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ABSTRACT
We present a novel application of contrastive learning technique
in learning the feature representation of ECG signal in a self-
supervised manner for the classification of acute stress types. Acute
stress types that occur for a very short period and are rapidly
changing and alternating in nature are difficult to classify using
conventional ECG features. This is because the change in conven-
tional ECG features due to rapid and alternating acute stressors
do not reflect instantaneously. We hypothesize that deep-learned
features from ECG signals can better distinguish between the dif-
ferent stress types than conventional ECG features. Our proposed
approach can generate distinct feature representations for the phys-
ical and mental stress task type using very short window lengths.
Our results show that the deep-learned features perform better in
terms of accuracy and F1 score in distinguishing between physical
and mental stress task types. In the future, our proposed method
can be used in a real world setting for understanding the dynamics
of different stressors in a self-supervised fashion without the need
for human labeling.
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1 INTRODUCTION
The reaction of the human body to changing and demanding envi-
ronment elicits stress responses which are reflected through physio-
logical and behavioral changes. To a certain extent, stress responses
are necessary tomaintain focus and deal with challenging situations.
However, long-term continuous exposure to stressful situations is
linked with the development of several chronic illnesses such as
hypertension and anxiety disorder [2]. Furthermore, indirect ef-
fects of stress are related to poorer work performance and reduced
quality of life which hampers the economy [18]. Although stress is
an inevitable aspect of daily life, monitoring and managing stress
can help mitigate its long-term detrimental effects. Acquiring and
monitoring different types of data from a variety of end points can
help us understand the stress dynamics that are harmful to individ-
uals. Analyses of these data can enable us to build smart healthcare
systems for real-time stress detection and management and mini-
mize the chances of developing chronic stress-related illnesses later
in life.

Physiological signals such as galvanic skin response (GSR) and
electrocardiogram (ECG) are commonly used for stress detection
as these can be easily acquired facilitating long-term continuous
monitoring [14]. Although supervised machine learning techniques
are most commonly used in the context of stress detection, unsuper-
vised methods have been explored recently [6]. The stress detection
models proposed in the literature are mostly aligned toward a bi-
nary classification of stressed and not-stressed states or towards a
multi-class classification of stressed states based on some ground
truth reference. There are only few works that have attempted to
classify the different stress types, especially when the stress stimuli
are rapid, alternating, and very short in duration, lasting for only
about a minute. Distinguishing between these rapid and alternating
stress stimuli is difficult because of the relatively slower response
in sympathetic activation compared to the rapidly changing stress
stimuli. Most of the existing studies that have attempted to dis-
tinguish between different stress types have used stress protocols
with a recovery phase between the different stress tasks, which is
unlikely in real-life scenarios.
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Different stress types have different effects on the intensity of
sympathetic activation and recovery. Research evidence indicates
that changes in sympathetic activation during mental stress tasks
are more profound compared to physical stress tasks [4, 9]. There-
fore it is important to develop stress detection models that can
capture the dynamics of such rapid, alternating, and short-term
stress stimuli. If the different stress types in real-world dynamics can
be distinguished, appropriate intervention and stress-type-specific
management feedback can be initiated to help an individual calm
down more efficiently. This will be an important step toward de-
veloping smart stress detection and management systems in the
future.

In this paper, we propose a novel method for distinguishing
between rapidly alternating physical and mental stress tasks with
no recovery phases in between. We hypothesize that using deep-
learned features from ECG signals will be able to better capture the
differences between physical and mental stress tasks compared to
conventional time-domain ECG features typically used for stress
detection. The main contribution of our work is as follows:

• We propose a self-supervised ECG feature representation
model based on a simple framework for contrastive learning
(SimCLR).

• We propose a semi-supervised deep learning model (using
20% of training data) for the classification of ultra-short-
term physical and mental stress tasks occurring rapidly and
alternatively.

• We evaluate the performance of the deep-learned features as
input to three benchmark machine learning algorithms for
distinguishing between the rapid physical and mental stress
task types.

• The performance of deep-learned features is compared with
that of conventional ECG time-domain features for the clas-
sification of physical and mental stress.

