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ABSTRACT

Hardware Trojans (HTs) are malicious circuits planted in Integrated
Circuits (ICs). Multiple techniques using Side-Channel signals to
detect HTs have been developed over the past decade. However,
most of this research focuses on HT detection. Few of them explore
the possibility of either identifying different Hardware Trojans
implemented inside ICs or detecting inactive HTs. We propose a
runtime EM side-channel analysis workflow (HT-EMIS) that uses a

convolutional neural network to address the shortcomings above.

By analyzing EM side-channel leakage from an FPGA, our tool
can identify known types of HTs implemented inside a design and

reports whether they are inactive or active with 100% accuracy.

Additionally, we are able to successfully detect new unseen HTs
with this model in 98.7% of test cases, due to the fact that HTs
inserted at the Register Transfer Level with similar triggers and
payloads often have similar effects on a floorplan, and thus the EM
radiation of a device.
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1 INTRODUCTION

Hardware Trojans (HTs), are malicious circuits implanted in tar-
geted integrated circuits (ICs), typically during fabrication or design
by an adversary. HTs have been a growing concern in the hardware
security community as third-party designs and manufacturing is
increasingly used. An HT can be designed with different objects (i.e.
payloads) such as extracting and leaking confidential information,
disabling or paralyzing the system, and improper elevation of user
access[1]. HTs can be either always active or only active when
certain external or internal criteria (i.e. a trigger) occur. Properly
designed triggers may allow HTs to avoid detection during testing
[17]. An adversary can target different phases in an IC design’s life
cycle. In this work we examine the case of an adversary releasing 3rd
Party Intellectual Property (3PIP) designs at the Register-Transfer
Level (RTL) that a victim may include in their design. These are
often obfuscated or locked to prevent leakage of the module, but
as a result, they may contain code that the end-user is not able to
verify manually. The trigger condition may also be rare enough that
the Trojans escape activation during simulation, allowing HTs in-
serted at RTL to sneak onto a physical device. This work focuses on
threats from the red encircled area in Figure 1, including RTL code
and the netlist generation prior to implementation. However, our
work can still detect active HTs when threats are from the orange
encircled area which includes all phases in IC design. Simply put,
if traces from the golden model are provided, then HT-EMIS is able
to identify HTs. If not provided, HT-EMIS is limited to detecting
active HTs of known types.

While most previous HT detection techniques have largely been
successful, they often only detect if a Trojan is active [2] but not
necessarily which Trojan design it is, if known. Such techniques
with binary output including only anomaly undetected and anom-
aly detected leave no space for a flexible threat treatment plan.
When threats are detected, the administrators have no options but
shut down the whole system because they lack knowledge of the
behavior of HT and thus cannot evaluate potential damage. Fig-
ure 2 covers the difference between our proposed technique and
the standard response up until now. To address these shortcom-
ings, we propose an Electro-Magnetic (EM) side-channel Hardware
Trojan Identifying System, HT-EMIS. A model trained following
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Figure 1: The threat model covered in this work. We are able to detect and identify HTs inserted during the red section, as well

as detect active Trojans inserted during the orange.
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Figure 2: Improved workflow including HT Identification

this process can detect and identify different Hardware Trojans.
Note this work assume we have traces from active HT design. Find-
ing input vectors to trigger HTs is not covered by this work. The
contributions of our proposed work are as follows:

e A method to train a deep learning model to identify the type
and state of a Hardware Trojan from a single trace.

o A method to detect Trojans unseen during training at run-
time using the above method.

o An explanation of how unseen HTs may be classified and
detected based on their influence of a design’s layout.

o A dataset library of EM side-channel measurements collected
from a design containing a large number of both active and
inactive HTs

The rest of this work is organized as follows: In Section 2 we
introduce some important background and prior work in this area.
Section 3 contains a detailed explanation of our proposed techniques
and Section 4 presents our results, which are in turn discussed in
Section 5. Finally, in Section 6 we conclude our work.

