
PEPA: Performance Enhancement of Embedded Processors
through HW Accelerator Resource Sharing

Qilin Si
qilin.si@UTDallas.edu

The University of Texas at Dallas
Deptm. of Electrical and Computer Engineering

Richardson, Texas, USA

Benjamin Carrion Schaefer
schaferb@UTDallas.edu

The University of Texas at Dallas
Deptm. of Electrical and Computer Engineering

Richardson, Texas, USA

ABSTRACT
To improve the performance while reducing the power consump-
tion, embedded processors in Systems-on-Chip (SoC) often now
include tightly coupled hardware accelerators that can execute ded-
icated tasks orders of magnitude more efficiently (faster and lower
power). These hardware accelerators though require significant
hardware resources as one of the main reason for their efficiency
is that they extensively exploit the parallelism of these dedicated
tasks mapped on them. The question that we address in this work
is if these hardware resources can be re-used by the CPU when
executing a different application.
To address this, in this work we propose an integrated methodology
that adapts automatically the CPU architecture with the tightly
integrated hardware accelerator(s) such that any applications that
will run on the CPU (different from the accelerator) can benefit
from the additional hardware resources available in the hardware
accelerator(s), such that the execution of these applications is accel-
erated. We also propose a VLIW compiler backend that based on
the resources shared, re-generates the assembly instructions such
that the new applications can benefit from this new architecture.
Experimental results show that our proposed methodology is very
effective, achieving average speed up of 1.7×.

CCS CONCEPTS
• Computer systems organization → High-level language
architectures; • Hardware → Hardware-software codesign.

KEYWORDS
Hardware accelerator, SW acceleration, resource sharing.
ACM Reference Format:
Qilin Si and Benjamin Carrion Schaefer. 2023. PEPA: Performance Enhance-
ment of Embedded Processors through HW Accelerator Resource Sharing.
In Proceedings of the Great Lakes Symposium on VLSI 2023 (GLSVLSI ’23),
June 5–7, 2023, Knoxville, TN, USA. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3583781.3590277

1 INTRODUCTION
Most Integrated Circuits (ICs) are now heterogeneous System-on-
Chip (SoC) that include multiple embedded processors, on-chip

This work is licensed under a Creative Commons Attribution
International 4.0 License.

GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0125-2/23/06.
https://doi.org/10.1145/3583781.3590277

CPU1

UART
SPI

ADC

Interfaces

: :

On-chip Bus

On-chip
Memory

Tighly-
coupled
HWacc1

Loosely-
coupled
HWacc2

DMA

Heterogeneous System-on-Chip (SoC)
C/C++

Compiler
(gcc/g++)

HW/SW design
flow

High-Level
Synthesis

Logic
Synthesis

Place and
Route

RTL (.v/.vhdl)

Figure 1: Target architecture and typical VLSI design flow.
memory, different types of interfaces and a growing number of
dedicated hardware accelerators. These hardware accelerators are
often the differentiating factor between competing SoCs.

Fig. 1 shows an example of a heterogeneous SoC similar to the
one targeted in this work that contains two different types of HW
accelerator configurations that can be classified as either loosely-
coupled or tightly-coupled accelerators. Loosely-coupled accelera-
tors have the advantage that every master in the SoC can access
them [1], while in the tightly-coupled case [2, 3], they are faster and
more energy efficient as data does not have to be shuttled across
the SoC [4], but only one master can access them.

Fig. 1 also shows a typical VLSI design flow highlighting that
the hardware accelerators can be directly generated from C/C++
descriptions synthesized through High-Level Synthesis (HLS) into
RTL (Verilog or VHDL) or manually generated in any two Hardware
Description Language (HDL) like Verilog or VHDL. The flow also
shows that the SW running on the embedded processors is compiled
using compilers like gcc or g++.

In this work we mainly target the tightly-coupled HW accelera-
tors as the main goal is to re-use their HW resources to accelerate
any application running on the embedded CPUs to which they
are directly connected to. Intuitively one can see that the tightly-
coupled accelerator will not always be in use due to the flexible
nature of the CPU that will require it to run many other applica-
tions. It can also happen that due to changing workloads when
the SoC is being deployed or if the SoC is being re-purposed for
other applications, that the accelerators are no longer used. Thus,
architectures and methodologies are required that enable to tap on
the HW accelerators’ resources. In this work we target the func-
tional units (FUs), but future work could include internal memories

