, inherently is a binary
storage device, we propose to use multi-bit encoding scheme to
represent the ternary operands. We choose encoding such that,
unique logic operation produces distinct cumulative voltage at the
row output eliminating inference conflicts. Our work demonstrates
fundamental ternary operations including balanced scalar multipli-
cation, dot product computation , and ternary addition along with
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the possibility for parallelization in a QAHE array. To the best of
our knowledge this is the first work showcasing ternary in-memory
computing with QAHE devices. Ternary Deep Neural Networks us-
ing balanced ternary representation for weights(-1,0,-1) are hugely
popular due to their faster and less resource intensive computation
with minimal trade-off in accuracy [9][10] and benefits directly
from the proposed work.

Our contributions in this paper are summarized as follows:
• We propose to utilize the series Hall voltage addition of
QAHE cells for complex arithmetic operations.

• We extensively explore and demonstrate ternary in-memory
computing functions inside the QAHE memory array for the
first time.

• We provide two new data encoding schemes namely In Mem-
ory Full Encode Computing (IMFE) and In Memory Select
Encode Computing (IMSE) for executing ternary computa-
tions.

• We propose and verify ternary balanced scalar multiplication,
parallel dot product computations and half adder operations
using QAHE array in-memory computing in simulation.

The rest of the paper is organized as follows. Section 2 describes
basic QAHE device as memory operation. Section 3 elaborates on
the proposed ternary in-memory computing techniques. Section 4
discusses functional verification. Section 5 summarizes the overall
work.

2 DEVICE AND MEMORY DESIGN

Figure 1: (a)Schematic of single QAHE cell showing bias cur-
rent 𝐼𝑏𝑖𝑎𝑠 and the resulting Hall voltage 𝑉𝑥𝑦 (b)Structure of
QAHE device (c)Ideal Hall resistance switching curve with
critical current 𝐼𝑐 and corresponding logic states (logic0 and
logic1) [7].

Anomalous Hall Effect (AHE) is the phenomenon, in which Hall-
voltage is generated across the terminals of a device even in absence
of magnetic field. The quantized version of this effect where the hall
conductivity is quantized (𝑒2/ℎ), is called Quantum AHE (QAHE).
This effect rises from the topology and strong intrinsic interactions
in the material [11] and is oblivious to low sample quality[12].A
memory design using twisted bi-layer graphene (tBLG) [7] shows
strong interactions with an applied current [13] [11] and enables the
switching the hall resistance using bias currents. The schematics of
QAHE memory device, structure of the memory device using tBLG
and hexagonal Boron Nitride (hBN),and bias current dependencies
of hall resistance discussed in [7] are shown in Fig.1(a) (b) and (c)
respectively .

A cross point memory array architecture proposed in [7] is
shown in Fig.2. The QAHE cells are connected via word line (WL)
row wise and bit line (BL) in columnwise. Cell enablement via BL

Figure 2: QAHE cross-point memory array organization with
horizontal word lines (𝑊𝐿𝑛) and vertical bit lines (𝐵𝐿𝑛). 𝑉𝑜𝑢𝑡
(𝑚𝑉 ) appears at the amplifier output and sense amplifier
deciphers the logic state[7].

Table 1: Operating voltage and current of QAHE memory
array [7]

Operation 𝑉𝑏𝑖𝑎𝑠 (mV) Bias Current, 𝐼𝑏𝑖𝑎𝑠
Accessed Half-Accessed Un-Accessed

Write’1’ -500 -6.11nA -11.4pA 512fA
Write’0’ 460 0.922nA 4.38pA 512fA
Read -480 -2.02nA -9.73pA 512fA

has a selector device which limits the current flow protecting the
data corruption in adjacent cells [14] during write operations.