2 BACKGROUND
2.1 Hardware Trojan Detection Methods

As mentioned previously, detecting Hardware Trojans (HTs) has
seen a large amount of prior interest. The majority of these detection
methods require a golden model, (i.e. one known to be without
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HTs), as a reference. However, there are self-referring HT detection
methods that use only one DUT. Instead of comparing patterns and
features of an HT inserted Integrated Circuit (IC) and an HT-free
IC, self-referring methods compare the patterns of the IC when a
HT is inserted to determine if it is either active or inactive. He et al
[4, 5] proposed a run-time EM side-channel self-referring detection
method, in which an on-chip EM sensor is deployed and Euclidean
distances of the collected EM traces are calculated and compared
when HT is active and inactive. Xue et al [18] focused on the power
side-channel and proposed a self-reference-based detection method.
Their technique can detect very small HTs with a low Trojan-to-
Main circuit area ratio. Hoque et al [6] improved the functional test
and gave out a new self-reference method that can detect sequential
triggered HT with rare activation events. As a comparison, our tool
can work either with or without a golden reference.

Machine learning on Hardware Trojan detection is one trending
topic in recent years. Our work also falls into this category. Super-
vised Learning methods in HT detection include architectures like
Artificial Neural Networks (ANN), State Vector Machines (SVM),
and K-Nearest Neighbor (KNN) [7]. Unsupervised learning methods
examples include K-means clustering and other commonly used
clustering methods. Sina et al in proposed a new convolutional
neural network architecture that uses transfer learning to detect
Trojans in new devices by looking at dominant features [2].

2.2 Hardware Trojan Design and Behaviors

HT threat and application scenarios are constantly evolving. The ar-
chitecture of HT designs remains as it was a decade ago, consisting
of a trigger and a payload [17]. A trigger is what activates a Trojan
to deliver a payload. Typically this is a wire signal or a register
value in the main circuit. The design goal of an HT trigger is to
escape detection during testing while activating when desired. For
example, the AES128 Trojan T1400 provided on Trust-hub [11, 12]
has a rare sequential triggering condition that has a triggering pos-
sibility of only 8.6e-78 in the test phase. Such carefully designed
triggers may nearly always escape conventional test vectors.

An example of this can be found in the newly developed analog
HT trigger present in the A2 Trojan [19] requires a very small on-
chip area and has a very low current profile in addition to its rare
triggering condition. These features enable analog HTs to evade
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Figure 3: Figure 1C from [16], showing the network archi-
tecture. The unlabeled blocks are convolutional layers with
number of filters equal to the number specified.
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both functional tests and most side-channel analyses. It is difficult
to implement analog HTs on FPGAs, so most research on HTs for
FPGAs omit analog HTs.

HT payloads, on the other hand, are the components involved in
completing a malicious goal, often using the fewest gates and the
smallest area possible. These goals range from leaking confidential
information to deceiving users by manipulating the output of the
circuit. One example of this can simply be the denial of service
(DoS) of a circuit, wherein it ceases to function, to a corruption of
outputs or information leakage through a side channel. Trust-hub
is a publicly available library of HTs that encompasses several types
of triggers and payloads such as these [11, 12].

3 METHODOLOGY

In this study, a Convolutional Neural Network (CNN) was utilized to
detect and classify hardware Trojans based on the electromagnetic
(EM) signals emitted during device operation. A residual network
structure, modified to handle 1-dimensional (1D) time series data
[16], was employed to analyze EM signals from both compromised
and uncompromised designs. Further information can be found in
Section 3.1. The input data was classified into one of several classes,
as described in Section 3.2. The results demonstrated the ability of
the trained models to identify hardware Trojans they have never
encountered during training by failing to classify them as belonging
to a Trojan-free design.

3.1 Neural Network Architecture

The features of time series data were extracted by using the modi-
fied ResNet architecture from [15, 16]. The architecture consisted
of three residual blocks, each with three Convolutional layers in
2D, along with batch normalization and raw activation functions.
The features were fed into a fully connected layer with a softmax
activation function. The detailed architecture is depicted in Figure 3.
The choice of this architecture was motivated by the findings from
[15, 16] which demonstrated its superiority over other Machine
Learning methods for time series data in various tasks. The accu-
racy of this architecture was compared against other approaches in
4.2, where it was found to be the most accurate for the current task.

3.2 Hardware Trojan Identification

Our dataset consists of three types of EM traces: one from a design
without Trojans (Golden Model), one from a design with an inactive
AES Trojan, and one from a design with an active AES Trojan. The
Golden model is only needed when doing classification, but for
simple HT detection, the Golden model is not needed. We classify
these traces into different classes based on the HT model and state
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Figure 4: Differences in captured traces from active and inac-
tive traces.