23

https://doi.org/10.1145/3583781.3590277
https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby%2F4.0%2F&data=05%7C01%7Cschaferb%40utdallas.edu%7C2fe5e0de71644dd9d33c08db346e0f3a%7C8d281d1d9c4d4bf7b16e032d15de9f6c%7C0%7C0%7C638161421244342026%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=rQ4llSOi0OeZjOe0ZIo0760hEexBrP0wqms8IaOWnO0%3D&reserved=0
https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcreativecommons.org2Flicenses2Fby2F4.02Fdata=057C017Cschaferb40utdallas.edu7C2fe5e0de71644dd9d33c08db346e0f3a%7C8d281d1d9c4d4bf7b16e032d15de9f6c%7C0%7C0%7C638161421244342026%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=rQ4llSOi0OeZjOe0ZIo0760hEexBrP0wqms8IaOWnO0%3D&reserved=0
https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcreativecommons.org2Flicenses2Fby2F4.02Fdata=057C017Cschaferb40utdallas.edu7C2fe5e0de71644dd9d33c08db346e0f3a%7C8d281d1d9c4d4bf7b16e032d15de9f6c%7C0%7C0%7C638161421244342026%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=rQ4llSOi0OeZjOe0ZIo0760hEexBrP0wqms8IaOWnO0%3D&reserved=0
https://doi.org/10.1145/3583781.3590277
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583781.3590277&domain=pdf&date_stamp=2023-06-05

GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA Qilin Si and Benjamin Carrion Schaefer

for(x=0; x<4; y++)
out = out + buffer[x]*coef[x];

for(x=0; x<8; x++)
acc = acc + data[x];

x x x x

+ +

+

buffer0 coef0 buffer1 coef1 buffer2 coef2 buffer3 coef3

out

1/fmax

HW
Accelerator = Reg

GPR

: :

imem

dmem+ x

ALU

CPU

Accumulate Dot Product

gcc High-Level Synthesis

Figure 2:Motivational example of CPU+HWAccelerator. HW
accelerator executes the Dot product, while CPU accumulates
8 values.

and registers in the accelerator. One of the reasons that HW accel-
erators can execute applications order or magnitudes faster than
general-purpose CPUs is that they fully parallelize the dedicate
application by using multiple hardware resources in parallel (e.g.,
multiple multipliers and adders). This opens the door to re-using
these FUs by the CPU, which typically only contains one Arithmetic
Logic Unit (ALU) with a single FU of each type. Based on this, the
main contributions of this work are:

• Introduce a methodology to enable internal resources of
tightly-coupled hardware accelerators to be shared with em-
bedded CPUs.

• Present a custom instruction flow that makes use of the
newly shared HW resources and present extensive exper-
imental results showing the effectiveness of the proposed
approach for different types of applications.

2 MOTIVATIONAL EXAMPLE
Fig. 2 shows a motivational example for this work. In particular
it shows the target hardware architecture composed of a general-
purpose processor (CPU) and a dedicated tightly-coupled HW ac-
celerator. The processor is composed of general-purpose registers
(GPR), an ALU, where only the adder and multiplier are shown
for simplification and instruction and data memories (imem and
dmem). The processor can execute any application compiled on it
giving its traditional flexibility, albeit having low performance and
energy efficiency. The HW accelerator on the other hand performs
a fixed function. In this case a 4-vector dot product, which in this
particular example is generated through HLS, but which can be
also generated using Verilog or VHDL. Fig. 2 shows the dot product
high-level code snippet and its RTL implementation. In this case it
uses 4 multipliers and 3 adders as the synthesized circuit structure
follows a classic tree height reduction structure to reduce the circuit
delay.

The question that we try to address in this work is how to speed
up the execution of other tasks running on the CPU by using the
hardware resources of the accelerator. As shown in Fig. 2, the CPU
has to run an application to accumulate 8 values. Using the pro-
cessor’s ALU would require at least 8 clock cycles (8 individual
additions), but considering that the accelerator has three additional
adders that are not being used, these could be used to reduce the
computation time by half making use of the adder in the ALU and
the three additional adders in the accelerator. Based on this, we can
define the goal of this work as follows:

Problem Definition: Given a general-purpose CPU (CPURTL) en-
hancedwith a tightly coupled hardware accelerator (HWaccRTL), de-
velop an automated flow that given a new application to be executed
on the CPU different from the hardware accelerator, Capp, extract
the individual resources in HWaccRTL = {FUs = [add, sub,mul, div]}
and make them sharable between the CPU and the accelerator such
that the execution of Capp is accelerated. This also involves adding
a new compiler back-end aware of these shared resources in order
to generate custom instructions that make use of these resources.

imem

+ x

ALU

GPR

: :

RISC-V
Instr.
size

32-bit

32-bit

32-bitopcode operands

: :

Control
unit

PC
dmem

32-bit

32-bit: :

Figure 3: CPU based on modified RISC-V architecture.

