
DrPIM: An Adaptive and Less-blocking Data Replication
Framework for Processing-in-Memory Architecture

Sheng Xu
 School of Computer and Information,

 Anhui Normal University,
 Wuhu, China

 Institute of Artificial Intelligence,
 Hefei Comprehensive National Science Center,

 Hefei, China

 xusheng2019@ahnu.edu.cn

Hongyu Xue
 School of Computer and

Information,
 Anhui Normal University,

 Wuhu, China
 adiwenxue@ahnu.edu.cn

Le Luo
 School of Computer and

Information,
 Anhui Normal University,

 Wuhu, China
 2020020@ahnu.edu.cn

Liang Yan
 Institute of Computing Technology,

 Chinese Academy of Sciences
 Beijing, China

 yanliang19b@ict.ac.cn

Xingqi Zou
 Institute of Computing Technology,

 Chinese Academy of Sciences
 Beijing, China

 zouxingqi@ict.ac.cn

ABSTRACT
Processing-in-Memory (PIM) architecture suffers from frequent
data synchronization, which raises inevitable coherent stalls and
consumes more energy. This paper presents DrPIM, an adaptive
and less-blocking data replication framework for Processing-in-
Memory architecture to address such issues. The key insights are
1) finer-grained data management for the conflict data region and
2) the automatic generation and invalidations of data replications.
The above two schemes significantly decrease the critical path of
data synchronization and the access latency for conflict data, thus
providing a less-blocking execution. Evaluations show that DrPIM
achieves a speedup of 1.5x over the state-of-the-art and reduces
the data-moving energy by 49%.

CCS CONCEPTS
• Computer systems organization → Architectures.

KEYWORDS
Processing-in-Memory, data replication, coherence

ACM Reference format:

Sheng Xu, Hongyu Xue, Le Luo, Liang Yan, and Xingqi Zou. 2023. DrPIM:
An Adaptive and Less-blocking Data Replication Framework for
Processing-in-Memory Architecture. In Proceedings of the Great Lakes
Symposium on VLSI 2023 (GLSVLSI’23). June 5-7, Knoxville, TN, USA. ACM,
New York, NY, USA, 5 pages. https://doi.org/10.1145/ 3583781.3590294

1 INTRODUCTION
PIM is considered a promising technique to hit the memory wall.
Despite the significant benefits of PIM, data coherence and
synchronization are still the main challenges in PIM systems [1].
Experiments showed that an ideal PIM system, i.e., a PIM system
without data coherence penalty, can double the performance of
the state-of-the-art PIM designs [2].

Prior works [2, 3, 4] have proposed several designs to alleviate
the overhead of data coherence and synchronization in PIM. Some
works migrate a conventional shared memory model, allowing a
global directory-based lock to provide exclusive access to the same
data region. Traditional coherence mechanisms, e.g., MESI and
MOESI, are extended and applied. However, such schemes are
impractical as massive broadcast traffic travels through a narrow
off-chip link, which brings potential damage to the system. To
minimize the coherent traffic caused by cache-line updates, many
others provide dedicated message-passing schemes by designing
specified programming models, data placement, and structures.
Although well-designed, these approaches leave efforts to the
programmers, resulting in high programming complexity. For
instance, SynCron [3] adds low-cost hardware to support efficient
PIM synchronization but requires manual shared data lock
management like lock_acquire() and lock_release(). To further
reduce the off-chip synchronization and get compatible with the
existing architecture, others [2] perform a coarse-grained
coherence which further enlarges the coherent granularity to a
page or a bank [4]. As a result, even though a small portion of the
data is accessed, the whole data region is flush to the memory,
adding more latency and energy consumption in some cases [5].

