
KPU-SQL: Kernel Processing Unit for High-Performance SQL
Acceleration

Hao Kong
konghao@ict.ac.cn

State Key Laboratory of Processors,
Institute of Computing Technology,

Chinese Academy of Sciences
University of Chinese Academy of

Sciences
Beijing, China

Haishuang Fan
fanhaishuang20z@ict.ac.cn

State Key Laboratory of Processors,
Institute of Computing Technology,

Chinese Academy of Sciences
University of Chinese Academy of

Sciences
Beijing, China

Jingya Wu
wujingya@ict.ac.cn

State Key Laboratory of Processors,
Institute of Computing Technology,

Chinese Academy of Sciences
Beijing, China

Liyun Cheng
chengliyun21s@ict.ac.cn

State Key Laboratory of Processors,
Institute of Computing Technology,

Chinese Academy of Sciences
University of Chinese Academy of

Sciences
Beijing, China

Yan Chen
yanchen@yusur.tech

YUSUR Technology Co., Ltd.
Beijing, China

Wenyan Lu
luwenyan@ict.ac.cn

State Key Laboratory of Processors,
Institute of Computing Technology,

Chinese Academy of Sciences
Beijing, China

Guihai Yan
yan@ict.ac.cn

State Key Laboratory of Processors,
Institute of Computing Technology,

Chinese Academy of Sciences
Beijing, China

Xiaowei Li
lxw@ict.ac.cn

State Key Laboratory of Processors,
Institute of Computing Technology,

Chinese Academy of Sciences
Beijing, China

ABSTRACT
Application-specific accelerator is a prominent way for analytic
query processing. To achieve a substantial improvement over the
state-of-the-art in performance while maintaining programmability,
we propose a kernel processing unit (KPU) framework and apply it
to SQL acceleration. Kernel customization and data transmission are
two critical bottlenecks, we separately optimize them in the key core
and shadow core with a self-designed data management system.
A software stack named RACE with a performance model and
function simulator is also introduced. The experiments demonstrate
that KPU-SQL outperforms the CPU and GPU by 24.5x and 8.75x
on average, respectively.

CCS CONCEPTS
• Hardware → Hardware accelerators; Hardware-software
codesign.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0125-2/23/06.
https://doi.org/10.1145/3583781.3590268

KEYWORDS
database; application-specific accelerator; programmable;
hardware/software co-design; SQL analytics

ACM Reference Format:
Hao Kong, Haishuang Fan, Jingya Wu, Liyun Cheng, Yan Chen, Wenyan
Lu, Guihai Yan, and Xiaowei Li. 2023. KPU-SQL: Kernel Processing Unit
for High-Performance SQL Acceleration. In Proceedings of the Great Lakes
Symposium on VLSI 2023 (GLSVLSI ’23), June 5–7, 2023, Knoxville, TN, USA.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3583781.3590268

1 INTRODUCTION
Computing accelerators have been witnessed in many domain-
specific computing offloading engines implemented with either
ASIC or FPGA substrates. Even though the accelerator-equipped
systems usually deliver attractive performance and energy profiles,
the extremely high complexity and non-recurring engineering cost
render the successful stories far from prevalent. In database offload-
ing, it’s not difficult to design and implement a single-functional
computing logic for analytic query processing, such as sort [11]
and join [3], but how to make a flexible framework that can engage
these “coarse-grained” units in a readily way, without incurring
extra overheads from compilation, runtime, and OS, is a grand
challenge.

The practice of the instruction-extension approach in general-
purpose CPU is a good example to integrate special accelerators
into the CPU architecture in a unified way. Such a tightly-coupled

37

https://orcid.org/0000-0002-2554-2143
https://orcid.org/0000-0002-4633-4044
https://orcid.org/0000-0003-4938-5899
https://orcid.org/0009-0003-8397-6358
https://orcid.org/0009-0007-5068-7647
https://orcid.org/0009-0007-1881-962X
https://orcid.org/0000-0002-1254-3278
https://orcid.org/0000-0002-0874-814X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3583781.3590268
https://doi.org/10.1145/3583781.3590268
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583781.3590268&domain=pdf&date_stamp=2023-06-05

GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA Hao Kong, et al.

style can optimally preserve the transparency of the programmer
to the underlying hardware variants. However, the drawback is also
prominent. Modern CPUs are already tens of billions of transistor
monsters, integrating any more special-purpose accelerators, espe-
cially those with considerable silicon footprint, is not a trivial issue.
This leads to not only larger chip area, but also design, verification,
and testing cost, which directly contributes to the time-to-market
and ultimately the product profitability. The above concern steers
us to a clear direction: can we organize these accelerators in a syn-
ergistic way? The answer should be an architecture framework that
holds the following merits:

• High performance with customization design.
• Unified ISA, reinforce easy programming.
• Cooperative, loosely coupled but easily cooperated with CPU
pipeline.