(Active or Inactive). This allows for both identification of the HT in
the design and the state of the Trojan. The CNN model, as described
in Section 3.1, can be trained using categorical cross-entropy loss
to identify different Hardware Trojans. The results are presented
in Section 4.2. Our EM trace dataset is obtained by collecting side-
channel measurements from AES-128 designs with 16 HTs selected
from Trust-hub [11, 12] and one customized HT. These HTs have
different triggers and different payloads. The description of triggers
and payloads can be found on the Trusthub website. The specifics
of the trace collection are discussed in Section 4.1. The results
demonstrate clear differences between EM traces of the same HT-
infected design based on the state of the HT, as shown in Figure
4.

For Trojans which trigger on a certain input, we make the modi-
fication that once triggered the Trojan remains active. This modi-
fication was done to minimize the chance that our model overfits
to correlate certain plaintext-HT pairs, and instead learns the EM
effects of the Trojan directly.

3.3 RTL Trojan’s Effects on Design Floorplan

In this work, we have found that inserting hardware Trojans in
the Register Transfer Level (RTL) results in similar floorplans and
these floorplans are significantly different from the layout of a
Trojan-free design. To confirm this, we used a method that converts
gate-level netlists with location information into an image and
evaluated the similarity through keypoint detection using Scale-
Invariant Feature Transform (SIFT)[8]. To generate these images,
we assigned a unique color to each type of gate and then mapped
each gate’s location information to a pixel in an image. Finally,
we used SIFT to determine the similarity between each design by
detecting keypoints in each image and using a KNN matcher to
find matching keypoints. The results of this analysis are presented
in a figure.

To generate these images, we first identified all the unique types
of gates in a design that contained location information using a
Python script. Then, we generated a unique color in Red-Blue-Green
(RGB) format for each type of gate. The location information of
each gate was extracted and mapped to a pixel in the image, which
was filled with the color for that gate.

Finally, we used SIFT to determine the similarity between each
design. The OpenCV2’s SIFT implementation was used to detect
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key points in each image, and each other image was then ana-
lyzed to find their key points. Both sets of key points were fed into
OpenCV?2’s default KNN matcher to find the matching key points
if any. The number of matches was divided by the higher number
of key points in each image set and multiplied by 100 to score the
similarity between the two images. The results of this analysis are
shown in Figure 5.

3.4 K-fold Verification on New HT Detection

Several factors modify EM leakage from a victim device as shown
in equation 1: the location of the measuring EM probe denoted as
P(x,y, z), Switching behavior of the ith gate denoted as S(A, B),
and the floorplan shape denoted as F, affected by different HT types
and sizes inserted. We discuss how HTs with similar triggers and
payloads inserted at the RTL have similar effects on the floorplan
previously in Section 3.3, and in this section we demonstrate how
this can be used to enable models to correctly identify previously
unknown HTs.

Lg = f{P(x,y,2),Si(A, B), F} 1
To prove this, we perform a modified K-fold cross-validation [10]
approach to isolate different HTs. Specifically, we create a ‘fold’ by
splitting our dataset into two portions, one for training and one for
testing. The training and testing datasets contain different Trojans,
that is to say, no models of Trojans in the training dataset are in
the testing set, and vice versa. This splitting process is repeated K
times. We then train K models on their training sets and evaluate
the matching test set. The results of this approach can be found in
Section 4.3.

4 EXPERIMENTAL RESULTS

We utilize an automated EM side-channel measurement system,
discussed in Section 4.1, to collect data from an AES-128 design [9]
implemented containing several HTs on a Spartan-6 FPGA from the
SAKURA-G test system [3]. The HT designs come from Trusthub
[11, 12]. The specifics of data preparation is discussed in 3.2.

T2100
-4
T2000
Golden
3
T1200
T600 2
T800
1
T1000 -
e .
0

|
T2100 T2000 Golden T1200 T600 T800 T1000 T700

Figure 5: Similarity scores for each design netlist converted
into an image. We manually set all designed comparisons to
themselves to 0.
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4.1 Data Collection

The automated EM side-channel measurement tool is used to collect
electromagnetic (EM) side-channel measurements from the AES-
128 design on the Device Under Test (DUT) using a Langer EMV
LF1 probe. The DUT is the main FPGA chip on the SAKURA-G test
board. The measurements are collected while the DUT encrypts
random 128-bit plaintext generated by a laptop connected to the
DUT via a serial connection. The AES128 encryption RTL used is
the AES128 LUT core developed by Satoh Lab. An oscilloscope is
used to capture the output of the probe and the traces are stored
on the computer for analysis. The setup, including the 3D printer
with the extruder replaced by the probe, is shown in Figure 6. The
3D printer is used to keep the probe location at a fixed location
relative to the main FPGA on board so that the difference in the EM
side-channel traces would not be caused by location changes of the
probe. The location is near the center of the floorplan to increase
the sensored magnitude of the traces.

