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ABSTRACT
The Internet of Things (IoT) has brought about unprecedented con-
nectivity and convenience in our daily lives, but with this newfound
interconnectedness comes the threat of cyber-attacks. With ever-
increasing IoT devices being connected to the internet, securing IoT
devices is becoming increasingly urgent. Machine learning (ML) is
among the most popular techniques used by intrusion detection
systems (IDS) to enhance their detection performance when se-
curing IoT. However, a key obstacle of ML-based IDS for IoT is
learning from nonstationary streaming data, also known as concept
drift. One of the most challenging learning scenarios under con-
cept drift is extreme verification latency (EVL), which occurs when
only unlabeled nonstationary streaming data is available after a
small set of initial labeled data. Stream Classification Algorithm
Guided by Clustering (SCARGC) is an algorithm that can effec-
tively deal with the nonstationary data streams in EVL scenarios.
Applying an EVL implementation provides the capability of adapt-
ing to nonstationary environments within the IoT domain. The
SCARGC model, as an integrated IoT intrusion detection system,
allows for sustainable security as new threats are identified in this
non-stationary environment. Hence, in this project, we develop an
innovative IoT intrusion detection approach by natively integrating
SCARGC and intrusion detection to address the EVL challenges to
provide sustainable security as the model adapts to nonstationary
environments. We evaluated the proposed approach on real-world
IoT cybersecurity datasets. The results demonstrate the feasibility
of the proposed approach, which can lead to the development of
sophisticated intrusion detection systems for IoT.

CCS CONCEPTS
• Security and privacy→ Intrusion detection systems; • Com-
puting methodologies → Machine learning.
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1 INTRODUCTION
The Internet of Things (IoT) is rapidly expanding and becoming an
integral part of our daily lives, with a growing number of connected
devices and appliances communicating and exchanging data over
the Internet. The increasing demand for IoT technology has resulted
in a proliferation of connected devices, thus escalating the security
risks in IoT [2, 6–8]. It will be increasingly rewarding for attackers
to compromise IoT systems as there will be greater rewards for
successfully breaching IoT systems. Furthermore, without proper
security for the data processed/generated by these IoT devices, the
data may be stolen for financial gain or, worst, threaten people’s
lives [10, 15, 18]. Naturally, the public’s adoption of IoT systems
is exploited and abused by cybercriminals using sophisticated and
advanced hacking methods such as Botnets.

Intrusion detection systems (IDS) are one of the promising se-
curity solutions which can be used to protect IoT systems. Many
researchers use machine learning techniques for Intrusion detec-
tion since ML-based IDS is advantageous over traditional signature-
based IDS due to its capability to detect unknown and zero-day
attacks. However, IoT systems’ heterogeneous, dynamic, complex,
and evolving features results in a non-stationary IoT data stream.
Therefore, the conventional ML-based IDS for IoT trained based
on the data obtained from the stationary data stream (i.e., data
sampled from a fixed probability distribution) fails to address the
challenge. Although several IoT intrusion detection methods have
been proposed to handle the non-stationary stream, the limitations
remain. One of the most critical limitations is assuming the ex-
istence of class labels immediately or with some delay after the
detection. Unfortunately, this assumption is often not feasible in
practice because the cost of labeling the huge unlabeled amount
of IoT data during the detection phase is exceptionally high. To
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Figure 1: Commonality of EVL, IoT IDS, and Machine Learn-
ing Techniques

address this limitation, recent studies have been conducted to deal
with extreme verification latency (EVL) [4, 5, 17], where the labeled
data are only available at the initial step. The following data are not
labeled, providing a more practical learning scenario for ML-based
intrusion detection for sustainable IoT security.