To overcome the challenge of PIM coherence without extra
programming complexity, we propose DrPIM, an adaptive and
less-blocking data replication framework for PIM architecture.
DrPIM provides finer-grained data management for the conflict
data region and automatically generates data replications to
decrease the critical path of data synchronization. DrPIM is
transparent and works well with the existing programming model
and requires no modifications to the source code.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions@acm.org.
GLSVLSI '23, June 5–7, 2023, Knoxville, TN, USA.
© 2023 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 979-8-4007-0125-2/23/06
DOI: https://doi.org/10.1145/3583781.3590294

385

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583781.3590294&domain=pdf&date_stamp=2023-06-05

GLSVLSI '23, June 5–7, 2023, Knoxville, TN, USA Sheng Xu, Hongyu Xue, Le Luo, Liang Yan, & Xingqi Zou

2 DATA REPLICATION IN PIM
To understand why PIM can benefit from data replication
schemes, we need first to quantify the impact of replica placement
on the system. Our target system is a PIM system with multiple
HMCs organized in a mesh topology like Fig. 1. It performs a lock-
based coarse-grained coherence under the granularity of a page. In
PIM systems with HMCs, data synchronization latency and energy
are demonstrated by 1) the distance between data residence and
execution location, and 2) coherent stalls caused by the spin-lock
feature. If data replication is applied in the PIM system, shared
data could be distributed in multiple cubes or vaults. In-memory
logic could access the data from the nearest replicas for a shorter
distance to reduce access latency and data-moving energy. Besides,
data replication may provide lock-free data access to alleviate the
coherent stalls. However, only read can benefit from data
replications, as write will destroy any existing replicas of the same
data region in the memory. Therefore, the benefit of data
replication is closely related to the remote read pattern of the
applications. To make an observation of the read pattern in PIM,
use the following terminology:

CPU

CPU

CPU

CPU
Hybrid Memory Cube (HMC)

TSV

D
R

A
M

 L
a

y
e
rs

Logic
Base

vault

Figure 1: An illustration of the HMC-based PIM system.
HMCs are organized in a mesh topology and interconnected
through off-chip links.

Center of Read Access (
ARC): a

ARC of a page refers to the
equivalent position to store the page where all reads to the page
have the shortest accessing distance. In a mesh HMC topology,

ARC can be defined as a coordinate:

,
i i i i

i HMCs i HMCs
AR

i i

i HMCs i HMCs

X N Y N

C
N N

 

 

 
 

=  
 
 

 

 
 (1)

in which HMCs is the set of all cubes,
iX and

iY are the x and y
coordinate of the cube i .

iN is the read amount of read access to
the page of the cube i .

The Average Read Manhattan Distance (
ARD): a

ARD of a
page refers to the average read distance to access the page, which
is expressed in the inter-cube hops. It is obvious that ARD is the
Manhattan distance to the

ARC of the page.
ARD can be defined as:

()i ARx i ARy i

i HMCs
AR

i

i HMCs

X C Y C N

D
N





− + −

=



 (2)

in which
ARxC and ARyC are the x and y coordinate of

ARC .

Fig. 2a shows the distribution of remote read requests to the
locked pages from the in-memory logic derived from PageRank
using the soc-LiveJournal1 dataset in an 8x8 mesh PIM system. The
overall

ARC and
ARD can be computed using equations (1) and

(2). As depicted in Fig. 2b, most of the
ARC are located near the

cube with the coordinates (2, 3) (denoted as •) and the average

ARD is about 4.14, which indicates that each remote read to the

original page (data owner, denoted as blue •) has to wait for page
unlocking and then travels through more than four HMCs on
average. However, suppose we create two replicas of the page
(denoted as red •) and perform sub-regional coherence
independently. In that case, nearby in-memory logic can benefit
from a shorter distance and less coherent stalls.

0 1 2 3 4 5 6 7
x

0

1

2

3

4

5

6

7

y ×10
9

2.5

2

1.5

1

0.5

Original Page

CARDAR

DAR'

Replica #1

Replica #2

DAR''

 (a) (b)

Figure 2: a) distribution of remote read requests to the
locked pages from all in-memory logic for PageRank using
the soc-LiveJournal1 dataset. b) An example of replica
generation.

3 DRPIM FRAMEWORK
DrPIM includes three steps: 1) a replica generation scheme that
finds the optimal pages, location, and the number of replicas to
minimize the critical path of data synchronization, 2) a replica
invalidation approach to minimize the overhead caused by
inefficient replicas placement, and 3) a synchronization
mechanism to prevent replicas from being inconsistent with
others. The above three steps must be executed periodically at run-
time to invalidate any out-of-date replicas and reproduce new
ones. In the following of this paper, we use the term epoch to
denote the time interval to re-think the effectiveness of existing
replicas in the memory.