We propose a novel accelerator-centric architecture, calledKernel
Processing Unit (KPU), to fulfill this purpose. The key elements of
a KPU are highly optimized hardware micro-computing units, i.e.
kernels, which are designed for executing complex operators, such
as hash, sort, join and so on, with a few semantic-rich instructions.

To achieve the above aims, we present a dedicated FPGA-based
reference platform shown in Fig. 1. The KPU consists of a set of
table cores, in which shadow cores imitate the behavior of the key
core to process the satellite columns. Each core embraces the com-
bination of simple pipeline and trigger instruction architecture[9],
which helps to eliminate the program counter and avoid over-
serialized execution. The data management system (DMS) is built
from scratch to reach high bandwidth utilization and break the bar-
riers of multi-level cache. We also propose a hardware-acceleration-
friendly KPU instruction set architecture (KISA) that unifies the
kernel interface and facilitates the integration of state-of-the-art
designs.

To plug KPU into different relational DBMS non-intrusively and
hybridize CPU-KPU to co-operate together with task dispatching
strategy, a software stack called Real-time Accelerate Computing
Environment (RACE) is proposed which has the ability to validate
KPU design, evaluate its system level performance and abstract the
boundary between the application and hardware device.

Application Level

DBMS

Runtime

Platform Level

Device OS

PCIe Handler

PCIe
DMA

A
X

I

M
a

s
te

r

A
X

I
S

la
v
e

DRAM

SQL

Application

Memory Controller

Data Management System

Stream Management

Page Management

ID Management

RACE

...

Key Core
Shadow Core

Shadow Core
Shadow Core ...

Table Core

Key Core
Shadow Core

Shadow Core
Shadow Core ...

Table Core

Key Core
Shadow Core

Shadow Core
Shadow Core ...

Table Core

Global

RF

Global

ADOF

Host x86 CPU

Race Runtime

Environment

Library

Figure 1: KPU-SQL architecture overview.

2 BACKGROUND AND MOTIVATION
General-purpose processors are often unable to meet real-time
response needs and cost requirements for analytic query process-
ing. As such, heterogeneous computing has emerged as the pre-
dominant method for SQL acceleration, often utilizing customized
computation kernels that leverage complete application charac-
terization. SQL operators are generally classified into two groups:
scan-intensive and join-intensive[12].

For scan-intensive operators like filter, the computing capability
is often the bottleneck, as continuous memory access can over-
whelm the core computing power. To process such a large amount
of data, PC-based instructions must execute serially to represent the
producer-consumer relationship between SQL operators. However,
this approach can introduce various types of hazards and result in
significant idle time.

For join-intensive operators like sort and join, random memory
access can cause serious bandwidth utilization decay. To mitigate
this issue, one approach is to convert random memory access to
continuous access, such as merge tree in sorting[10], but the satel-
lite data which refer to the non-key column data still face the
gather/scatter pattern problem. Another option is to break through
the traditional multi-level cache structure and design a storage
structure for streaming data, enabling computation to be embed-
ded into the data stream. In column-oriented databases, data are
available in streaming form with good locality and a low reuse rate,
necessitating a unique memory management system.

Customized designs typically target a single kernel individually,
such as sort [11], join [3], aggregation [5], and so on. While such
designs offer high performance, they require significant alteration
when integrated into a complete system and can create compati-
bility issues with each other. Additionally, these designs often lack
a unified external interface, making integration challenging and
limiting the possibility of flexible kernel expansion. By adopting
a unified external interface, we can easily integrate any state-of-
the-art design and detach it to be upgraded individually at low
cost.

Database processing unit works as one way to solve the integra-
tion problem with a certain level of programmability. It gets design
wins mainly based on its ability to provide an attractive point in the
space of power-delay-cost-productivity trade-offs. A Previous study
proposed RAPID that achieves a good performance/power design,
by omitting features such as branch prediction, cache hierarchy,
and a floating-point unit [1]. RAPID’s initial prototype consists of
1440 database processing units, each with 32 dpCores and an 8GB
of DDR3 memory. While programmability extends the lifetime of a
product, it can come with a performance overhead. When compar-
ing the performance of a multi-core chip design without RDMA,
RAPID does not rank among the top-performance tier, as shown in
table 1.

As the traditional processing architecture is based on individual
data addressing, which brings two problems: 1) complex control,
addressing control accounts for most of the instructions; 2) data
access delay uncertainty, data transmission conflicts between the
continuous data delay uncertainty, will introduce complex synchro-
nization control. To improve bandwidth utilization, the addressing
method of individual data is abandoned and the stream addressing

38

KPU-SQL: Kernel Processing Unit for High-Performance SQL Acceleration GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA

Table 1: The Performance of Different Database Processing
Unit

Related Work Data Size(GB) Average Speedup
Q100[13] 0.01 70X

AQUOMAN[14] 1000 1.5~2X
RAPID[1] 1024 3.4X(From Total HW.)
DOE[7] 1 10~100X

method is adopted. Therefore, we designed the DMS, where the
entire data stream is treated as an addressing unit. The entire data
stream is stored continuously in memory, greatly simplifying ad-
dressing control, and shares a single entry in the address lookup
table. The addressing method is inherently "burst" transfer, and
the entire data stream is transferred continuously, improving data
transfer efficiency and fixing the delay between consecutive data.