Each trace is a 1000 sample recording of the magnetic field cov-
ering one complete encryption on the DUT. Each sample is an 8
bit unsigned value with 0 denoting -5mV and 255 denoting +5mV.
The sampling rate is 5Gsa/s. Finally, the dataset is normalized such
that the maximum of the dataset has the value 1 and the minimum
has value 0. In the training dataset, Each Trojan/state combination
consists of 1000 such traces, and the Golden Model has 4000 traces.

4.2 Deep Learning Model Selection and
Algorithms

We begin by evaluating the success of various machine learning
approaches to the problem of Hardware Trojan identification, in-
cluding a K-Nearest Neighbor (KNN) model, a Multi-Layer Percep-
tron (MLP), and a Convolutional Neural Network (CNN) based on
ResNet (as discussed in Section 3.1). We also evaluated two others,
a KNN approach directly on the measured traces with 5 nearest
neighbors, and an MLP with 4 fully connected layers and dropout
layers to avoid overfitting [13], trained with a learning rate of 0.001
for 30 epochs. The CNN was trained for 10 epochs at the same
learning rate. All training was done on a personal computer with
a GTX 1070Ti graphic card. As shown in Equation 2, We define
the sum of true positive cases and true negative cases over all test
cases as the result accuracy, i.e. the rate of correctly identifying the

Figure 6: Data Collection Setup
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Table 1: A brief comparison of different machine learning
approaches to the problem of HT identification rate. The
CNN outperforms the other approaches.

| Trojan Type [ KNN [ MLP | CNN |
Golden Model 75% 0% 100%
T100 (Active) 82% 100% | 100%
T200 (Active) | 100% | 100% | 100%
T400 (Inactive) | 39.5% | 100% | 100%
T400 (Active) | 100% | 100% | 100%
T500 (Active) | 100% | 100% | 100%
T600 (Active) | 100% | 100% | 100%
T600 (Inactive) | 29.5% | 0.9% | 100%
T700 (Inactive) | 100% | 100% | 100%
T700 (Active) | 100% | 100% | 100%
T800 (Inactive) | 100% | 100% | 100%
T800 (active) | 100% | 100% | 100%
T900 (Inactive) | 66.5% 0% 100%
T900 (Active) | 100% | 100% | 100%
T1000 (Inactive) | 86.5% | 100% | 100%
T1000 (Active) 100% 100% 100%
T1100 (Inactive) | 0% 785% | 100%
T1100 (Active) | 50.5% | 100% 100%
T1200 (Inactive) | 100% | 100% | 100%
T1700 (Inactive) | 100% 100% 100%
T1700 (Active) | 100% 100% | 100%
T1800 (Inactive) | 100% 100% 100%
T1800 (Active) | 100% 100% | 100%
T1900 (Active) 100% | 33.5% | 100%
T2000 (Inactive) | 75% | 100% | 100%
T2000 (Active) 100% 100% 100%
T2100 (Inactive) | 50% 100% | 100%
T2100 (Active) 100% 100% 100%
T2 (Inactive) 100% | 100% | 100%
T2 (Active) 100% | 100% | 100%
| Mean (AlHTs) [ 81.5% | 79.18% | 100% |
Trojans.
) TP+ TN -
ccuracy =
Y= FP+FN+TP+TN

And the results of these can be found in Table 1, which clearly
shows the Residual Model outperforming the other two. The loss
was adjusted to reflect unequal class distribution as discussed in
Section 4.1 where appropriate.

4.3 New Trojan Detection

This approach can detect unseen new Hardware Trojans based on
whether they are classified into belonging to the golden model or a
known Trojan. When the deep learning model is trained on the data
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Figure 7: A modified heatmap showing what traces from
designs with trojans along the horizontal are classified into.

from a set of Trojans and an EM side-channel trace of an unseen
new Trojan is input into the model, as long as the new trace is not
categorized into the golden class, the model detected anomalous
Trojan-relate behavior. We define the ‘false negative rate’ in this
instance to then be the percentage of traces from designs with
Trojans that are classified as being without any HTs.