3.1 Replica Generation
To perform data replication and gain enough benefits, DrPIM
performs three phases: First, DrPIM selects the candidate pages
that may benefit from data replication. Second, DrPIM establishes
a benefits evaluation to determine if a candidate page should be
dispatched and is ready for data replication. Third, DrPIM
calculates the optimal location and the number of replicas for each
dispatched page and then generates the replicas for them.

Candidate Page Identification Phase. To identify the
optimal pages that may benefit from replication, the most accurate
way is to track every remote access (both reads and writes) and
maintain an access list. However, such implementation introduces
non-trivial overheads since it adds unneglected bits per page. To
keep the overhead low, DrPIM only records the pages within the
most significantly accessed bank (denoted as

iBank) in the last

epoch and uses that to identify candidate pages.
iBank can be

easily captured by snooping on the broadcast traffic in the vault
logic.

386

DrPIM: An Adaptive and Less-blocking Data Replication Framework for
Processing-in-Memory Architecture

GLSVLSI '23, June 5–7, 2023, Knoxville, TN, USA

To pick up candidate pages inside
iBank , more definitions are

needed. We use the term Read Ratio, denoted as pr , to represent

the percentage of remote reads in all remote accesses to a page.
Read Ratio can be defined as:

p

p

j

j HMCs

N
r

N


=


 (3)

Since only remote reads could benefit from data replication,
Read Ratio can partly represent if a shared page was frequently
accessed during its locked-in time. Therefore, DrPIM only picks up
candidate pages from

iBank that 1) have the top N read ratio and

2) exceed a pre-defined threshold
rrT . The first condition ensures

that DrPIM only selects frequently read pages, and the second
prevents DrPIM from selecting pages that are frequently updated,
which may affect the efficacy of DrPIM. The determination of the
parameter N is dataset-related. In our experiments, N can be very
small in most cases.

Page Dispatching Phase. In this phase, DrPIM establishes a
profit function to estimate the benefits of replicating a candidate
page, which is defined as:

()p ARp p p costProfit D r N T = +   (4)

where ARpD , pr , and pN are the average read Manhattan distance,

Read Ratio, and the remote read amount of candidate page p , 
and  are relative weights. Equation (4) reflects the benefits of
data replication come from two aspects: First, the more access
distance is (that is, ARp pD N), the more benefits from replication,

since data replication can reduce
ARD for the page, which reduces

the data synchronization energy. Second, the larger the Read Ratio
is (that is, p pr N), the fewer stalls caused by coherence. Besides,

DrPIM only dispatches the candidate page when the profit
function exceeds a fixed threshold,

costT . When candidate pages

are satisfied with Equation (4), DrPIM dispatches the page for the
next phase.

Replica Generation Phase. Upon a page having been
dispatched for replication, DrPIM determines the optimal location
and the number of copies of the page. We propose a regional-
based algorithm to make such a decision. The main idea of this
algorithm is to separate all HMCs into four sub-regions recursively
and evaluate the benefit of generating replicas in the sub-region,
which is shown in Algorithm 1. It has the following three major
steps. First, as for an HMC interconnection topology graph G , we
generate

ARC and
ARD for a dispatched page p , using the remote

read matrix M monitored by the memory controller of each vault
in the last epoch (lines 1-2). If the region has no more than two
HMC cubes the algorithm is completed (lines 3-5), as there is no
need to generate replicas in other vaults of the same cube. If not,
we partition the region into four sub-regions (line 6). For instance,
for an 8x8 mesh HMCs system with (2,3)ARC = and 4.14ARD  , the
algorithm partitions the region into four groups: {(0~2, 0~3), (0~2,
4~7), (3~7, 0~3), (3~7, 4~7)}. Then a loop is executed until all the

sub-regions are traversed (line 7). Next, we compute the
ARC and

ARD of the sub-region for p (lines 8-10), and use the following

benefit equation to evaluate the profit to create a replica in the
sub-region (line 11):

() (1)()p p p AR ARsub p p sub sub repReplica N r D D N r x x y y T= − − − − + −  (5)

where pN is the remote read amount of the sub-region
subG .