3 RELATEDWORK
CPUs are ubiquitous in every electronic system. Thus, much re-
search has been done to improve their performance and reducing
their energy consumption. Some popular techniques that are being
used in all modern processors include pipelining and Instruction
Level Parallelism [5] where multiple instructions are executed con-
currently, with superscalar architectures doing this dynamically
and VLIW processors statically (at compile time). Other orthogonal
approaches include Application Specific Processors (ASIPs) which
allow to build custom instructions based on specific applications
running on the processor [6, 7]. This approach is well-known as
shown by the fact that the two major EDA vendors offer commer-
cial ASIP flows [8, 9]. Another approach is to use tightly-coupled
dedicated HW accelerators. These accelerators perform complete
sub-tasks orders of magnitude faster and energy efficiently than the
processors [2, 3, 10–13]. The common denominator across these
applications to be accelerated is that they have embarrassingly high
amounts of parallelism.

The problem is that embedded processors are often in a wide
range of applications due to their flexibility, many of which do not
require the use of the hardware accelerator. The question that this
work address, is how to re-use these resources.

4 CPU ARCHITECTURE DESCRIPTION
The CPU used in this work is based on a 32-bit pipelined RISC-
V architecture taken from [14, 15]. The key enabler of our flow
is that the RISC-V processor is generated using HLS. This archi-
tecture was modified to be able to accommodate the execution of
multiple concurrent instructions as shown in Fig. 3. In particular,
first the general-purpose register (GPR) bank was fully expanded
so that multiple registers can be read/written in the same clock
cycle. Secondly, because the instructions to be executed concur-
rently are grouped together into a single VLIW style instruction,
the extensible RISC-V ISA is leveraged by encoding the length of
the instruction using 3-bits (we noticed empirically that more bits
were not needed). Based on this, the control unit knows the size of
the instruction. This, combined with the expanded GPR allows to

24

PEPA: Performance Enhancement of Embedded Processors through HW Accelerator Resource Sharing GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA

HWaccRTL

Capp
Identify Resources

to be shared in
HWacc

Phase 1 : HW Resources Sharing

Inputs

sapp.asm

Outputs

Step 2

CPURTL

Share resources
Insert

muxes/demuxes

Compile Application
to be accelerated

(RISC-V -O3)

Step 1 Step 3 HWaccSRTL
Step 1

New application
control flow

graph generation

Step 2

Custom VLIW
Instruction
Generator

CPUSRTL

Step 3

Re-format custom
program and add

to CPU imem

Phase 2 : Custom Instruction Generation

app.asm

DB Shared
resources

Figure 4: Overview of complete flow composed of two phases. Phase 1: Identify and share resources in HW accelerator. Phase 2:
Generate custom instructions that make use of those resources.

execute multiple LOAD/STORE instructions in parallel. As shown
in Fig. 3 the Program Counter (PC) in the control unit of the proces-
sor points to the next instruction in the instruction memory (imem)
to be executed. It then extracts the bits that represent the size of
the instruction and based on this fetches concurrently the consec-
utive N instructions that form this VLIW instruction, where each
instruction still remains 32-bit to simplify the instruction decoding
process. This modified processor is in turn synthesized into Verilog
using HLS.