Table 1 shows read and write bias voltages (𝑉𝑏𝑖𝑎𝑠 ) across WL
and BL of a cell and corresponding bias current values for the
read/write operations. A bias current greater than or equal in mag-
nitude to −6.11𝑛𝐴 is passed through the device for writing and is
considered 𝑙𝑜𝑔𝑖𝑐1 in this work. This current results in switching
the resistance of QAHE cell to −ℎ/𝑒2(Hall resistance). Similarly
a current of 923𝑝𝐴 results in a resistance value of +ℎ/𝑒2 and is
considered 𝑙𝑜𝑔𝑖𝑐0 in this work. The write operation is one cell at
a time for the shown memory array. We obtain a hall voltage of
approximate +50`𝑉 across the device corresponding to 𝑙𝑜𝑔𝑖𝑐1 and
−50`𝑉 corresponding to 𝑙𝑜𝑔𝑖𝑐0with the application of read current,
−2.02𝑛𝐴. The fully accessed cell will have 𝐼𝑏𝑖𝑎𝑠 x 𝑅ℎ𝑒 developed
across the terminals and un-accessed cells will have 0 V[7]. The
array output is connected to a voltage amplifier of gain 1000x to
raise the voltage from micro-volts to milli-volts range and a voltage
comparator (sense amplifier) decodes the voltage output to logic
levels. S. Alam et.al [7] demonstrate memory operation capability
of the QAHE memory by reading and writing to a single cell at
a time.In this work, we show how to enable complex in-memory
computation involving multiple cells inside QAHE memory array
and is described in the next section.

3 QAHE ARRAY IN-MEMORY COMPUTE
We propose to exploit the series addition of Hall voltages in a QAHE
cross-pointmemory row for efficient in-memory computing. Higher
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Table 2: Weight and Input encoding scheme for IMFE and
IMSE methods

Trit IMFE IMSE
Weight Input Output Weight Input Output

-1 0111 0111 10 0011 0011 10
0 0000 0000 00 1010 0110 00
+1 1111 1111 01 1100 1100 01

radix compute like ternary compute has more computation density
advantages over binary counterpart and can be efficiently imple-
mented with our proposed method. In this work, we show ternary
computation and each trit (basic ternary digit) is encoded with mul-
tiple QAHE bits (each QAHE cell represents a bit). We utilise the
inherent Hall voltage output addition of selected cells in the same
row to get a cumulative voltage output and use an inference scheme
to interpret the cumulative voltage output as arithmetic result. We
propose two different methods for in-memory computing viz; IMFE
(In Memory Full Encode) and IMSE (In Memory Select Encode).
We demonstrate balanced ternary scalar multiplication, 2𝐷 and 3𝐷
dot product computation, and ternary half adder using in-memory
compute. The subsequent sections describe each operation in detail.

3.1 Balanced Ternary scalar multiplication
Balanced ternary arithmetic is gaining traction due to its ability to
provide acceptable accuracy with higher efficiency[9] especially
in Deep Neural Networks. Balanced ternary representation and
arithmetic further simplifies the complexity of design and provides
acceptable accuracy for computations in Ternary DNNs [9] where
weight is limited to one of the three discreet values viz, −1, 0, +1. In
Ternary DNNs, scalar multiplication is vital due to large number
of MAC operations involved in its convolution layers. We achieve
scalar multiplication using two new schemes viz; In-Memory Full
Encode (IMFE) Computing and In-Memory Select Encode (IMSE)
Computing, each with its own benefits. Subsequent sections explain
the process of scalar multiplication in detail.

3.1.1 In-Memory Full Encode (IMFE) Computing. In this method,
we encode both input operands using multiple cells in the QAHE
memory row. ie, QAHE memory array serves as a placeholder
for balanced ternary encoded weights and inputs. Hall voltage
addition across the row of QAHEmemory array is used for inferring
the scalar multiplication result. Encoding scheme is employed to
ensure different cumulative voltage at the array output for distinct
computation outcomes with distinct input combinations, which
is explained later. Table 2 captures the input, weight, and output
encoding for the corresponding trit values. We use 4 bits (QAHE
cells) for weight and input encoding and 2 bits for output encoding.

The weight and input values are stored in consecutive cells as
illustrated in Fig. 3a for IMFE based scalar multiplication. Bit lines
of all the columns where the weights and inputs are stored are
provided with bias voltages so that read current is generated to
corresponding cells resulting in cell read operation. Shaded cells
indicates that the cells are enabled (or accessed) for read, partaking
in scalar multiplication. Hall voltage corresponding to the stored bit
is generated across each enabled cell and the cumulative sum of the