()p p AR ARsubN r D D− refers to the distance save of all remote read in

subG if the replica is generated; ()sub subx x y y− + − stands for the
average Manhattan distance from global

ARC to regional
ARsubC .

(1)()p p sub subN r x x y y− − + − represents the synchronization overhead
to establish the replica. We also add a threshold, repT , to make the
evaluation sense (line 11). If repT is reached, DrPIM adds

ARsubC to
the replica generation lists and performs this algorithm for the
sub-region recursively to find if more replicas should be placed in
the sub-region (lines 12-13). Once the position and the number of
replicas are determined, DrPIM transfers the data to destiny
instantly and broadcasts the replica generation messages as long
as the data owner is still clean.
Algorithm1 Replica Generation Algorithm

Input: HMC interconnection topology graph G ; Remote read matrixM to a dispatched

page p in the last epoch; Read ratio of the page
pr in the last epoch;

Output: The coordinate set of generated replicas { }Rep
{ }Rep  function (, ,)pReplicaGeneration G M r

1: (,) (,)ARx y calculateC G M

2: (, , ,)AR ARD calculateD G M x y

3: if () 2numofCubes G  then
4: return
5: end if

6: { } {(0 ' ,0 '),(0 ' , '),SubRegion x x y y x x y y n=                      

 (' ,0 '),(' , ')}x x n y y x x n y y n                     

7: foreach { }subG SubRegion do

8: (,)sub subM getSubRegionMatrix M G ,
P subN M=

9: (,) (,)sub sub AR sub subx y calculateC G M

10: (, , ,)ARsub AR sub sub sub subD calculateD G M x y

11: if (1)()p p AR p p sub sub repN r D N r x x y y T− − − + −  do

12: { } (,)sub subRep x y+=

13: (, ,)sub sub pReplicaGeneration G M r
14: end if
15: end foreach

3.2 Replica Coherence and Synchronization
In DrPIM, we propose a regional finer-grained coherence scheme
for data coherence and synchronization. For dispatched page and
its replicas, DrPIM divides the shared page into K sub-regions
and keeps the lock bit independently. The idea of adopting
regional finer-grained coherence comes from [5], which suggests
that only a few cache lines in each shared page are modified in
PIM systems. Such implementation in DrPIM guarantees that
conflict pages with replicas retain most of the fine-grained
coherence’s less-blocking benefits while the others can enjoy
much less coherent traffic brought by coarse-grained coherence.

To perform regional finer-grained coherence, DrPIM maintains
a directory-based table, denoted as Replica Page Table in the vault
controller. Each entry of the Replica Page Table holds K valid bits

387

GLSVLSI '23, June 5–7, 2023, Knoxville, TN, USA Sheng Xu, Hongyu Xue, Le Luo, Liang Yan, & Xingqi Zou

of each sub-region of the page, the original data’s location, and the
location of all replicas of the same page. Whenever a write request
to the pages occurs, DrPIM first broadcasts a message to all other
replicas of the same page and invalids the corresponding valid bit
of the accessed sub-regions. Then DrPIM forwards the write
request to the location where the original data resides (i.e., data
owner in Fig. 2b) to apply data modifications. Only the data owner
holds the dirty data of sub-regions. If a memory request accesses
the invalidate sub-region of a replica (say, the sub-region has been
modified), the request will also be forwarded to the data owner’s
location. This mechanism ensures that all modifications to pages
with replicas can only be applied at the data owner while
providing lock-free access for read requests to unmodified sub-
regions.

3.3 Replica Invalidation
Since the memory access pattern changes throughout the
application execution, the effectiveness of replicas should be re-
evaluated periodically too. Removing inefficient replicas can free
up memory space and decrease the synchronization overhead.