5 PROPOSED ACCELERATION FLOW
Fig. 4 shows an overview of the proposed complete flow that we
call PEPA: Performance Enhancement of Embedded Processors
through HW Accelerator Resource Sharing. Our proposed flow can
be executed in two modes. Mode 1 involves that we do not know
what other SW applications might be executed on the processor
and hence, all of the resources in the hardware accelerator will be
shared. Inmode 2, we do know the SW applications that will be
executed on the CPU and hence can more precisely target which
resources in the accelerator to share, hence, reducing the overhead
associated with the sharing logic. In mode 1 the inputs of our flow
are the RTL description of the processor (CPURTL) and that of the
HW accelerator (HWaccRTL), while in mode 2 an additional input
are the SW application that we want to accelerate (Capp).
In both cases the outputs are the new HW accelerator RTL code
that enables sharing its resources (HWaccSRTL) and a customized
compiler backend that generates VLIW instructions for new ap-
plication that can leverage the shared resources. The flow itself is
composed of two main phases. Phase 1, as shown, identifies which
HW resources to be shared from the accelerator, while phase 2
recompiles the program to make use of these resources. Basically
phase 1 prepares the underlying HW, while phase 2 compiles the
SW to make use of these shared resources. The next subsections
describe these two phases in detail.
Phase 1: HW Resource Sharing: This first phase modifies the
HW accelerator’s RTL description in order to allow its main re-
sources to be shared. These include FUs like adders, multipliers
and dividers. This is basically done by inserting muxes/demuxes
at the inputs and outputs of each resources to be shared. In mode
1 this sharing logic is inserted at each of the resource of the accel-
erator. This makes the resultant architecture very flexible as any
SW application to be executed on the processor can potentially use
them, but has a larger area and delay overhead as the cost of the
muxes is often not negligible as we will show later. The other option
is to take as input the application(s) that will be executed on the
processor (Capp), and only share the resources that are needed by
this particular application(s) (mode 2) . This obviously reduces the

overhead associated with the sharing logic, but makes the approach
less flexible as any new application that was not considered during
this phase will not be able to leverage un-shared resources. This
first phase can be further sub-divided into three steps as follows.
Step 1 Compile Application to be Accelerated on CPU: This first
step is only required if we only want to share the resources needed
by a given SW application. Thus, this steps takes as input the
application in a high-level language, Capp, and compiles it using
a compiler for the target CPU, e.g., gcc-riscv. The output is the
assembly code (app.asm) for this application that includes all of
the arithmetic operations required and the total number of distinct
registers used. It should we noted that by default we use gcc’s -O3
compiler option (optimizes for performance).
Step 2 Identify Resources to be Shared in HWacc: This second step
takes as input the RTL description of theHWaccelerator (HWaccRTL)
and the compiled application to be executed on the CPU obtained
in step 1 (app.asm) and identifies which resources in the accelera-
tor can accelerate the execution of the application. As mentioned
previously, this step can also be executed without the application.
In this case, all of the FUs are shared.

The HW accelerator (HWaccRTL) is first parsed generating cre-
ating a data dependency graph (DDG). This graph is traversed
performing a static timing analysis following [16] for each the
paths. The process then extracts all of the sharable resources start-
ing with the resources that are not in the critical path. The timing
of the different HW resources is obtained from a pre-characterized
library similar to what HLS tools do that contains the area and
delay of different RTL components. Currently we only consider
sharing FUs. The type and also the bitwidth of these resources is
annotated into a data base of shared resources. This is important
because when building the custom accelerator FUs might have
reduced bitwidths to optimize the area, power and delay of the
accelerator. This implies that arithmetic operations to be used need
to match the minimum bitwidth of the processor in order to be
usable.
Step 3 Shared Resources: This last step takes as input the data base
of resources generated in step 2, and adds the necessary sharing
logic. This basically includes modifying the datapath of the hard-
ware accelerator by inserting muxes/demuxes at the inputs and
outputs of the shared resources. Fig. 5 shows an example of one
adder from the motivational examples being shared.

One of the main issues with this approach is that the sharing
logic inserted at the RTL can now affect the timing of the circuit
by increasing the critical path delay. Having sorted the sharable
FUs based on being on the critical path or not in step 2 helps
minimizing the risk of not achieving timing closure. The resultant

25

GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA Qilin Si and Benjamin Carrion Schaefer

x x x x

+ +

+

buffer0 coef0 buffer1 coef1 buffer2 coef2 buffer3 coef3

HW
Accelerator

= Reg

Imem

Dmem

+ x

ALU

GPR

: :

CPU

Sharing
logic

Sharing
logic

Control
unit

Figure 5: Processor structure with shared logic inserted: (i)
Control Unit update; (ii) Mux/demux; (iii) GPR.
HW accelerator (HWAccSRTL) is in turn synthesized once (logic
synthesis) with the target technology library and timing constraints.
If the timing is not met then one option is to re-synthesize the HW
accelerator using different HLS synthesis constraints such that
a circuit with more positive timing slack is generated and then
repeating this step. We did not encounter this problem during our
experimental evaluation due to the relative lower timing delay of
the muxes as compared to the FUs.