The burning platform of implementing sustainable securitywithin
the IoT platform involves policies and practices prioritizing long-
term solutions that counteract cyber-attacks and cyber-threats
while considering the efficiency, economic, and environmental im-
pacts of the system it tries to protect. The goals of sustainable
security include prevention, resilience, and adaptability. Our re-
search aims to address these goals as we utilize robust machine
learning techniques to develop an intrusion detection system that
can detect and prevent cyber-attacks by learning through previous
behaviors and data. To address the adaptability, we integrate the
EVL method into our detection model for learning under streaming
data that entails IoT devices, including the capability of adapting to
concept drift while providing a robust and resilient system. Our de-
sire to determine if using an EVL method offers an efficient solution
that can recognize cyber-attacks in a non-stationary environment
allows an intrusion detection system to incorporate an adaptable
machine learning technique that provides sustainable security to
IoT systems.

This paper’s main contribution is to design intrusion detec-
tion techniques for sustainable IoT security by proposing a novel
approach containing two main modules: an ML-based detection
model and an EVL method, namely Stream Classification Algorithm
Guided by Clustering (SCARGC) [17]. In this context, SCARGC
performs clustering followed by a detection step that is repeated
continuously in a closed-loop process, using the current and previ-
ous cluster positions derived by clustering unlabeled observations
in order to monitor drifting classes over time, thus adapting the
ML detection model in nonstationary IoT environment. A second
contribution of the paper is that we implement the proposed ap-
proach and conduct case studies on real-world IoT security datasets.
Through the experiments, we show the feasibility of the proposed
approach that can successfully perform intrusion detection over
time and provide more sustainable IoT security. In our final con-
tribution, we also compare the detection performance of the IoT
intrusion detection approach implemented with/without SCARGC
and demonstrate the improvement on three popular ML algorithms
for IDS, including logistic regression (LR), support vector machine

(SVM), and multilayer perceptron (MLP). This manuscript is orga-
nized as follows: Section 2 covers related work in machine learning
for IoT and IDS, Section 3 presents the proposed approach, Section
4 presents the experiments and the results, and Section 5 concludes
this paper.

2 RELATEDWORK
This section briefly introduces ML in IoT and ML for IDS.

2.1 Machine Learning in IoT Systems
Machine learning has become an increasingly important tool in
developing IoT systems due to the opportunity of utilizing comput-
ing resources to identify patterns and trends from network traffic
or behavior trends. Machine Learning in IoT allows for increasing
scalability by processing large amounts of data and deploying ma-
chine learning models on multiple devices. IoT systems provide
the scalability to allow multiple devices to share the computational
workload, which provides lower latency [9]. There can be opportu-
nities to improve data privacy maintained locally in the device and
develop a security feature that prevents sharing of critical informa-
tion across the IoT system. In developing IoT systems, the benefits
of having a distributed system are tied to ensuring that machine
learning algorithms can be distributed across the devices within
the IoT system [9]. There is a delineation between local training
and distributed training where the local training will host and run
a model within a single machine or device. Distributed training
allows the model to be performed simultaneously or in parallel
[9]. Determining which execution paradigm and what machine
learning models are essential before implementing models within
the IoT system. Machine learning techniques in IoT systems must
identify the model’s needs and requirements to learn and classify. In
many use cases, machine learning models are used in IoT to provide
scalable solutions for computational needs [9]. We see in Figure 2
how the three areas of IoT intrusion detection, streaming data with
verification latency, and the use of machine learning techniques
intersect. Our research seeks to understand how to utilize machine
learning models to prevent cyber-attacks within our IoT system.
We hope to find a solution where we can provide an acceptable
approach and solution to solving the issues found in these three
categories.

2.2 Threat Detection for IoT Using Machine
Learning

IoT devices collect diverse information, including electricity con-
sumption, location information, sensor data, sensor networks, and
potentially social networks. As IoT provides users the capability of
offering capability and ease of use for people’s lives, it also threatens
personal privacy, and potentially national security [14]. As cyber-
attacks continue to pose a threat to IoT systems, there have been
studies that sought to capture the opportunities of implementing
machine learning techniques for dangerous attacks such as man-in-
the-middle (MITM) and Distribute Denial of Service (DDoS) attacks
[7]. Due to the nature of machine learning algorithms, the IoT sys-
tems implementation needs to adhere to best practices, such as
feature selection techniques for cyber-attacks [7].
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Figure 2: Learning Using EVL Frameworks for IoT