Figure 3: Memory array organization structure for various
ternary in-memory compute operations. Bit lines of shaded
cells are enabled for read operation. Enabled bit lines are rep-
resented as 1 and others as 0. (a) IMFE based scalar multiplica-
tion. −1 stored as 0111 and 1 stored as 1111, gives 𝑉𝑜𝑢𝑡=300𝑚𝑉
(after 1000x amplification). (b) IMSE based scalar multiplica-
tion. −1 stored in cells as 0011 and 0 encoded using bitlines as
0110, giving 𝑉𝑜𝑢𝑡 = 0𝑉 . (c) 2D dot-product computation using
IMSE. (−1.0)+(0.1) shown giving 𝑉𝑜𝑢𝑡 = 0𝑉 . (d) Ternary half
adder operation using IMFE. 0 stored as 00 and 2 stored as 11.
All bit lines enabled for addition giving 𝑉𝑜𝑢𝑡 = 0𝑚𝑉 . (e) 3D
dot-product computation using IMSE, (−1.0)+(0.1)+(−1. − 1)
shown giving 𝑉𝑜𝑢𝑡 = 100𝑚𝑉 .

voltages is obtained at the end of the row. This accumulated voltage
is amplified using a high gain voltage amplifier to obtain𝑉𝑜𝑢𝑡 before
passing to decode circuit shown in Fig. 4 (a) for interpretation.
The sense amplifiers (SA) and an XOR gate in decode circuit gives
the encoded output bits 𝑍1 and 𝑍0. For example, Fig3(a) shows
operation [−1.1]. The encoded value for −1 is 0111 and for +1 is
1111. When all the bit lines are biased for read, the cumulative
output generated is +300`𝑉 which is amplified at the array output
to +300𝑚𝑉 and provided to the decode circuitry shown in Fig 4 (a).
Table.3 demonstrates weight and input, array output voltage (𝑉𝑜𝑢𝑡 ),
encoded output bits (𝑍1𝑍0) and corresponding trit value for IMFE
scheme.

The decode circuit consists of sense amplifiers (SA) which oper-
ates based on the reference voltages provided and XOR gate. The
output of first SA will be logic high only when the 𝑉𝑜𝑢𝑡 value is
greater than 50𝑚𝑉 . Second and third SA and the XOR gate together
forms the logic to obtain the MSB of the output bit, 𝑍1. The output
𝑍1 XOR-ed with the output of first SA gives the LSB of the output
Z0. 300𝑚𝑉 is greater than 250𝑚𝑉 but less than 350𝑚𝑉 making Z1
𝑙𝑜𝑔𝑖𝑐1. Output of first SA is 𝑙𝑜𝑔𝑖𝑐1 as 300𝑚𝑉 is greater than 50𝑚𝑉 ,
making Z0 as 𝑙𝑜𝑔𝑖𝑐0 (1 XOR 1). Thus 𝑍1𝑍0 = 10 and corresponds
to −1 as per the output encoding scheme. This method enables
parallel scalar multiplications in each row making it amenable for
neural networks.

3.1.2 In-Memory Select Encode (IMSE) Computing. This method
utilizes both memory elements and bit lines to represent encoded
weights and inputs respectively. Weight is encoded using four
QAHEmemory cells and input is encoded using four bit lines. Based
on bit line values(voltages), particular columns get enabled/disabled
and hence the name select encode.
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Figure 4: Decode circuits for various in-memory compute
operations. Sense amplifier (SA) gives 𝑙𝑜𝑔𝑖𝑐1 at output when
voltage at upper terminal is greater than the voltage at lower
terminal. (a) IMFE based scalar multiplication. SA produces
𝑙𝑜𝑔𝑖𝑐1 or 𝑙𝑜𝑔𝑖𝑐0 depending on the 𝑉𝑜𝑢𝑡 and the reference volt-
age values, and XOR gates decodes them to corresponding
Z1 and Z0 output bits. (b) IMSE based scalar multiplication.
(c) 2D dot-product computation decoder. Z3 acts as select in-
put for the MUX (𝑍3 = 1 selects lower reference voltage and
𝑧3 = 0 selects upper reference voltage). (d) 3D dot-product
computation. (e) Ternary half adder decoder

.
Table 3: Scalar Multiplication using IMFE and IMSE methods

Weight Input 𝑉𝑜𝑢𝑡 (mV) Output Z1Z0 Output Trit value
IMFE IMSE

-1 -1 200 100 01 1
-1 0 -100 0 00 0
-1 1 300 -100 10 -1
0 -1 -100 0 00 0
0 0 -400 0 00 0
0 1 0 0 00 0
1 -1 300 -100 10 -1
1 0 0 0 00 0
1 1 400 100 01 1