In addition, the control unit that decodes the instructions also
needs to be updated in order make use of these resources so that it
can set the control signal for the muxes that share these units at
runtime. The output of this phase is the new RTL description of the
HW accelerator with shared hardware resources (HWAccSRTL).
Phase 2: Custom Instruction Generation: This second phase
generates the custom VLIW instructions that enable the processor
to make use of the shared resources extracted in phase 1. Fig. 6
shows an overview of our proposed flow using an FFT as example.
The inputs to this phase are the application to be executed on
the processor (Capp) and the number and type of shared hardware
resources. The output is the assembly code with the new custom
instructions and the machine code that can be directly used in the
instruction memory of the RTL description of the hardware (for
verification). This phase follows three steps described in detail as
follows:
Step 1 Application Control flow Graph Generation: This first step
takes as input the assembly code of the compiled application to be
accelerated on the CPU (app.asm) and generates a data dependency
graph (DDG) of the instructions. It should be noted, as shown in
Fig. 6, we use gcc’s compiler option -O3 to generate the fastest
possible compiled code. This DDG is then passed the next step that
will merge these instructions into custom VLIW instructions.
Step 2 Custom Instruction Generation: TheDDGgenerated in step
1 is then analyzed in order to group instructions together similar to
a VLIW processor with the objective to maximize the instructions
executed in parallel based on the resources available in the CPU
(ALU) and HWacc . This problem can be formulated as a resource
constraint instruction scheduling. Different approaches have been
demonstrated in the past to e.g., maximize performance [17, 18],
reduce power consumption [19] or the code size [20]. In our partic-
ular case we focus on increasing the performance by grouping as
many instructions as possible based on the new resources available
to reduce the execution time.

In this work we use a greedy algorithm that traverses the control
flow graph and tries to parallelize as many instructions as possi-
ble based on the available resources. A depth first search (DFS) is

performed first annotating any data dependencies. In particular,
Read-after-Write (RAW), and because we also allow out-of-order ex-
ecution, we also annotateWrite-after-Write (WAW) andWrite-after-
Read (WAR) dependencies. Once these dependencies are annotated,
our processes traverses the control flow graph again grouping as
many instructions as possible ensuring that the data dependencies
are kept.

As shown in the example in Fig. 6, 4 multiplications in the FFT
code snippet and 2 additions are grouped together as a custom
vector instruction (vmul and vadd), highlighted in red in the figure.
This is possible because the processor now has 4 multiplier and 4
adders as shown in the example. The output of this step is hence,
the new assembly code with the custom instructions (sapp.asm).
Step 3 Application Specific Program Re-formatting: This last step
is the backend of our proposed flow, which re-formats the instruc-
tion generating the new machine code for the custom vector in-
structions. The output of this step is the new program that uses
certain shared FUs from the tightly coupled hardware accelerator.

Table 1: Experimental Setup

HLS Tool NEC CyberWorkBench 6.1.1
Logic Synthesis Synopsys Design Compiler 2018.06-SP1
Power estimator Synopsys Prime Power 2019.03-SP5
RTL Simulator Synopsys VCS 2018.06

Synthesis Technology Nangate open cell 45nm
Target Frequency 250MHz

6 EXPERIMENTAL RESULTS
Table 1 shows an overview of the experimental setup used to test
our proposed flow. CyberWorkbench v. 6.1.1 from NEC is used
as HLS tool. Synopsys Design Compiler (DC) for logic synthesis
and Synopsys Primer power for power estimation. Synopsys VCS
2018.06 is used as RTL simulator. The target technology is Nan-
gate 40nm open cell technology library, and the target synthesis
frequency is set to 250MHz.

The embedded CPU used is a RISC-V processor taken from [14,
15] and synthesized into RTL using HLS. As tightly coupled hard-
ware accelerators we use four benchmarks from the S2CBench
benchmark suite [21] from different domains and different com-
plexities. In all cases we synthesize the designs setting the HLS
options to maximizing their performance (unroll loops, and inlining
functions).

Table 2 shows an overview of the different configurations (RISC-
V+HW accelerator) generated. E.g., S3 contains the RISC-V CPU and
a three-stage interpolation filter instantiated as tightly integrated
HW accelerator. The table also shows the number of sharable func-
tional units that each HW accelerator has, e.g., in the S3 case 4
adders and 5 multipliers.