Evaluation of these machine learning techniques and models
within the IoT networks, there are design constraints that affect
the selection of the machine learning algorithm that can assist in
detecting an IoT cyber-attack. Feature selection is based entirely on
the dataset for machine learning model training. Understanding the
need for machine learning for IoT for intrusion detection, the re-
quirement for a testbed, and training data for our machine learning
models is critically important. Due to the growing interconnectivity
of many devices, it merits examining the sources of these datasets
to train the IoT machine learning models. The cyber threats are
diverse enough that various studies address botnet attacks [11, 16].
Other research has sought to develop an IoT dataset that standard-
izes feature descriptions and cyber-attack classes. The purpose is to
utilize a representative heterogeneously IoT dataset to assist with
the learning of machine learning intrusion detection systems(IDS)
[3, 11, 12]. Based on previous studies, it is imperative to utilize
data from a taxonomy of IoT devices where we could implement a
machine learning model [13]. Recognized model categories include
supervised learning, unsupervised learning, and semi-supervised
learning. There are various pros and cons for each model selec-
tion, as the efficiency and effectiveness of each model will dictate
how well an intrusion attack is recognized within the IoT system.
There are commonalities between EVL frameworks and implemen-
tations and utilizing machine learning techniques for IoT IDS. EVL
frameworks offer opportunities to address cyber-attack datasets’
concept drift. Therefore, We seek to determine if EVL frameworks
will provide a robust prediction for IoT IDS applications.

3 PROPOSED APPROACH
3.1 Extreme Verification Latency Environment

for IoT Intrusion detection
The goal of machine learning is to learn from data. The common
assumption for ML-based IDS for IoT is that the underlying data
are sampled from a fixed distribution [17]. This assumption is often
violated in IoT security applications as varying streaming data from
IoT devices will contain varying distributions due to the compli-
cated concept of IoT environments. For example, the normal/abnor-
mal IoT devices’ behaviors shift in volume, angle, and location of
the streaming without feedback, rendering the intrusion detection

model ineffective when only learning from fixed training data dis-
tributions. Unfortunately, most IoT applications lack regular access
to labeled streaming data. There is a more typical learning setting in
which there are limited labeled data for training intrusion detectors
and plenty of unlabeled data. If a detector predicts the unlabeled
data, a lag period occurs before receiving the true labels. We can
refer to this scenario as verification latency [4, 17]. In the extreme
scenario, labels of IoT data are only available at the beginning, and
afterward, only unlabeled IoT data are present in the stream. This
scenario can be referred to as EVL use case within a non-stationary
environment for IoT Intrusion detection.

3.2 Design of the Proposed IoT Intrusion
Detection System

In contrast to most EVL framework studies which run synthetic
datasets, we address EVL by running real-world cybersecurity
datasets (i.e., IoT intrusion detection datasets). The EVL algorithms
provide a framework for utilizing the varying IoT testbeds to eval-
uate the classification accuracy, computational complexity, and
potential parameter sensitivity. We use the Stream Classification
Algorithm Guided by Clustering (SCARGC) as the EVL method
integrating with ML classifiers, including Support Vector Machine
(SVM), Logistic Regression (LR), and Multi-Layer Perceptron (MLP).
These standard classifiers are used as the base classifier for SCARGC
to compare the detection performance with real-world IoT datasets.
Utilizing EVL algorithms such as SCARGC could allow learning in a
non-stationary environment. Intrusion detection systems recognize
normal behaviors and attacks based on past data. Our premise of
implementing an EVL framework to compare the varying base clas-
sifier performance allows us to down-select an implementation that
provides robustness for the varying IoT cyber-attack datasets. As
shown in Figure 2 our environment entails receiving streaming data
that contains both normal and attack data. We address the learning
issues under non-stationary environments with EVL seniors.