2 RELATEDWORK
Self-supervised approach for representation learning of ECG signal
has gained popularity in recent years [8, 13]. SimCLR framework
for contrastive learning has been predominantly used for computer
vision tasks such as image recognition and object identification [1].
However, recently, these approaches are being applied to physiolog-
ical signals for healthcare applications such as emotion recognition
and stress detection [3, 12]. In [12], authors have used the SimCLR
framework for classifying between baseline, stress, amusement, and
meditation tasks using ECG signals. In [3], authors have used mul-
tiple physiological signals for various kinds of emotion detection
validated on a different dataset. However, the problem of distin-
guishing between different ultra-short stress task types with no
recovery period in between has not been investigated using these
approaches. Instead, manual feature extraction methods have been
used to extract features from ECG and electrooculogram (EOG)
signals for distinguishing between different ultra-short stress task
types with no recovery period in between [10]. Furthermore, the
effect of ultra-short window lengths on model accuracy in distin-
guishing between cognitive load and rest has been analyzed [17].
It was observed that reducing window length significantly reduces
the model accuracy and feature integration from multiple sensing

modalities is required to efficiently distinguish between different
stress types that are rapid and alternating in nature. In this work,
we attempt to pursue a novel direction for distinguishing between
rapid and alternating stress tasks using self-supervised learning.

3 OVERVIEW OF THE PROPOSEDWORK
The overview of the proposed work is shown in Figure 1. The
proposed work broadly consists of three parts:

• SimCLR framework for ECG feature representation and stress
classification (Brown dotted box in Figure 1).

• Stress Classification using deep-learned features and bench-
mark machine learning algorithms (Blue dashed box in Fig-
ure 1).

• Conventional ECG feature extraction (Black solid box in
Figure 1).

Before, we discuss the three parts of the proposed work in details,
we will discuss the data collection and study protocol used in this
study.

3.1 Data collection and signal processing
Data from 21 healthy young adults were used for this study. The
study proposal was evaluated by the Ethics Committee in the Hu-
manities and Social and Behavioural Sciences of the University of
Helsinki. The whole study consisted of several tasks including the
Maastricht acute stress test (MAST) [16]. For our analyses, only the
MAST protocol was chosen because it has elements of alternating
and short-term stress task types which is an important aspect of
the study objective. It has been shown earlier that distinguishing
between baseline and stressed state is easy, whereas distinguishing
between the different stress task types is challenging [10]. Hence,
for this analysis, our objective is only to distinguish between the
different stress task types, and hence, the baseline measurement
was excluded. MAST (Figure 2) consists of short and alternating
physical stress tasks (cold pressor task) and mental stress (mental
arithmetics) tasks. These stress tasks vary in duration (45 to 90
sec) with no recovery periods in between. During the cold pressor
task, the participants were required to immerse their hands in cold
water (temperature of 2◦ Celsius). During the mental math task, the
participants were required to perform verbal subtractions fast and
accurately under time pressure. More details on the experimental
protocol and data collection are discussed in our previous work
[10].

The ECG signal was acquired at a sampling rate of 1000 Hz us-
ing the NeurOne system (Bittium, Oulu, Finland) that employed
a single lead ECG sensor between the left collarbone and right
lower back. The sampling rate for ECG signal acquisition was high
which is not usually the case in consumer-grade ECG sensors. Fur-
thermore, a high sampling rate is not suitable for long-term signal
acquisition and monitoring. Hence, we down-sampled the ECG
signal to 250 Hz before further analyses. The down-sampled ECG
signals were then filtered using a bandpass Butterworth filter in
the frequency range of 2-30 Hz. Other than filtering, no other pre-
processing is performed on the ECG signal. Subsequently, the ECG
signals are segmented into 8-second lengths with an overlap of 4
sec for each stress task type (Figure 2). It is to be noted that, no
overlapping signal segment was extracted in between the stress
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Figure 1: Overview of the proposed work. The brown dotted box represents the SimCLR framework for self-supervised
learning of ECG features (upstream task) and the supervised training of the fully connected neural network (FCNN) during the
downstream task. The blue dashed box represents training the benchmark machine learning algorithms with deep-learned
features and the black solid box represents training the benchmark machine learning algorithms with conventional time-
domain ECG features.
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Figure 2: Overview of the MAST stress induction protocol

task types to avoid information leakage between stress task types.
For subsequent tasks, the whole dataset consisting of 8 sec ECG
signal segments are randomly divided into three parts (70% and
20% for training, and 10% for testing).