To test our proposed flow we run these application in software
on the different systems, e.g., running a sobel filter on S3 as well
as additional applications as shown in Table 3. This will help us
to measure the performance and energy improvement of our flow
(PEPA) vs. running that same application purely on the embed-
ded processor (SW_only) as well as running a given application
directly on the HW accelerator (HWonly). This can obviously only

26

PEPA: Performance Enhancement of Embedded Processors through HW Accelerator Resource Sharing GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA

VLIW
generator

app.asm

Machine code
generatorCapp

while (i < N)
{

: :
sample[index2][0] = tmp_real2*W[windex][0] - tmp_imag2*W[windex][1];
sample[index2][1] = tmp_real2*W[windex][1] + tmp_imag2*W[windex][0];

sample[index][0] = tmp_real;
sample[index][1] = tmp_imag;

i = i + 2*length;
}

.L6fft:
: :

mul a2,t4,a4
add a7,a7,a6
add s8,s8,s9
mul a6,t3,a3
mul a4,t3,a4
sub a2,a2,a6
sw a2,0(a5)
mul a3,t4,a3
add a4,a4,a3
: :

.L6fft:
: :

vmul a2,t4,a4,a6,t3,a3,a4,t3,a4,a3,t4,a3
vadd a1,a1,t2,a4,a4,a3
sw a4,4(a5)
sub a2,a2,a6
sw a2,0(a5)
bleu t1,t6,.L6fft

Assembly code

Encoded VLIW instructions

4 MULs
4 ADDs

vadd

vadd

Rd
a4

Rs
a4

Rs
a3

26 2231 27 21 17

rd rs rs

11 716 12 6 2

00

1 0

RISC-V
Compiler -O3

DB Shared
resources

Rs
a1

funct7 Length
2

31 25 24 20 19 15 14 12 11 7
Rd
t2

opcode
00

6 0
Rs
a1

New Assembly code from VLIW generator

FFT code(snippet)

sapp.asm

Figure 6: Overview of custom VLIW instruction generation
Table 2: CPU+tightly-coupled HW accelerator configurations

System S1 S2 S3 S4 #Add #Mul
CPU (RISC-V) • • • • 1 1

HWacc

sobel • 2 3
fir • 3 3

interp • 4 5
matinv • 8 8

be done when the application running is also implemented as HW
accelerator in the system, e.g., in S3 running the interpolation filter.
Table 3 shows the main characteristics of these applications to be
accelerated in terms of their lines of C code (C), compiled assembly
instructions (ASM), number of assembly instructions after our flow
generates the custom instructions (VLIW ASM), and finally the
average number of instructions grouped together (avg. parallel).

Table 3: SW applications running to be acceleratedwith PEPA

Benchmark Lines C ASM VLIW ASM Avg. parallel
sobel 108 215 185 2.76
fir 72 110 95 2.58

interp 130 255 218 3.1
matinv 127 333 266 2.59
fft 182 205 177 2.96
dct 60 173 148 2.7
idct 217 309 266 3.68
ann 228 361 323 2.59

Fig 7 shows the experimental results in terms of speedup and
energy for our proposed method (PEPA) taking the SW only exe-
cution on the RISC-V processor (SWonly) as baseline (1.0) and also
showing when the application being executed matches the HW
accelerator (HWonly). The figure also shows the average speedup
results for all of the benchmarks in the last entry (AVG.), ignoring
the HWonly case.

Several interesting observations can be made from these results.
Observation 1: In all cases, our proposed flow leads to smaller run-
time (speedups > 1.0) compared to running the application on the
original embedded processor (SWonly). The average overall speedup
for all of the applications ranged between 1.4 to 1.7×. Observation 2:
As expected, the more FUs the hardware accelerator has, the larger
the speedup is as more resources can be shared. From table 2 we
can observe that system S4 has 8 sharable adders and 8 multipliers
and thus, also leads to the largest speedups, on average 1.7×. On the

other side system S1 only has 1 sharable adder and 1 multiplier lead-
ing to an average speedup of only 1.4×. Observation 3: Running the
application on the dedicate HW accelerator leads to obviously the
best results with speedups ranging from 25× to 35× and significant
energy reductions. Observation 4: The energy reduction obtained
by our method is relatively modest in three of the systems (S1-S3)
while leading to larger average energy in the S4 case. This is mainly
because of the size of the accelerator. The larger the accelerator is
the larger the overall power consumption is. This is only partially
compensated with the runtime reduction. Much better results could
be obtained if the rest of the unused accelerator could be turned off.

Table 4: Avg. area and delay overheads introduced by PEPA

Metric System Avg.S1 S2 S3 S4
Area [%] 10.86 6.72 7.22 4.82 7.10
Delay [%] 1.27 0 0 2.47 1.78

Table 4 measures the overheads associated with our proposed
flow in terms of area and delay. Average values are shown here
when all of the benchmarks given in table 3 are mapped on the
different systems. Adding the sharing logic and additional control
structure to execute the VLIW instructions leads on average to 7.1%
additional area used. In terms of delay, it increases by 1.78% on
average, while in two cases there is not delay increase because the
additional logic inserted by our method was not in the critical path.
It should be noted that in all cases the target synthesis frequency
of 250MHz was met after logic synthesis.