Our development identifies two IoT datasets that were developed
under an IoT system. The goal of using these datasets is to provide
a real-world environment from IoT devices under normal behaviors
and cyber-attacks. Table 1 demonstrates previous work conducted
in IoT utilizing machine learning techniques. The IoT datasets have
historically been subjected to traditional machine learning tech-
niques by implementing popular models such as SVMs, Logistic
Regression, and neural networks. However, the previous works con-
ducted under EVL and non-stationary environment often utilizes
synthetic datasets. The proposed intrusion detection techniques for
sustainable IoT security contain two main modules: an ML-based
detection model and an EVL method, namely Stream Classifica-
tion Algorithm Guided by Clustering (SCARGC). Therefore, our
approach herein conducted the popular ML classifiers on all the
IoT datasets while performing adaptive learning through the EVL
method that can deal with non-stationary environments.

3.3 SCARGC for IoT Intrusion Detection
The EVL algorithm SCARGC as a framework addresses the non-
stationary environments by clustering the unlabeled streaming data
to track drifting classes over time. The SCARGC algorithm begins
with building an initial classification model utilizing the available
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Table 1: Comparison with the Previous Works

Work Conducted Standard
Machine Learning

Adaptive
Machine Learning EVL Real-World Data

Bot IoT Dataset [11] ✔ ✗ ✗ ✔

ToN IoT Dataset [3] [12] ✔ ✗ ✗ ✔

Synthetic Datasets [1] [17] ✔ ✔ ✔ ✗

SCARGC [17] ✔ ✔ ✔ ✗

This Work ✔ ✔ ✔ ✔

labeled data while using a clustering approach to associate the
clusters to a single class. After SCARGC receives new data, the
actions occur: each sample is stored in a pool, and then predict the
data stream by the initial classification model. Once the minimum
number of examples of each class is stored in the pool, the pool
is then clustered again. The goal of clustering from the pool is to
map the previous model to the new model found in the clustering
phase [17]. The newly labeled examples create an updated classifi-
cation model that replaces the initial one, allowing the classification
phase to adapt to the concept drift. The SCARGC as a framework
is built over the past labeled data from the labels provided by the
association of clusters in the current iteration [17]. The cluster-
ing algorithm used implemented the k-means algorithm as it is a
simple and computationally efficient clustering model. Due to this
clustering method, the SCARGC framework stores the centroids of
the past clustering iteration and uses them as seeds for the current
clustering step. This method prevents instability of k-means due to
the stochastic nature [17]. The clustering process also allows the
SCARGC framework to use the centroids to calculate the Euclidean
distance to perform the mapping between the clusters. [17].

4 EXPERIMENTS AND RESULTS
4.1 Experimental Setting
Understanding our IoT datasets allowed us to select proper machine
learning models to learn from the data and make predictions. This
study utilized two different IoT datasets: an IoT Botnet dataset [11],
and an IoT telemetry based on heterogeneous data sources [12].

4.1.1 UNSW Bot IoT Dataset. The Bot IoT dataset consists of three
components: network platforms, simulated IoT services, extracting
features, and forensics analytics. The network platforms include
normal and attacking virtual machines (VMs) with additional net-
work devices such as a firewall and tap [11]. The Bot IoT dataset
was developed by simulating five smart devices to operate locally.
The testbed dataset used a cloud infrastructure for generating nor-
mal/benign network traffic. The IoT platforms were composed of
a realistic smart-home network with five IoT devices: 1) Smart
Refrigerator, 2) Smart Garage door, 3) Weather Monitoring Sys-
tem, 4) Smart Lights, and 5) Smart thermostat deployed in smart
home [11]. The Botnet scenarios simulated normal data and the
cyber-attacks including Probing Attacks, Denial of Service, and In-
formation Theft. Probing attacks are malicious attacks that gather
information from victims by scanning remote systems. The attacks
include port scanning, where an attacker passively probes the net-
work. Active probing includes Operating System (OS) probing in
which the attacker scans and gathers information by comparing

responses to pre-existing ones and the differences between TCP/IP
stack implementations [11]. The Denial of Service (DoS) and Dis-
tributed Denial of Service (DDoS) attacks include malicious attacks
where bots target a remote machine and disrupt the services by
increasing the volume of bots accessing the remote device and
increasing the network traffic. The DoS attacks were generated
in the Bot IoT dataset through SYN TCP floods. And finally, the
information attacks included data theft, and keylogging [11].