DOE[7] goes some distance towards realizing these objectives.
To fully realize the requisite gains, DOE works as a co-processor,
while the host CPU is only responsible for the global scheduling of
data and generating query plans with the inner cost models. Instead,
KPU avoids this pitfall by interleaving/hybridizing the CPU and
KPU to cooperate together rather than omitting the computing
power of the CPU.

3 KPU INSTRUCTION SET ARCHITECTURE
The KPU Instruction Set Architecture (KISA) follows the classical
load/store RISC-like execution model. This model preserves a se-
mantically simple interface with the other components outside of
the KPU domain. Before delving into the details, the expression con-
ventions are introduced first, as illustrated in Algorithm 1. A basic
instruction consists of the operator type and source and destination
operands, which are contained by either one or more immediate
operands, register or Atomic Data Object (ADO) entries, or memory
locations. Based on this, each kernel can share the unified external
interfaces.

Algorithm 1 Trigger Instruction Mode

#Rule A
when (A.condition) do

OPTYPE [src.][src.]··· [dest.] (Status Config)

3.1 KISA Design Issues
As most application-specific instructions take multiple cycles to
execute, the traditional multi-stage pipeline experiences signifi-
cant stall time. To address this challenge, we introduce a new ap-
proach inspired by triggered instructions [9]. This approach per-
forms guard-actions on status registers and is designed to work
with the load-kernel-store and operator-at-a-time mode. Each ker-
nel adopts a data-flow-driven execution method, and the input port
of the kernel is equipped with a synchronous buffer. When data
arrive at each port and activate the trigger conditions, the compu-
tation is automatically started without requiring external control
intervention.

Aside from the register file designed for storing scalar data, an
ADO is also used to buffer a batch of register elements with one
single index. However, rather than simply extending the dimension
of a register, ADO is considered the minimum unit of transmission

and processing. The operator imposed on each ADO has to be
carried out in an "atomic" manner to exploit data parallelism. For
example, given an N-element ADO, and two types of operators,
𝑂𝑃𝛼 and𝑂𝑃𝛽 , it is legal to apply either𝑂𝑃𝛼 or𝑂𝑃𝛽 to all elements
of the ADO, but illegal to apply 𝑂𝑃𝛼 to some elements and 𝑂𝑃𝛽 to
others. To facilitate the communication between ADOF(ADO File)
and RF(Scalar Register File), augmented MOVE instructions are
provided.

To address the inefficiencies in executing LOAD/STORE instruc-
tions, some auxiliary functions have been integrated into the design.
For instance, LOADS is designed to compare the heads of two sorted
sequences, and determines which one should be updated. Addition-
ally, STORF has been implemented to filter NULL values when the
intermediate results are stored into DRAM.

To improve performance in the OLAP domain, the need for
branch and jump operations has been eliminated through accurate
computational pattern analysis. Instead of using BEQ and BNE for
loops to manipulate data recursively, trigger conditions are now
used to facilitate the flow of data.

3.2 KISA Use Case

Filter

Filter

Join

Sort

Aggregate

[Key core]

when (!s0 && %ID1.tag != EOL) do

 LOADV ID1 A1 (s0 := 1)

when (s0 && !s1) do

 SETV A1 #IMM A2 (s0 := 0, s1 := 1)

when (s1) do

 STORF A2 ID2 (s1 := 0)

[Shadow core]

when (s1 && !ss0 && %ID3.tag != EOL) do

 LOADV ID3 A1 (ss0 := 1)

when (ss0 && %M1.tag !=EOL) do

 GATH A1 M1 A2 (ss0 := 0, ss0 := 1)

when (ss1) do

 STORF A2 ID4 (ss1 := 0)

on KPU

on CPU

on CPU&KPU

Figure 2: Query plan tree of TPC-H query-1 and partial KISA
expression.

The KPU supports two offloading modes: 1) Partially offloading
for large volume of data, in which CPU-bound and KPU-friendly
operators are offloadedwithout interferingwith the CPU-side query
plan execution. This saves the transmission time and utilizes the
residual computing power of the host. 2) Fully offloading for small
volume of data, which is ideal for situations where most data reside
on-board and are analyzed multiple times.

Using TPC-H Q1 as an example, the query plan can be repre-
sented as a tree structure, as shown in Fig. 2, with the order of
operators being determined by the query optimizer. In fully of-
floading mode, each node in the tree can be translated into a set
of KISA instructions, such as the filter shown in Fig. 2. In the case
of partially offloading mode, CPU-bound operators can divide the
query plan into multiple sub-trees, with different sub-trees typically
operating on independent data tables. The low-cost sub-trees can
still be executed by the CPU, and their results can be consumed by
the blocked operators through the KPU. To reduce the frequency
of DRAM reads and writes, the non-blocked node outputs can be
directly fed into the parent node via ADOF, and the optimizer can
also decide to cache high-value intermediate results as necessary.