Table.3 shows the encoding scheme for weight, input and output
for the IMSE computing scheme. Thememory array structure where

operands are stored and the output decode circuit is shown in Fig.3b
and Fig.4b respectively. The bit lines encoded as 1 (shaded cells in
Fig.3b) implies that corresponding column or cell is selected for read
operation and the bit line 0 (un-shaded cell) remains unselected.
The unselected cells do not contribute in the voltage addition and
thus in the operation being carried out. The cumulative voltage is
measured at the end of the array and passed to the decode logic
after amplification for interpretation. First SA (Fig.4b) gives 𝑙𝑜𝑔𝑖𝑐1
as output when the voltage 𝑉𝑜𝑢𝑡 is greater than +50𝑚𝑉 which is
the LSB of the output 𝑍0 and second SA gives 𝑙𝑜𝑔𝑖𝑐1 at output only
when 𝑉𝑜𝑢𝑡 is less than −50𝑚𝑉 , the MSB (𝑍1). For example, for the
operation −1.0, the weight −1 (0011) is stored in the QAHEmemory
and the input 0 (0110) is provided using the bit line biasing. The
output voltage at the end of the array is 0`𝑉 and after amplification,
0𝑚𝑉 is provided to the decode circuit. Both sense amplifiers in the
decode circuit generates zero output making 𝑍1𝑍0 to be 00 which
corresponds to the 0 trit value. The weight, input, 𝑉𝑜𝑢𝑡 , Output
𝑍1𝑍0, and corresponding trit value are shown in Table 3. This
method is suitable for parallel operations when input is the same
and weights are different like in dense neural networks. Compared
to IMFE, IMSE takes less storage, as in IMSE one operand is coded
using bit lines instead of using storage cells. We now extend the
method to compute dot product.

3.2 Dot Product computation
Dot product is one of the significant operations in scientific world
and forms the core of Multiply and Accumulate (MAC) operation
in DNN applications. A dot product computation consists of scalar
multiplications and additions, 2𝐷 dot product is defined as 𝑎1.𝑏1 +
𝑎2.𝑏2 and 3𝐷 dot product as 𝑎1.𝑏1 + 𝑎2.𝑏2 + 𝑎3.𝑏3 where ’𝑎1, 𝑎2,
and 𝑎3’ and ’𝑏1, 𝑏2, and 𝑏3’ are components of input vectors ’𝑎’
and ’𝑏’ respectively. Thus a 2𝐷 dot product involves two scalar
multiplication operations and one addition and 3𝐷 dot product
computation involves 3 scalar multiplications and two additions
to obtain the final result. Sections 3.2.1 explains 2𝐷 dot product
and 3.2.2, the 3𝐷 dot product computation using the IMSE compute
scheme proposed in section 3.1.2. Both IMFE and IMSE can be used
for dot-product computation, but we choose IMSE in this work due
to the compact array size of the method.

Table 4: 2D Dot product output interpretation,
Input Combina-
tions (𝑎1.𝑏1 +
𝑎2.𝑏2)

𝑉𝑜𝑢𝑡 (mV) 𝑍3𝑍2𝑍1𝑍0 Output
Value

-1.1 + 1.-1 -200 1110 -2
-1.1 + 1.0 -100 1000 -1
1.1 + 1.-1 0 0101 0
-1.-1 + -1.0 100 0110 1
1.1 + 1.1 200 0000 2

3.2.1 Dot product of 2D vectors: a1.b1+a2.b2. In this work, we em-
ploy IMSE compute scheme to achieve dot product computation.
The encoding scheme for weights and inputs remain the same as
explained in section 3.1.2. The output encoding uses 4 bits and
can have five different values depending on the operands. The
five distinct output values (−2,−1, 0, 1, 2) and their bit encoding is
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Table 5: 3D Dot Product output interpretation

Input Com-
binations
(𝑎1𝑏1+𝑎2𝑏2+𝑎3𝑏3)