We first evaluate if a new Trojan can be detected on the full
dataset using the K-fold verification mentioned in Section 3.4. Our
model achieves a 0% false negative rate on all Trojans selected from
Trusthub following this methodology.

We select a subset that contains traces from inactive T2100,
T2000, T1200, T1000, T800, T700, and T600 designs for visualization.
The result is shown in Figure 7. The circles indicate what category
a new unseen Trojan along the horizontal axis would be classified
into when testing. When evaluating T1200 as an unknown Trojan,
the model has a 10% false negative rate because only a subset of EM
traces of Trojans was used for the training. Otherwise, the model
achieves a false negative rate of 0% when using the other Trojans
as new Trojan test cases.

By comparing Figure 5 and Figure 7, the relationship between
SIFT similarity and Trojan classification should be clear. Specifically,
when the model is presented with a trace from an unseen HT, it is
most likely to be classified as containing a HT with the most similar
design. The theory behind is explained in Sections 3.3 and 3.4.

Furthermore, when an unknown Trojan with low confidence
scores(less than 0.7) to the Trojans that were already trained in the
machine learning model, it is possible to classify it as an unknown
Trojan. Therefore, the proposed approach can also detect unknown
Trojans.

5 DISCUSSION

It is believed that the power grid of an IC, which has the most
significant current flow inside, generates the majority of EM leak-
age of a chip [14]. However, power side-channel signals and EM
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side-channel signals have a key difference. EM side-channel traces
depend on the distance from each signal source (e.g. the distance
from the corresponding wires of the power grid), which are in
turn affected by the floorplan in FPGAs or placement and routing
(P&R) in Application Specific Integrated Circuit (ASIC) designs
while power side-channel only depends on the delay of each signal
to the power measuring point.

To explain this, let us consider Equation 3 which describes the
power side-channel. S; (A, B) denotes the switching behavior of each
gate and D denotes the delay of each gate to the power sensing
node. Compared with the Equation 1, we can draw the conclusion
that EM side-channel leakage is floor-plan sensitive as Equation
1 depends on F, which is absent in Equation 3. This observation
leads to the conclusion that when Hardware Trojan is inactive, and
thus when the power consumed by the trigger circuits is small,
the power side-channel may not detect the difference caused by
Hardware Trojan. However, the EM side-channel can be due to
the floor-plan change modifying the EM side-channel. We plan to
conduct further research to explore this in our future work.

Lp = f{Si(A B), D} ®)

One criticism of the above would be that the Hardware Trojans
provided on Trust-hub are large enough to have a substantial effect
on the floorplan, unlike many other HTs. Specially designed analog
HTs like A2 Trojan [19] is small enough to avoid detection based
on size and power and concealing enough to pass most test phases.
This concern naturally brings up a fundamental question to all EM
side-channel analysis waiting to be answered, which is What is
the real potential of EM side-channel analysis in HT detection or
how much difference in a design’s size and power is needed for EM
side-channel HT detection to work.

If we utilize the findings in this paper to answer the above ques-
tion, a workflow can be developed to systematically evaluate EM
side-channel analysis or any other side-channel methods. The work-
flow would consist of two parts:

(1) A data collection phase, where the floorplan of a given circuit,
like AES128, is manually manipulated by adding gates and
changing routing. Thus, we gradually decrease the similarity
between the design before and its following versions. Every
time we change the circuits, we collect EM traces or data
from other side-channels.

(2) Then in a data analysis phase, the collected traces are used
to train a CNN model. Among the test subsets that reach
a base line accuracy, we select the subset with the highest
similarity to the original design, or in other words, having
the least modifications between the two designs included.

Following this method, it should be possible to find the minimum
amount of alteration that EM side channel can detect, to determine
the limitations to assurance of EM side channel methods when
evaluating a design.

6 CONCLUSION

In this paper, we train a convolutional neural network on EM
side-channel traces collected from an FPGA and successfully use
the trained model to identify known types of Hardware Trojans,
whether they are active or inactive, as well as detect the presence of
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Hardware Trojans unseen during training. We evaluate the hypoth-
esis that HTs which make similar modifications to the floorplan will
generate similar EM leakages. The theory is supported by a subset
of AES128 Trusthub Hardware Trojans. We also briefly introduce a
methodology to evaluate the minimum amount of floorplan change
that EM side-channel analysis can detect, which we plan to evaluate
in our further experiments.
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