4 KPU ARCHITECTURE
The KPU architecture is depicted in Fig. 3, and its key features can
be summarized as follows:

• Control-lite. The control is largely in the hands of the host
while the KPU is responsible for processing the data flow

39

GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA Hao Kong, et al.

Trigger Instruction

Trigger Instruction

Trigger Instruction

Trigger Instruction

Trigger

Resolution

Input Channel

Status

Registers

Priority Encoder

Detachable Kernel

Execution Unit

Output Channel

Data

Data

Data

Data

Data

Data

Data

Data

Tag

SCAN SORT

JOIN ...

Private

ADOF

RF

Tags

Channel

Status

Channel Status

Instruction Ready

Instruction Cache

(Empty/Full)

Triggered

Instructions
Decoder

ALU

Key Column

Trigger Instruction

Trigger Instruction

Trigger Instruction

Trigger Instruction

Trigger

Resolution

Input Channel

Status

Registers

Priority Encoder

Output Channel

Data

Data

Data

Data

Data

Data

Data

Data

Tag

Data

Data

Data

Data

Data

Data

Data

Data

Tag

GATHER

SCATTER

Tags

Channel

 Status

Channel Status

Instruction Ready

Instruction Cache

(Empty/Full)

Decoder

Satellite

ColumnKey Core Shadow Core

Data

Data

Data

Data

Data

Data

Data

Data

Tag

Mask

Table

DMS or

Global ADOF

DMS or

Global ADOF

Private

ADOF

Figure 3: The micro-architecture of table core with one shadow core.

through a customizable kernel execution unit (KEU). This
separation of control and data reduces centralized data syn-
chronization control among multiple cores, branch predic-
tion, and cache hierarchy.

• Memory-heavy. To adapt to the stream processing and column-
oriented storage format, DMS is our key design, which fo-
cuses only on the core functions, including storage format,
data pre-fetching, dynamic space allocation, and batch pro-
cessing.

4.1 Table Core Level Parallelism
Regarding multi-core designs, there are two methods for deploying
workloads: assigning one column to each core or distributing dif-
ferent batches of the same column to different cores. The former
guarantees data integrity for each core and facilitates continuous
memory access, but can cause mismatches between the column and
core. The latter can circumvent this problem but force the need for
a homogeneous core design, which results in wasted resources and
functional redundancy. Both ways have their places in KPU, and
KPU is predominantly in the former way with assistance in the
latter one.

The SQL computational workload involves computation-intensive
operations (such as comparison and arithmetic during filter) and
memory-intensive operations (such as gather and scatter during
projection). The latter can cause data-cache misses and occupies
more cycles than the former, especially in the case of large joins
[12]. Therefore, a versatile key core is designed specifically to pro-
cess key columns, which is surrounded by a set of shadow cores
for moving data of satellite columns. Both constitute a table core,
which can save hardware utilization and improve performance by
taking different optimization measures independently for different
cores. Key cores can focus on the KEU design, while shadow cores
emphasize data movement, reducing KEU idle cycles. For example,
key cores process the key column to output a boolean mask, which
shadow cores can use to filter satellite columns. When column-to-
core mismatch problem occurs, the table core can be assigned to
another task while the shadow cores continue processing redundant
satellite data.

Traditional processor architectures typically use a centralized
control module to manage data synchronization across multiple
processing modules. However, this requires a large number of dy-
namic control instructions and can obstruct the execution process
of each processing module. In our design, communication between

multiple table cores is rare and data volume is small. Therefore, we
divide ADOFs into two parts: private and global. Private ADOFs
are only accessible within a single core, while global ADOFs are
accessible by all cores. Global ADOFs are limited in number and
modified by only one core at a time, avoiding data consistency
problems. Operations, such as aggregation, that require collecting
intermediate results from multiple cores, can also be accessed using
global ADOFs/RF. In summary, KISA can precisely express all of
these operations through global ADOFs/RFs.

4.2 Kernel Execution Unit
Macro SQL operators, such as filter, aggregation, sort, and join, are
customized in the KEU, while other auxiliary functions are embed-
ded in the KPU’s ALU. GroupBy is usually a preemptive operation
for filter and aggregation and is not tested separately. By using uni-
fied interfaces and incorporating state-of-the-art designs with some
adjustments, we focus on optimizing the kernel design, especially
sort and join, which are the two most costly relational operators
and are commonly used in TPC-H queries [2, 4]. When evaluating
the kernel’s individual performance with data sizes varying from
1MB to 100GB, the results are all competitive, as shown in Fig. 4.
Next, let’s take a closer look at the internal architecture design:

1MB 100MB 1GB 10GB 100GB
0

5

10

15

20

25

30

Pe
rfo

rm
an

ce
 S

pe
ed

up
 o

ve
r x

86
 C

PU

Data Size

 Filter
 Sort
 Join
 Aggregation

Figure 4: Individual kernel performance speedup over CPU.