𝑉𝑜𝑢𝑡 (mV) 𝑍3𝑍2𝑍1𝑍0 Output
Value

-1.1 + 1.-1 + 1.-1 -300 1000 -3
-1.1 + 1.0 + 1.-1 -200 1010 -2
-1.1 + -1.-1 + 1.-1 -100 1100 -1
-1.-1 + 1.-1 + 1.0 0 0001 0
-1.0 + 1.1 + 1.0 100 0010 1
-1.-1 + 1.0 + 1.1 200 0100 2
-1.-1 + 1.1 + 1.1 300 0000 3

captured in Table 4. Table 4 also describes different input vector
combinations, distinct output voltage values (𝑉𝑜𝑢𝑡 ), corresponding
to each output values and its bit combination (𝑍3𝑍2𝑍1𝑍0). The dec-
imal value of the output is also included in Table 4. Memory array
compute element configuration for 2𝐷 dot product computation
is shown in Fig.3c. The output decode circuit which interprets the
𝑉𝑜𝑢𝑡 value into respective output bit is captured in Fig.4c. The final
output is encoded using 4 bits, 𝑍3, 𝑍2, 𝑍1 and 𝑍0 as per Table 4.
𝑍3, MSB of the output can be inferred as sign bit (as it is one only
for negative numbers) which can be used by subsequent stages for
comparison and provide easy way for minimization and truncation
functions in neural network applications if needed. To explain the
dot product operation, we consider two vectors [−1, 1] and [0, 0].
The dot product of these vectors is calculated as −1.0 + 1.0 and the
result is 0. The weights −1 (0011) and 0 (1010) are stored in the
memory array and bit line values 0110 and 1100 represents 0 and
1 respectively(refer Table 2). The cumulative addition provides a
𝑉𝑜𝑢𝑡 of 0𝑚𝑉 after amplification(refer Fig.3(c)). 𝑉𝑜𝑢𝑡 value of 0𝑚𝑉
drives the output bits 𝑍3, and 𝑍1 to 𝑙𝑜𝑔𝑖𝑐0 and drives 𝑍2, and 𝑍0
to 𝑙𝑜𝑔𝑖𝑐1 making the output 0101, corresponding to 𝑙𝑜𝑔𝑖𝑐0 as per
output encoding shown in Table 4.

3.2.2 Dot product of 3D vectors: a1.b1+a2.b2+a3.b3. The method
mentioned in 3.2.1 is extended further to compute the dot product
of two 3-dimensional vectors A and B (𝐴.𝐵 = 𝑎1.𝑏1 +𝑎2.𝑏2 +𝑎3.𝑏3).
The memory array compute element employing IMSE method for
3𝐷 dot product computation is captured in Fig.3d and the output
voltage decoding circuit to interpret the 𝑉𝑜𝑢𝑡 is shown in Fig.4d.
Table 5 summarizes the input combinations, output voltages, corre-
sponding output bits values for 𝑍3, 𝑍2, 𝑍1 and 𝑍0 and their equiv-
alent value in decimal for better comprehension. Repeated occur-
rences of input combinations are not explicitly shown in the table
for brevity. The output voltage decode circuit is slightly different
and consist of slightly more number of components compared to
the 2𝐷 dot product decode circuit. This is because the number of
distinct output states are more (seven instead of five) and needs
to be decoded accordingly. Consider the dot product of vectors
with components [−1, 0,−1] and [0, 1,−1]. The expected answer is
(−1.0) + (0.1) + (−1. − 1), equals to 1. The 𝑉𝑜𝑢𝑡 value obtained at
the end of the array after amplification is 100𝑚𝑉 for which output
bits 𝑍3, 𝑍2, 𝑍0 are driven to 𝑙𝑜𝑔𝑖𝑐0 and 𝑍1 is driven to 𝑙𝑜𝑔𝑖𝑐1, mak-
ing the output 0010 which corresponds to value 1, the expected
output. The MSB of the output 𝑍3 serves as sign bit in 3𝐷 dot prod-
uct computation as well and can be used by subsequent stages as
needed.

3.3 Ternary half adder
In this section we show the in-memory ternary half adder. Table
6 shows ternary half adder operations with the input combina-
tions, the output voltage𝑉𝑜𝑢𝑡 generated, the carry and sum outputs
(𝑍1𝑍0) along with the corresponding trit value for ternary half
addition. The trit values 0, 1 and 2 are encoded as 00, 01 and 11
respectively. Ternary addition proposed in this work utilizes IMFE
compute method explained in section 3.1.1. Here, for ternary half
addition, the number of QAHE cells used to encode each input is
only half (two) compared to scalar multiplication (four) (Section
3.1.1) (For adder, output voltage values are incremental with increas-
ing input digit value. This leads to reduced the complexity of decode
and hence requires only reduced number of bits for encoding).