3.2 SimCLR framework for ECG feature
representation and stress classification

The SimCLR framework consists of two tasks, (i) upstream task
and (ii) downstream task. The upstream task consists of two mod-
ules, (i) CNN-based encoder networks and (ii) Projection heads.
The architecture of our CNN encoder (Table 1) is inspired by the

CNN encoder presented in [13] with slight modifications. In the
upstream task, the original ECG signal segment (𝑋𝐸𝐶𝐺 ), and the
augmented version of the ECG signal segment (𝑋 ′

𝐸𝐶𝐺
) are fed as

input in parallel to two CNN encoders. The CNN encoders generate
a higher-level representation, known as the feature space of the
ECG signal segments. The augmented version of the ECG signal
is generated by adding random Gaussian noise, scaling, and intro-
ducing random DC shift to the original ECG signal segment. The
feature space is then converted into a more expressive representa-
tion using a projection head that is attached to the output of the
CNN encoder. The contrastive learning algorithm is then applied to
the representations of 𝑋𝐸𝐶𝐺 and 𝑋 ′

𝐸𝐶𝐺
to maximize the similarity

between the representations generated by 𝑋𝐸𝐶𝐺 and 𝑋 ′
𝐸𝐶𝐺

. 𝑋𝐸𝐶𝐺

and 𝑋 ′
𝐸𝐶𝐺

form a positive pair while both 𝑋𝐸𝐶𝐺 and 𝑋 ′
𝐸𝐶𝐺

form a
negative pair with all other ECG signal segments. When an aug-
mented representation of an ECG signal segment forms a positive
pair with the original ECG signal segment, the contrastive learn-
ing algorithm tries to learn the underlying features that make the
original ECG signal segment and its augmented counterpart similar
to each other. For the upstream task, 70% of unlabeled ECG signal
segments are used, and once trained, the trained CNN encoder is
used for the downstream task.

In the downstream task, the weights of the trained CNN encoder
are kept frozen throughout the training of the fully connected
neural network (FCNN) (Table 2). During the downstream task, the
FCNN for stress-type classification tasks is trained using only 20%
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Table 1: Architecture details of CNN encoder and projection
head used in the upstream task.

Module Name Layer Details No. of Parameters

Encoder Conv1D (filters = 32) 1056
Conv1D (filters = 32) 32800

MaxPool 0
Conv1D (filters = 64) 32832
Conv1D (filters = 64) 65600

MaxPool 0
Conv1D (filters = 128) 65664
Conv1D (filters = 128) 131200

GlobalMaxPool 0
Flatten 0

Dense (N = 128) 16512
Projection Head Dense (N = 256) 33024

Dense (N = 128) 32896

of the labeled ECG segment. The upstream and downstream tasks
are implemented using Keras with the Tensorflow backend.

Table 2: Architecture details of fully connected neural net-
work for stress task type classification.

Layer Details No. of Parameters Activation

Dense (N = 128) 16512 Relu
Dense (N = 64) 8256 Relu
Dense (N = 32) 2080 Relu
Dense (N = 2) 66 Softmax

3.3 Stress Classification using deep-learned
features and benchmark machine learning
algorithms

To evaluate the efficacy of deep-learned features from the trained
CNN encoder, they are used as an input to three benchmark ma-
chine learning algorithms, random forest (RF) classifier, support
vector machine (SVM), and XGBoost (XGB). The training of these
benchmark machine learning algorithms is performed with both
70% and 20% of labeled ECG signal segments.

3.4 Conventional ECG feature extraction
The conventional time-domain features from ECG signals are ex-
tracted from the 8-second ECG signal segment for training the three
benchmark machine learning algorithms to distinguish between the
stress types tasks. The extracted time-domain features from ECG
include heart rate, interbeat interval (IBI), respiratory frequency,
and 18 heart rate variability (HRV) time-domain features. These
features are extracted using the NeuroKit2 library in python [7]. A
total of 21 features are used as conventional ECG features. It is to
be noted that, several HRV features cannot be extracted since the
window length used is too short [15]. Finally, the performance of
the trained models using all three approaches is evaluated using
10% of the ECG segment (test data).