Sort. Partitioning is excessively resource-consuming and requires
multiple rounds of data scanning [14], so it is not deployed on the
KPU board. Instead, to support large-scale data sorting, the KPU
is responsible for sorting a specific volume of data, while the CPU
merges all the sorting results. Pre-sorting is accomplished using
bitonic sort, and the sorted sequences are merged using techniques
derived from Bonsai[11]. As illustrated in Fig. 5(a), the MERGE
instruction corresponds to a merge tree used to merge ordered
sequences from A1 to A8, enabling ADO-length output per clock

40

KPU-SQL: Kernel Processing Unit for High-Performance SQL Acceleration GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA

cycle. The merge tree is comprised of a series of mergers (k-M) and
couplers. The k-M is a bitonic partial merger that outputs k data
per cycle, as shown in Fig. 5(b). The process of multiple merging
passes is scheduled by LOADV instructions using different stream
sources. To sort satellite data, we simply stitch together the row
index with the satellite data, and in the final pass, the relative index
of the output is sent to shadow cores.

4-M

2-M

1-M

1-M

FIFO

FIFO

FIFO

FIFO

1-M

1-M

FIFO

FIFO

FIFO

FIFO

2-M

Coupler

(a) MERGE A1 A8 #1 A9 (b) 4-M

ADO_1

ADO_2

ADO_3

ADO_4

ADO_5

ADO_6

ADO_7

ADO_8

ADO_9

Empty

Index

Table

Shadow Core

Figure 5: Merge sort architecture overview.
Join. To tackle semi-, anti-, and outer-joins, as well as address

poor random memory accesses and read/write conflicts, we use the
sort-merge join based on [8]. As shown in Fig. 6, LOADS is used
to determine which ADO needs to be updated. Then, the adjacent
data in the ADO are compared to identify the starting and ending
positions of duplicate data, and to filter out non-duplicated data,
thereby reducing the number of comparisons required in the final
Join stage. When deduplicating, boolean comparison results are
concatenated in the MSB of the data, which then goes through a
bitonic sorter and the adjacent data in the sorting results are then
compared with each other. The start and end positions are stored in
a repetition table, along with the matching mask table. Both tables
are then sent to shadow cores to re-arrange the join results.

JOIN A1 A2 #IMM A3LOADS #ID1 #ID2 A1 A2

Stream #ID1

Stream #ID2

<

MUX

Head

Head

MUX

= = = =

= = = =

= = = =

= = = =

A3

Config.

#IMM

=

=

=

Last

...

A1

...

bool
Bitonic Sorter

...

...

+

A1

...
=

=

=

(Start, End)

...

=

=

=

Last

...

A2

...

bool
Bitonic Sorter

...

...

+

A1

...

=

=

=

(Start, End)

...

Shadow Core

Shadow Core

Mask

Table

Shadow Core

Figure 6: Join architecture overview.

4.3 Data Management System
Massive data processing and multi-core computing often lead to
memory becoming a bottleneck when it comes to improving appli-
cation performance, particularly in light of the following challenges
in memory access and data interaction: 1) access conflicts caused by
multiple cores simultaneously accessing memory require arbitra-
tion; 2) dynamic memory allocation, as SQL cannot predict result
size in advance; and 3) complex data object management, with each
processing core required to handle multiple data objects, such as
integer, floating point, and string.

To address the aforementioned problems, a data management
system has been designed, as shown in Fig.7. Data is accessed by
ID, which serves as an addressing unit, instead of being identified
with a physical address. Each column can be appointed with a
unique ID, and LOAD/STORE instructions can be triggered with
this ID without the need for repeatedly updating physical addresses.
The outputs of each kernel are also assigned an ID. The bandwidth
utilization has been tested with varying page sizes and burst lengths,

and it can be achieved to nearly 90%, as shown in Fig.8. Performance
decreases slightly when accessing non-continuous pages.

Read Interface Write Interface

PAGE

Management
ID Management

Memory Controller

Page_0 Page_1 Page_2

 Free Page Index Area Free ID Index Area

Read Dispatch Write Arbiter

ID Status LUT

ID Status

Loading Page Address

Page Head

Index

Line Tail

Address

0 127

S
tr

e
a

m
in

g

M
a

n
a

g
e

m
e

n
t

Address

Package

Dispatch

Page

Buffer

Recycle

Page

Buffer

ID+CH

Data Storing Area

Assist Message Area

ID+CH

Address

UnPackage

ID Searching Area

Configuration

Read Mangement

Cnf read

buffer

Read

Queue

Streaming

Read Control Loading Page Address

Loading Page

Address Buffer

Storing Page Address

Write

Queue

Storing Page Address

Line Head

Address

Line Dispatch & Recycle

Dispatch

Line Buffer

Recycle

Line Buffer

 Free Line Address Index Area

Query ID
Apply

ID

Delete

ID

Extract

Addr

Record

Addr

ID Operation

Dispatch ID Buffer Recycle ID Buffer

ID Dispatch & Recycle

buffer

1

buffer

2

buffer buffer

0 127

buffer

1

buffer

2

buffer buffer

Configuration

Write Mangement
Streaming

Write Control

Storing Page

Address Buffer

Dispatch Mangement Recycle Mangement
Dispatch

Mangement

Recycle

Mangement

Dispatch

Mangement

Recycle

Mangement

DDR

Figure 7: Architecture of data management system (DMS).