Table 6: Output interpretation for ternary Half adder
Inputs Encoding 𝑉𝑜𝑢𝑡 (mV) Carry Sum (Z1Z0) Output Trit
0 0 00 00 -200 0 00 00
0 1 00 01 -100 0 01 01
0 2 00 11 0 0 10 02
1 0 01 00 -100 0 01 01
1 1 01 01 0 0 10 02
1 2 01 11 +100 1 00 10
2 0 11 00 0 0 10 02
2 1 11 01 +100 1 00 10
2 2 11 11 +200 1 01 11

An example of ternary half adder operation with inputs 0 and
1 is shown Fig 3d. The addition of inputs 0 and 1 is carried out by
storing the input operands in the memory array compute element
and then enabling all the cells for read. The resulting 𝑉𝑜𝑢𝑡 after
amplification provided to the decode circuit to obtain carry bit and
sum bits. Ternary half adder output decode circuit for the amplified
𝑉𝑜𝑢𝑡 from memory array is shown in Fig.4e. The 𝑉𝑜𝑢𝑡 value of
−100𝑚𝑉 produces carry 0 and sum 01 corresponding to output
trit vaule 01 as per the Table 6. In this work we consider only two
input operands and thus referred to as ternary half addition. Full
addition (including carry input) can be achieved by replicating the
half-adder units but is not covered in this work.

4 RESULTS AND DISCUSSIONS
We verify the design functionality by simulation using HSPICE and
use phenomenological Verilog-A model[7] for the QAHE devices.
This model was calibrated with the experiments reported in [8]. In
the waveform,operands are represented as ’Value’, BLE is the bit
line enable signal (=−0.48𝑉 ), and a voltage of 0.7𝑉 represents 𝑙𝑜𝑔𝑖𝑐1
and 0𝑉 represents 𝑙𝑜𝑔𝑖𝑐0. Fig. 5a shows simulation output for the
IMFE based balanced scalar ternary multiplication operation( −1.1)
producing output of (1, 0), corresponding to value −1. Other weight
input combinations are not shown in the waveform to keep the
figure concise.Fig 5(b) shows simulation waveform for IMSE scalar
multiplication. We show all the possible input combinations. For
example the first cycle shows operation [−1.−1] producing the out-
put 01 (corresponding to trit value 1), second cycle corresponding
to operation [−1.1] yielding output 10 (trit value −1) and so on.

2𝐷 , 3𝐷 and parallel dot product computation operations are
captured in Fig.5(c)(d) and 6(a) respectively. Fig.6(a) shows the
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Figure 5: Simulation outputs for various in-memory computing operations. Operands are represented by the ’Value’ in the graph,
’BLE’ represents bit-line-enable voltages for read operation, ’Vout’ represents the amplified output at the end of row, and ’Output’
the final decoded logic outputs. (a) IMFE based scalar multiplication of operands −1 and 1, yielding output 10.The two output
lines Z1Z0 are shown in red and blue.(b) IMSE based scalar multiplication (shows all possible input operand combinations). (c)
2D dot-product computation ((1.0)+(−1.1), yielding output (1000). (d) 3D dot-product computation ((−1.1)+(−1.1)+(−1.1), yielding
output (1000).
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Figure 6: (a) Parallel 2D dot-product compute, ROW1 com-
putes (1.−1)+(1.−1) andROW2 computes (1.0)+(1.0) (b) Ternary
half adder operation with all input combinations.

simulation output of first two rows of an array in parallel for 2𝐷
dot product computation. Row 1 computes (1. − 1)+(1. − 1) and
Row 2 computes (1.0)+(1.0). Ternary half adder functionality is
captured in the Fig. 6(b) and shows the output of addition for all
input combinations. For example the first cycle shows operation
[0+0] producing the output 000 (corresponding to carry 0 and sum
00), second cycle corresponding to operation [0+1] yielding output
001 (carry 0 and sum 01) and so on.

5 CONCLUSION AND FUTUREWORK
This paper explores the capability of ternary cryogenic in-memory
computing and demonstrates the use of binary QAHE memory
array for ternary arithmetic. Two methods viz, IMFE and IMSE
compute scheme are explained and operations including balanced
ternary scalar multiplication, dot product computation, ternary half

addition are elucidated. The parallel and in-memory compute capa-
bility open up a plethora of opportunities for further research and
exploration into cryogenic in-memory computing and motivates
further research into QAHE devices.
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