4.1.2 UNSW TON IoT Dataset. The generated telemetry dataset,
formally named the TON IoT dataset, comprises heterogeneous data
sources from the telemetry of IoT services that were orchestrated
to demonstrate the interconnections of edge, fog, and cloud layers.
The edge layer includes physical devices and operating systems
employed as the infrastructure. The fog layer involves the virtual-
ization technology which controls the virtual machines. The cloud
layer allows the telemetry data to publish and subscribe capabilities
to the network [12]. The normal and attack scenarios were devel-
oped to generate normal and cyber-attack scenarios in the testbed to
collect the experimental data. In this dataset, there are nine attacks,
including 1) scanning attacks, 2) Denial of Service (DoS) attacks,
3) Distributed Denial of Service (DDoS), 4) Ransomware attacks,
5) Backdoor attacks, 6) Injection attacks, 7) Cross-site scripting
attacks, 8) Password cracking attack, and 9) Man-In-The-Middle
(MITM) attacks. This ToN IoT dataset provides information from
six IoT devices and provides heterogeneous and concurrent data
sources network traffic [12]. The dataset consists of an IoT system
with a smart home that includes a Smart Fridge, Garage, GPS, Light
Monitor, Smart Thermostat, Weather Monitoring System, and the
data from the Modbus of the IoT system.

4.2 Results
The Bot IoT dataset consists of test and training data for the normal
scenarios and various attack scenarios within the IoT system. We
divided the training and test data into batches to demonstrate a
non-stationary environment. We aim to understand if utilizing EVL
machine learning techniques can provide an IoT IDS that is capable
of detecting varying cyber-attacks. The batch sizes allowed our
experiments to be run in 100 different timesteps.

4.2.1 SCARGC and Base Classifiers. Our approach implements
EVL-based IoT IDS by combining the SCARGC and the base clas-
sifiers, including LR, MLP, and SVM. We conduct experiments on
the UNSW IoT datasets by running the base classifiers with/with-
out integrating SCARGC. Table 2 contains the average accuracy
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Table 2: Average Accuracy for IoT Datasets

Dataset Logistic Regression (LR) Multi-Layer Perceptron (MLP) SVM SCARGC
(LR)

SCARGC
(MLP)

SCARGC
(SVM)

Bot IoT 0.9974 0.9929 0.9880 0.9971 0.9999 0.9850
ToN Fridge IoT 0.9981 0.9978 0.9977 0.9988 0.9989 0.9989
ToN Garage IoT 0.9445 0.9749 0.9956 0.9504 0.9988 0.9989
ToN GPS IoT 0.9354 0.7736 0.8568 0.9399 0.9986 0.9162
ToN Light IoT 0.9540 0.9720 0.9919 0.9612 0.9989 0.9989
ToN Modbus IoT 0.8968 0.5475 0.6924 0.9985 0.7070 0.6821
ToN Thermostat IoT 0.9247 0.9249 0.8578 0.9567 0.9988 0.9547
ToN Weather IoT 0.9290 0.9291 0.6327 0.9274 0.9988 0.9368
Overall Average 0.9475 0.8891 0.8766 0.9663 0.9625 0.9340
Rank Average 4.00 4.50 4.75 3.25 1.50 3.00

Table 3: Average ROC AUC Scores for IoT Datasets

Dataset Logistic Regression (LR) Multi-Layer Perceptron (MLP) SVM SCARGC
(LR)

SCARGC
(MLP)

SCARGC
(SVM)