The DMS integrates page management, ID management, and
streaming management, with page management being responsible
for dynamic memory allocation and recovery, ID management for
ID application and release, state querying, data loading and storage,
and physical address extraction, and streaming management for the
efficient loading and storage of multi-channel data. The following
are some of the techniques and innovative strategies employed by
DMS:

0 64 128 192 256

80

82

84

86

88

90

92

Ba
nd

w
id

th
 U

til
iz

at
io

n(
%

)

Page Size(KB)

 Burst Length = 128 Burst Length = 64
 Burst Length = 32 Burst Length = 16

Figure 8: DDR Read/write performance with DMS.
1) To address the dynamic memory allocation problem, memory

space is divided into multiple pages of fixed size (configurable as
4KB, 8KB, 16KB or more) with a linked-list-based memory manage-
ment system for dynamic allocation and recycling of pages. The
linked list is constituted by the ID index, line and page index, which
is stored in the DDR assist message area. To improve efficiency, the
ID status LUT is designed to store frequently used information. 2) A
pre-allocation strategy is adopted to improve the response time of
page requests. When the number of free pages in the buffer cache
falls below a certain threshold, the command to fetch from the free
page index area of the DDR is activated. 3) Due to most operators
shrink, except for constant sort and expanding join, there exists
a bandwidth mismatch between the kernel input and output. To

41

GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA Hao Kong, et al.

Table 2: The Accuracy of the Performance Model

Kernel No. of Records Real(ms) Estimated(ms)
Filter 100k 2.66 2.5(-6.4%)

1M 24.75 25(+1%)
10M 245.83 250(+2%)

Join 10k 2.324 2.3(-1%)
100k 28.048 25(-10%)
1M 325.77 312(-4%)

ensure fast page recycling, a queued page recycling mechanism is
adopted, with the queue recording the next address to be stored
or loaded, and recycled pages being written to the DDR when the
number is higher than a certain threshold, reducing the number
of DDR accesses and improving efficiency of reading and writing.
4) Additionally, FPGA development boards usually have multiple
DRAM chips, which naturally support multi-channel concurrent
read/write. As multiple banks can open or precharge a row con-
currently, a bank-awareness page allocation measure is taken to
improve data concurrency bandwidth and reduce page walk latency.

5 RACE SOFTWARE SYSTEM
After describing the KPU architecture and extracting the supported
operations, the question arises how to develop it in a disciplined
and efficient way, to ease the verification and correctness of time-
consuming and error-prone HDL constructions. RACE is designed
to allow easy migration and adoption of current open-source DBMS,
taking SparkSQL and PostgreSQL as an example shown in Fig. 9.

KPU software emulator enables a function simulator and per-
formance model, which is created for evaluating each point in the
design space and can predict the runtime with more than 95% accu-
racy, the partial results are shown in Table 2. The simulator also
helps to find the correct mix of functional units, memories and
forwarding paths, and to validate the behavior of KISA.

To address the high synchronization overhead introduced by
CPU-to-device data copying and the high latency of on-board
PCIe bus, the memory space is divided into separate parts for in-
put/output. Double-buffering is used to overlap transfers with com-
putation and arrange input in a constant address space, allowing
the host to easily partition data using KISA instructions and making
hardware memory partition management unnecessary. Addition-
ally, RACE only transfers the columns mentioned in the queries to
the KPU, eliminating unneeded I/O.

6 EVALUATION
6.1 Experimental Setup

Baselines. All evaluations were conducted on CPU (12th Gen
Intel Core i5-12400) with 16GB RAM and 500GB Samsung SSD,
PG-Strom[6] on NVIDIA P100 GPU with Apache Arrow. We imple-
mented the KPU in Verilog and built it on the Xilinx Alveo U200
FPGA card (XCU200), which worked at 270MHz. The sweet-spot
of ADO’s size is 64 by carefully measuring multiple burst lengths
to satisfy the memory bandwidth and computation capacity of
KPU cores. Observed from the KISA expression, 16 private ADOs
are enough for each table core, and the instruction cache size of
each core is 1 KB. According to the statistical results of the related
column in TPC-H, the number of shadow cores is set as 4.