Table 5: PEPA runtime overview
Runtime [s]

System S1 S2 S3 S4

PEPA Phase1 0.1 0.1 0.2 0.2
Phase2 15.42 12.74 7.79 4.86

Total 15.43 12.75 7.81 4.88
Finally, table 5 reports the running time of our proposed flow

reporting the runtime of each phase individually (phase 1 and phase
2) and the combined runtime (total). The values reported are the
average values when the different applications are mapped onto
the individual systems. From the results we can observe that the
running times are very consistent across the different systems with
phase 1 being extremely fast and phase 2 taking between 4.86s to
15.42s. The main reason for the higher runtime of phase 2 is the
generation VLIW instructions which requires grouping individual

27

GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA Qilin Si and Benjamin Carrion Schaefer

sob
el fir

int
erp
ma
tin
v fft dct idc

t
an
n
AV
G

1.4

1.6

1.8

2

Sp
ee
du

p
[×

]

CPU+sobel (S1)

sob
el fir

int
erp
ma
tin
v fft dct idc

t
an
n
AV
G

1.4

1.6

1.8

2

CPU+fir (S2)

sob
el fir

int
erp
ma
tin
v fft dct idc

t
an
n
AV
G

1.4

1.6

1.8

2

CPU+interp (S3)

sob
el fir

int
erp
ma
tin
v fft dct idc

t
an
n
AV
G

1.6

1.8

2

CPU+matinv (S4)

sob
el fir

int
erp
ma
tin
v fft dct idc

t
an
n
AV
G0

0.5

1

En
er
gy

[×
]

CPU+sobel (S1)

sob
el fir

int
erp
ma
tin
v fft dct idc

t
an
n
AV
G0

0.5

1

CPU+fir (S2)

sob
el fir

int
erp
ma
tin
v fft dct idc

t
an
n
AV
G0

0.5

1

CPU+interp (S3)

sob
el fir

int
erp
ma
tin
v fft dct idc

t
an
n
AV
G0

0.5

1

CPU+matinv (S4)

31.82 25.68 28.59 34.91

0.01 0.05 0.05 0.04

PEPA HW_only

Figure 7: Speedup and Energy comparison of proposed flow (PEPA) taking SW only execution of application as reference (1×)
and also running on HW accelerator (only systems shown in table 2).
instructions. We do believe that these running times are acceptable,
especially considering the benefits introduced by our flow.

These results allow us to conclude that our proposed method is
effective in accelerating the execution of applications re-using the
hardware resources of tightly coupled hardware accelerators.

7 CONCLUSION
In this work, we have introduced a framework that leverages the
hardware resources of tightly coupled hardware accelerators in
order to accelerate the execution of other applications running on
the processor. This is done by modifying the hardware accelerator’s
architecture sharing its FUs. A compiler back-end that knows the
type of FUs is also presented. This compiler back-end generates
new instructions for any application that can leverage these shared
resources.
Experimental results show that our proposed automated flow is
very effective. Future work will share a wider range of resources
apart from the functional units like registers and memories and also
steer the HLS process when generating the hardware accelerators to
maximize resource sharing for these other applications that might
be executed on the processor.

REFERENCES
[1] L. Piccolboni, P. Mantovani, G. D. Guglielmo, and L. P. Carloni, “COSMOS: Co-

ordination of High-Level Synthesis and Memory Optimization for Hardware
Accelerators,” ACM Trans. Embed. Comput. Syst., vol. 16, no. 5s, pp. 150:1–150:22,
Sep. 2017.

[2] M. Dehyadegari, A. Marongiu, M. R. Kakoee, S. Mohammadi, N. Yazdani, and
L. Benini, “Architecture support for tightly-coupled multi-core clusters with
shared-memory hw accelerators,” IEEE Transactions on Computers, vol. 64, no. 8,
pp. 2132–2144, 2015.

[3] Y. Janin, V. Bertin, H. Chauvet, T. Deruyter, C. Eichwald, O.-A. Giraud, V. Lorquet,
and T. Thery, “Designing tightly-coupled extension units for the stxp70 processor,”
in 2013 Design, Automation Test in Europe Conference Exhibition (DATE), 2013, pp.
1052–1053.