Bot IoT 0.9178 0.7641 0.5108 0.8946 0.9999 0.5000
ToN Fridge IoT 0.9985 0.9982 0.9982 0.9989 0.9990 0.9990
ToN Garage IoT 0.9347 0.9699 0.9954 0.9403 0.9988 0.9990
ToN GPS IoT 0.9248 0.7841 0.8507 0.9299 0.9986 0.9207
ToN Light IoT 0.9441 0.9668 0.9912 0.9529 0.9991 0.9990
ToN Modbus IoT 0.8423 0.5177 0.5056 0.9983 0.5377 0.5000
ToN Thermostat IoT 0.8852 0.8880 0.7890 0.9366 0.9988 0.9335
ToN Weather IoT 0.9137 0.9138 0.5600 0.9119 0.9988 0.9231
Overall Average 0.9201 0.8503 0.7751 0.9454 0.9413 0.8468
Rank Average 4.00 4.25 4.88 3.25 1.38 3.25

results, while Table 3 contains the average Area Under the Re-
ceiver Operating Characteristic Curve (ROC AUC). The utiliza-
tion of the SCARGC framework as our EVL algorithm for most
datasets resulted in increased accuracy across all three implementa-
tions. However, there were a few instances where the base classifier
outperformed the SCARGC implementation marginally. Notably,
SCARGC with an MLP base classifier performed better than the
other five implementations. Figure 3 compares the classifiers for the
Bot IoT dataset and shows that the SCARGC implementation offers
a higher performance value than that of only the base classifiers.
Figure 4 provides the increased performance utilizing the SCARGC
framework while using MLP. Our results highlight the usage of
an EVL method with our base classifiers provides a higher classi-
fication accuracy than the simple machine learning models. Both
figures show the steps and the classification accuracy at each step.
The strategy for developing the data stream was developing various
batches with a randomized seed of the UNSW datasets. Our random-
ization enabled us to create randomized attacks on the streaming
system. We evaluated the classifier accuracy for all six implemen-
tations. Our results demonstrate how the MLP implementation
utilizing the SCARGC framework performs more effectively. We
demonstrate how the SCARGC framework provides a higher accu-
racy rate and ROC/AUC metric scores. In running the Multi-Layer
Perceptron classifier, we see a substantial improvement in accuracy
and ROC/AUC scores when running the SCARGC framework. The
Multi-Layer Perceptron (MLP) base classifier utilizing the SCARGC

framework performs better than without the EVL framework. The
MLP implementation allows using an artificial neural net within the
SCARGC framework. The MLP implementation has outperformed
the base classifiers and the SCARGC implementation. We have also
performed a rank average on all six implementations and found
that the MLP SCARGC implementation has the best overall. We see
that the SCARGC implementation exceeds the performance of the
base classifiers and is ranked accordingly, as found in Table 2 and
Table 3.

5 CONCLUSION AND FUTUREWORK
This paper proposes an intrusion detection approach for sustain-
able security in IoT, which utilizes an extreme verification latency
algorithm (i.e., SCARGC) to handle non-stationary environments
where concept drift could be present. The proposed approach is
evaluated using the SCARGC framework, which combines multiple
base classifiers, including SVM, MLP, and LR. By incorporating
the SCARGC framework, we sought to provide additional capa-
bility to address concept drift for IoT. We demonstrated that this
added capability offers effective and sustainable security for IoT
devices when incorporating an intrusion detection system that uti-
lizes the SCARGC framework. The paper utilizes two IoT datasets,
namely the Bot IoT and the ToN IoT datasets, which consist of data
from various smart devices, such as Fridges, Garages, GPS, Modbus,
Lights, Thermostats, and Weather devices. The proposed method
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Figure 3: Bot IoT Dataset Comparison Accuracy Between
Implementation

Figure 4: Multi-Layer Perceptron Accuracy Comparison of
ToN GPS Dataset

provides higher accuracy or similar classification metrics than the
base classifiers. Overall, the proposed method offers a promising
approach to detect cyber-attacks accurately in IoT environments,
which can help enhance the security of IoT devices and networks.
Our future work entails utilizing other EVL methods to evaluate
the cyber-attack IoT datasets. Using these real-world IoT datasets
provides various opportunities for developing Intrusion Detection
Systems that learn incrementally and provide sustainable security
for IoT systems. Following our success in running a simple neural
network using the MLP, we plan to expand on this implementation,
incorporate the EVL framework in neural networks, and potentially
incorporate it in deep learning models.
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