Software Stack

SQL Applications

DBMS

Spark-Race plugins PG-Race extension

Race Runtime Environment Library

Runtime

Functions

Data

Management

Environment

Management

Memory

Management

Device OS

PCIe Handler

Device Manager

Task Dispatcher

Task

Queue

Task

Consumer

KPU Software Emulator

KPU

Function Simulator

KPU

Performance Model

A
p

p
lic

a
ti
o

n
 L

e
v
e

l
R

u
n

ti
m

e
 P

la
tf

o
rm

 L
e

v
e

l
H

a
rd

w
a

re
 L

e
v
e

l KPU Hardware System

PCIe

xDMA

A
X

I
M

a
s
te

r

KPU

A
X

I
S

la
v
e

DRAM

Figure 9: The overview of RACE software system.

Benchmark. TPC-H data are generated with a scale factor of 100.
To transfer all 22 queries of TPC-H into KISA, as the compiler is
not supported currently, function-mapped methods are used as an
alternative. The data width is 64-bit to cover the actual data range.
The decimals are represented as 64-bit integers without dot, which
is allowed by TPC-H rules and is faster than the variable-length
numerical strings methods, more accurate to avoid the rounding
errors than double. String manipulations are costly, although there
are some regular expression match work, only simple prefix search
(WHERE p_name like ’%𝑔𝑟𝑒𝑒𝑛%’.) is supported, leaving the rest on
the host.

6.2 Overall Results

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10Q11Q12Q13Q14Q15Q16Q18Q17Q19Q20Q21Q22
0

10

20

30

40

50

60

70

Pe
rfo

rm
an

ce
 S

pe
ed

up
 o

ve
r x

86
 C

PU

 GPU
 KPU

Figure 10: KPU execution time results of TPC-H.
Hardware resource utilization is shown in Table 3. Due to the

limitation of resources on Alveo U200 and the TPC-H schema, a 16-
cores design was implemented. It should be noted that more cores
can be added if more resources allow, leading to better performance.
The performance of all TPC-H 22 queries are shown in Fig. 10, 24.5x
and 8.75x speedup over the CPU and GPU respectively on average.

To verify the compability of RACE system, we also test the TPC-
DS queries for SparkSQL on 10GB local mode, as shown in Fig. 11.
Because there are 99 queries in total and it’s too difficult to do
compilation, TPC-DS is only emulated at current, which shows a
15.62x speedup on average.

42

KPU-SQL: Kernel Processing Unit for High-Performance SQL Acceleration GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA

0

20

40

172174176178180
Pe

rfo
rm

an
ce

 S
pe

ed
up

 o
ve

r x
86

 C
PU

Query 1-99

Figure 11: Results of TPC-DS.

Table 3: Hardware Resource Usage

Hierarchy LUT(%) FF(%) BRAM(%)
JOIN 27.44 0.88 -
SORT 24.33 32.52 < 1
FILTER < 0.01 0.4 -

AGGREGATION 4.7 1.1 -
ALU < 0.01 < 0.01 -
DMS 8.73 4.51 26.71
ADOF 4.16 3.52 -
RF 5.12 2.88 -

xDMA 2.21 1.29 1.71
Inst-Cache - - 10.72
others 4.27 3.08 6.91
Total 80.96% 50.18% 46.05%

Available 1182240 2364480 25.8MB

7 CONCLUSION
In this paper, we proposed an accelerator-centric architecture, KPU
and implemented it on the analytic query processing. To deal with
the table-mode workload, each table core is split into a key core,
which handles the key column, and a shadow core, which mimics
the behavior of the key core. The self-designed DMS is used to
alleviate the bandwidth bottleneck to 90% utilization ratio. Our 16-
core KPU-SQL outperforms the CPU and GPU by 24.5x and 8.75x
on average respectively.

ACKNOWLEDGMENTS
This paper is supported in part by National Natural Science Foun-
dation of China (NSFC) under grant No. 62002340, 61872336 and
62090020, in part by the Strategic Priority Research Program of the
Chinese Academy of Sciences, Grant No. XDB44030100, and in part

by Youth Innovation Promotion Association CAS No. Y201923. The
corresponding author is Guihai Yan and Xiaowei Li.

REFERENCES
[1] Cagri Balkesen, Nitin Kunal, Georgios Giannikis, Pit Fender, Seema Sundara,

Felix Schmidt, Jarod Wen, Sandeep Agrawal, Arun Raghavan, Venkatanathan
Varadarajan, Anand Viswanathan, Balakrishnan Chandrasekaran, Sam Idicula,
Nipun Agarwal, and Eric Sedlar. 2018. RAPID: In-Memory Analytical Query
Processing Engine with Extreme Performance per Watt. In Proceedings of the 2018
International Conference on Management of Data (Houston, TX, USA) (SIGMOD
’18). Association for Computing Machinery, New York, NY, USA, 1407–1419.
https://doi.org/10.1145/3183713.3190655

[2] Peter Boncz, Thomas Neumann, and Orri Erling. 2014. TPC-H Analyzed: Hidden
Messages and Lessons Learned from an Influential Benchmark. In Performance
Characterization and Benchmarking, Raghunath Nambiar and Meikel Poess (Eds.).
Springer International Publishing, Cham, 61–76.