[4] A. Boroumand et al., “Google workloads for consumer devices: Mitigating data
movement bottlenecks,” SIGPLAN, vol. 53, no. 2, p. 316–331, Mar. 2018.

[5] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Ap-
proach, 6th ed. Morgan Kaufmann, 2019.

[6] M. Gries and K. Keutzer, “Building ASIPs: The Mescal Methodology.” Springer,
2005.

[7] L. Zhang, S. Li, Z. Yin, and W. Zhao, “A Research on an ASIP Processing Element
Architecture Suitable for FPGA Implementation,” in International Conference on
Computer Science and Software Engineering, vol. 3, 2008, pp. 441–445.

[8] Synopsys, “ASIP designer,” 2022. [Online]. Available: https://www.synopsys.com/
dw/ipdir.php?ds=asip-designer

[9] Cadence, “Tensilica processor,” 2022. [Online]. Available: https://www.cadence.
com/en_US/home/tools/ip/tensilica-ip.html

[10] S. Parameswaran, N. Cheung, and S. L. Shee, “Novel architecture for loop ac-
celeration: a case study,” in 2005 Third IEEE/ACM/IFIP International Conference
on Hardware/Software Codesign and System Synthesis (CODES+ISSS’05), 2005, pp.
297–302.

[11] L. Liu, Z. Yang, S. Li, and M. Yan, “Implementation of high-throughput fft pro-
cessing on an application-specific reconfigurable processor,” in Proceedings of
2012 2nd International Conference on Computer Science and Network Technology,
2012, pp. 1284–1288.

[12] D. Rossi, C. Mucci, M. Pizzotti, L. Perugini, R. Canegallo, and R. Guerrieri, “Mul-
ticore signal processing platform with heterogeneous configurable hardware
accelerators,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 22, no. 9, pp. 1990–2003, 2014.

[13] P. D. Schiavone, D. Rossi, A. Di Mauro, F. K. Gürkaynak, T. Saxe, M. Wang, K. C.
Yap, and L. Benini, “Arnold: An efpga-augmented risc-v soc for flexible and low-
power iot end nodes,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 29, no. 4, pp. 677–690, 2021.

[14] Comet RISC-V. (2022). [Online]. Available: https://gitlab.inria.fr/srokicki/Comet
[15] S. Rokicki et al., “What You Simulate Is What You Synthesize: Designing a

Processor Core from C++ Specifications,” in ICCAD 2019. IEEE, 2019, pp. 1–8.
[Online]. Available: https://hal.archives-ouvertes.fr/hal-02303453

[16] Y.-T. Li and S. Malik, “Performance analysis of embedded software using implicit
path enumeration,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 16, no. 12, pp. 1477–1487, 1997.

[17] M. Lam, “Software pipelining: An effective scheduling technique for vliw ma-
chines,” vol. 23, no. 7, p. 318–328, jun 1988.

[18] M. V. Eriksson and C. W. Kessler, “Integrated modulo scheduling for clustered
vliw architectures,” in High Performance Embedded Architectures and Compilers,
A. Seznec, J. Emer, M. O’Boyle, M. Martonosi, and T. Ungerer, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 65–79.

[19] C. Lee, J. K. Lee, T. Hwang, and S.-C. Tsai, “Compiler optimization on vliw
instruction scheduling for low power,” ACM Trans. Des. Autom. Electron. Syst.,
vol. 8, no. 2, p. 252–268, apr 2003.

[20] S. Haga, A. Webber, Y. Zhang, N. Nguyen, and R. Barua, “Reducing code size in
vliw instruction scheduling,” J. Embedded Comput., vol. 1, no. 3, p. 415–433, aug
2005.

[21] B. Carrion Schafer and A. Mahapatra, “S2CBench:Synthesizable SystemC Bench-
mark Suite,” IEEE Embedded Systems Letters, vol. 6, no. 3, pp. 53–56, 2014.

28

https://www.synopsys.com/dw/ipdir.php?ds=asip-designer
https://www.synopsys.com/dw/ipdir.php?ds=asip-designer
https://www.cadence.com/en_US/home/tools/ip/tensilica-ip.html
https://www.cadence.com/en_US/home/tools/ip/tensilica-ip.html
https://gitlab.inria.fr/srokicki/Comet
https://hal.archives-ouvertes.fr/hal-02303453

	Abstract
	1 Introduction
	2 Motivational Example
	3 Related Work
	4 CPU Architecture Description
	5 Proposed Acceleration Flow
	6 Experimental Results
	7 Conclusion
	References