4 RESULTS

Figure 3: Training performance of the upstream task (top)
and classification task (bottom).

The upstream contrastive learning task was trained for 100
epochs with a batch size of 64. Adam optimizer was used to op-
timize the contrastive loss function. During the upstream tasks,
there were a total of 411,584 trainable parameters, of which, the
CNN encoder had 345,664 trainable parameters. The contrastive
loss and accuracy continued to improve until 90 epochs (Figure 3),
after which both loss and accuracy start to saturate.

Figure 4 visualizes the average feature activation values gener-
ated by the CNN encoder for the whole dataset. It can be observed
that the feature activations during both the physical and mental
stress task have similar patterns. However, some of the feature
activations during the physical stress tasks have higher amplitude
compared to the activations during the mental math task. These
apparent differences in the amplitude of feature activations could
serve as an important indicator of the difference between the two
stress task types.

The FCNN for the downstream task was also trained similarly
with the Adam optimizer and categorical cross entropy as the loss
function. The network was trained for 50 epochs with a batch size
of 64. The FCNN was trained for only 50 epochs because of the
relatively low number of trainable parameters (26,914). The classifi-
cation loss and accuracy both showed an almost linear improvement
trend (Figure 3) with the number of epochs and saturated by the end
of 50 epochs. Subsequently, the test data set (10% of ECG segments)
is fed into the trained CNN encoder to generate the feature space
representation of the test data and finally as an input to the trained
FCNN model for the classification of stress types.
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Figure 4: Average feature activation values generated by the
trained CNN encoder for the entire dataset.

Table 3: Performance of the FCNN model in classifying be-
tween the physical and mental stress tasks.

Precision Recall F1-Score Support

Physical task 0.77 0.80 0.78 177
Mental task 0.64 0.61 0.62 107

Macro avg 0.71 0.70 0.70 284
Weighted avg 0.72 0.73 0.72 284
Accuracy = 73%

Table 4: Confusion matrix for the FCNNmodel in classifying
between the physical and mental stress tasks.

Predicted
Physical task Mental task Total

Actual Physical task 141 36 177
Mental task 42 65 107

Total 183 101 𝑁

The overall accuracy achieved by the FCNN model in classifying
between the physical and mental stress task-type is 73% (Table 3). In
specific task-types, FCNN has a higher F1-score (0.78) in detecting
physical stress tasks compared to mental stress tasks (0.62). The fact
that there are fewer ECG signal segments representing the mental
stress task compared to the physical stress task is one of the likely
factors behind the higher F1-score of the model in detecting the
physical stress tasks. Out of 177 instances of physical stress task-
type ECG segment, the FCNN model was able to correctly classify
141 instances (Table 4). Whereas, out of 107 instances of mental
stress task-type ECG segment, only 65 instances were correctly
detected by the FCNN model.

4.1 Comparison with benchmark machine
learning algorithms and conventional ECG
features

The benchmark algorithms; random forest classifier, support vector
machine, and XGBoost are trained using similar hyperparameters

for both deep-learned features and classical HRV features. For the
random forest classifier, the number of estimators was 200 and the
maximum depth was 20. For the support vector machine, a linear
kernel was used with the value of regularization parameter C fixed
at 500. For the XGBoost classifier, the number of estimators was
200 with a maximum depth of 30 and a learning rate of 0.00001. The
values of hyperparameters were selected to be roughly optimized
based on the classical ECG training features.

Random forest classifier achieved an accuracy of 55% and 62%
on the test set when trained with 20% and 70% of data using the
conventional ECG features respectively (Table 5). However, the
random forest classifier was able to achieve an accuracy of 68%
when trained with only 20% of the data using deep-learned features.
However, when the random forest classifier was trained with 70%
of data using deep-learned features, the accuracy increased to 77%
and the F1-score was 0.75. A similar trend was also observed with
the support vector machine and XGBoost classifier as both of these
classifiers performed better when trained with deep-learned fea-
tures as compared to conventional ECG features. For example, SVM
trained with 20% of data using deep-learned features achieved 17.9%
higher performance in terms of accuracy compared to SVM trained
with conventional ECG features (Table 5). Similarly, the XGBoost
classifier when trained with 20% of data using deep-learned features
achieved about a 20% increase in accuracy compared to training
with conventional ECG features (Table 5).