[3] Jared Casper and Kunle Olukotun. 2014. Hardware Acceleration of Database
Operations. In Proceedings of the 2014 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays (Monterey, California, USA) (FPGA ’14).
Association for Computing Machinery, New York, NY, USA, 151–160. https:
//doi.org/10.1145/2554688.2554787

[4] Markus Dreseler, Martin Boissier, Tilmann Rabl, and Matthias Uflacker. 2020.
Quantifying TPC-H Choke Points and Their Optimizations. Proc. VLDB Endow.
13, 8 (apr 2020), 1206–1220. https://doi.org/10.14778/3389133.3389138

[5] Zubeyr F Eryilmaz, Aarati Kakaraparthy, Jignesh M Patel, Rathijit Sen, and
Kwanghyun Park. 2021. FPGA for aggregate processing: The good, the bad, and
the ugly. In 2021 IEEE 37th International Conference on Data Engineering (ICDE).
IEEE, 1044–1055.

[6] HeteroDB 2018. PG-Strom. Retrieved April 1, 2023 from https://github.com/
heterodb/pg-strom

[7] Wenyan Lu, Yan Chen, Jingya Wu, Yu Zhang, Xiaowei Li, and Guihai Yan. 2022.
DOE: Database Offloading Engine for Accelerating SQL Processing. In 2022 IEEE
38th International Conference on Data Engineering Workshops (ICDEW). IEEE,
129–134.

[8] Philippos Papaphilippou, Holger Pirk, and Wayne Luk. 2019. Accelerating the
merge phase of sort-merge join. In 2019 29th International Conference on Field
Programmable Logic and Applications (FPL). IEEE, 100–105.

[9] Angshuman Parashar, Michael Pellauer, Michael Adler, Bushra Ahsan, Neal Crago,
Daniel Lustig, Vladimir Pavlov, Antonia Zhai, Mohit Gambhir, Aamer Jaleel,
Randy Allmon, Rachid Rayess, Stephen Maresh, and Joel Emer. 2013. Triggered
Instructions: A Control Paradigm for Spatially-Programmed Architectures. In
Proceedings of the 40th Annual International Symposium on Computer Architecture
(Tel-Aviv, Israel) (ISCA ’13). Association for Computing Machinery, New York,
NY, USA, 142–153. https://doi.org/10.1145/2485922.2485935

[10] Makoto Saitoh, Elsayed A Elsayed, Thiem Van Chu, Susumu Mashimo, and
Kenji Kise. 2018. A high-performance and cost-effective hardware merge sorter
without feedback datapath. In 2018 IEEE 26th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM). IEEE, 197–204.

[11] Nikola Samardzic, Weikang Qiao, Vaibhav Aggarwal, Mau-Chung Frank Chang,
and Jason Cong. 2020. Bonsai: High-performance adaptive merge tree sorting. In
2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 282–294.

[12] Utku Sirin and Anastasia Ailamaki. 2020. Micro-Architectural Analysis of OLAP:
Limitations and Opportunities. Proc. VLDB Endow. 13, 6 (feb 2020), 840–853.
https://doi.org/10.14778/3380750.3380755

[13] Lisa Wu, Andrea Lottarini, Timothy K. Paine, Martha A. Kim, and Kenneth A.
Ross. 2014. Q100: The Architecture and Design of a Database Processing Unit.
In Proceedings of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems (Salt Lake City, Utah, USA) (ASP-
LOS ’14). Association for Computing Machinery, New York, NY, USA, 255–268.
https://doi.org/10.1145/2541940.2541961

[14] Shuotao Xu, Thomas Bourgeat, Tianhao Huang, Hojun Kim, Sungjin Lee, and
Arvind Arvind. 2020. Aquoman: An analytic-query offloading machine. In 2020
53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 386–399.

43

https://doi.org/10.1145/3183713.3190655
https://doi.org/10.1145/2554688.2554787
https://doi.org/10.1145/2554688.2554787
https://doi.org/10.14778/3389133.3389138
https://github.com/heterodb/pg-strom
https://github.com/heterodb/pg-strom
https://doi.org/10.1145/2485922.2485935
https://doi.org/10.14778/3380750.3380755
https://doi.org/10.1145/2541940.2541961

	Abstract
	1 Introduction
	2 Background and Motivation
	3 KPU Instruction Set Architecture
	3.1 KISA Design Issues
	3.2 KISA Use Case

	4 KPU Architecture
	4.1 Table Core Level Parallelism
	4.2 Kernel Execution Unit
	4.3 Data Management System

	5 RACE Software System
	6 Evaluation
	6.1 Experimental Setup
	6.2 Overall Results

	7 Conclusion
	Acknowledgments
	References