5 DISCUSSIONS AND FUTUREWORK
In this work, we propose a self-supervised approach for learning
ECG signal representation for the classification of physical and
mental stress states, induced using MAST. These two stressors in
MAST are rapid and alternating in nature with no recovery phase
in between. Our results showed that deep-learned features are more
efficient in classifying stress task-types than conventional features
extracted from ECG signals. Our results are in line with previous
work that has explored the deep-learning-based approach in an-
alyzing ECG signals in applications such as stress detection and
detection of paroxysmal atrial fibrillation (PAF) [5, 11]. In [11],
researchers have found that CNN-based neural networks were com-
petitive in learning key features from raw ECG signals for PAF pa-
tient screening. Similarly, in [5] deep-learning-based approach for
feature representation from ECG signal was competitive in detect-
ing stressful states. Our approach of using a self-supervised method
for ECG feature representation in a novel application of classifying
between rapid and alternating short-term stress types is likely to be
useful in a real-world scenario where labeling of stress types is chal-
lenging. Furthermore, our work shows that deep-learned features
can prove to be superior in situations where conventional ECG
features might not be sufficient, such as in capturing the rapidly
changing stress dynamics. Overall the results are promising and call
for future research with more rigorous exploration and evaluation.

The final set of feature representations generated by the CNN
encoder resulted in 128 features which is significantly higher than
the 21 classical features extracted from the ECG signal. However,
it is to be noted that, it is not possible to extract a higher num-
ber of features from the ECG signal in ultra-short window length
[15]. Moreover, it has been observed that increasing the number of
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Table 5: Performance comparison on test data with benchmark machine learning algorithms using deep-learned features and
classical features.

Classifiers Deep Learned Features Conventional ECG Features

Training (70%) Training (20%) Training (70%) Training (20%)
Random Forest Acc = 77%, F1-Score = 0.75 Acc = 68%, F1-Score = 0.64 Acc = 62%, F1-Score = 0.56 Acc = 55%, F1-Score = 0.51

Support Vector Machine Acc = 65%, F1-Score = 0.61 Acc = 67%, F1-Score = 0.61 Acc = 58%, F1-Score = 0.42 Acc = 55%, F1-Score = 0.44
XGBoost Acc = 70%, F1-Score = 0.69 Acc = 64%, F1-Score = 0.60 Acc = 60%, F1-Score = 0.57 Acc = 51%, F1-Score = 0.50
FCNN NA Acc = 73%, F1-Score = 0.70 NA NA

features does not necessarily result in higher performance [10] in
stress detection. Furthermore, the deep-learning-based approach
automatically diminishes feature values that are not important
and hence is a desirable attribute for deep-learning-based feature
learning approach.

A possible limitation of the work is that since we have randomly
split the ECG signal segments into 70% for feature learning, 20%
for classification, and 10% for testing, it is possible that ECG signal
segments from the same subject were present in all or at least two
of the subsets. Hence, there is a possibility of information leakage
on a subject level. However, for this work, the objective was to
verify if such an approach is feasible in the context of distinguishing
between stress types that are rapid and alternating in nature. Hence,
a more rigorous training and testing approach will be implemented
in the future extension of this work. Moreover, the comparison
with the conventional technique is also performed with the same
data split method to ensure a fair comparison. In addition, while
segmenting the ECG signal into 8 seconds length, we made sure
not to include overlapping segments between stress tasks. This
step was crucial in enforcing that there was no information leakage
between the stress task types.

In the future, the proposed method for self-supervised ECG sig-
nal representation for stress type classification can be extended to
other signals that can also be monitored continuously in everyday
life such as galvanic skin response (GSR) and photoplethysmo-
gram (PPG). Further, multi-modal feature representation using the
proposed method can enhance the performance of stress type classi-
fication. In the long-term, such self-supervised models are suitable
for deployment in the real-world as they can potentially benefit
in learning from the vast amount of data collected in different
contexts. Moreover, our proposed SimCLR based stress detection
framework is suitable for adapting in a client-edge-cloud architec-
ture with potential for improvements in data privacy as all the data
are encoded.
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