The replication invalidation in DrPIM is relatively simple: if a
replica needs to be invalidated, it must meet at least one of the
following conditions: 1) all sub-regions of the page are all invalid,
2) the replica is rarely read but written frequently, and 3) the
replica page table is full meanwhile a newly generated replica
evicts the entry.
Algorithm2 Replica Invalidation Algorithm

Input: Replica Page Table of data owner
ownerRPT ;

1: foreach
i ownerEntry RPT do

2: if { } iValidBits Entry is all invalidate do

3: foreach
j iReplica Entry do

4: ()jInvalidate Replica

5: end foreach

6: ()iRemove Entry

7: else

8: foreach
j iReplica Entry do

9: ()j jRPT findRPTofReplica Replica

10: , (,)valid all j jN N getAccessCounter RPT Replica

11: if /valid all vN N T do

12: ()jInvalidate Replica

13: end if

14: end foreach

15: if ()iReplicaCount Entry is 0 do

16: ()iRemove Entry

17: end if

18: end if

19: end foreach

As for Condition 1, DrPIM should invalidate the replicas of the
page immediately as all data accesses to the page have to be
forwarded to the data owner, which lessens the effectiveness of
data replication. As for Condition 3, the replicas should also be
invalidated immediately if the invalidation is caused by the Replica
Page Table’s eviction since no inconsistency will occur. As for
Condition 2, DrPIM uses the following algorithm to perform
replication invalidation at the end of each epoch (see Algorithm 2).
DrPIM first traverses through all entries of the data owner’s
Replica Page Table to find if any dispatched page has no
unmodified sub-regions (lines 1-3). If so, it indicates that every
access to the replicas of the page must be forwarded to the data

owner (say, meet Condition 1). Therefore, DrPIM invalidates all
replicas of the page and removes the corresponding entry in the
Replica Page Table (lines 4-6). Else, DrPIM will iterate all the
replicas of the page to check their effectiveness using the
following equation (lines 8-10):

/valid all vN N T (6)

where
validN and

allN are the valid access amount and total access

amount to the replica in the last epoch, thus /valid allN N indicates if

the page can benefit from lock-free reads. The percentage should
be lower than a threshold,

vT (lines 11-14). After performing
invalidation, if there is no replica for a dispatched page, DrPIM
will free up the corresponding entry.

4 EVALUATION

4.1 Experimental Setup
Simulation configurations: We use an in-house simulator that
integrates ZSim [6] and HMCSim [7] to simulate the behavior of
DrPIM. The detailed architecture parameters of DrPIM are listed in
Table 1. We compare DrPIM with four schemes: 1) CPU-Only: a
conventional architecture that employs HMCs as the main
memory without any memory offloading. All the evaluated
applications are executed with 32 threads. 2) A Coarse-Grained
scheme enables the coarse-grained coherence of page granularity
in PIM systems. 3) A Message-Passing scheme that performs like
TESSERACT architecture. 4) An Ideal scheme without any
synchronization latency and energy overhead.

Table 1: System Configuration

Component Configuration

On-chip

Processors

4 cores, OoO, 2GHz frequency
L1 I/D-Caches: 32KB private, 4-way, 4-cycle latency, 64B line
L2 Cache: 2MB shared, 8-way, 35-cycle latency, 64B line

Memory

Model

64 HMCs organized in an 8×8 mesh (Fig. 3a)
8GB, 32 vaults per cube, 512 banks
32 single-issue in-order cores, 2GHz, each per cube
L1 I/D-Caches: 32KB private, 4-way, 4-cycle latency, 64B line
Bandwidth: TSV 10GB/s, 320GB per cube; 120GB/s per link;
Energy: 48pJ/bit on link, 10.48pJ/bit intra-HMC [7]

DrPIM

Parameters

0.7rrT = , 2 = , 40 = ,
cos 1500tT = , 300repT =

0.6vT = , 16N = , 8K =
30000 memory accesses each epoch

Workloads and datasets: We use some typical PIM
applications, which are also used in [1-5] as listed in Table 2. All
real-world datasets [8] used are statically partitioned across HMCs,
where the vertex data is equally distributed across cubes.

Table 2: Workloads and Datasets

Workloads Datasets

Average Teenage Follower (ATF),

Breadth-First Search (BFS),

PageRank (PR),

Bellman-Ford Shortest Path (SP)

com-youtube (1.1M Vertices, 2.9M Edges),
wiki-talk (2.3M Vertices, 5M Edges),
com-orkut (3.1M Vertices, 117M Edges),
cit-Patents (3.7M Vertices, 16.5M Edges),
com-lj (4M Vertices, 34.7M Edges),
soc-LiveJournal1 (4.8M Vertices, 69M Edges)

4.2 Evaluation Results
Performance evaluation: Fig. 3 presents a performance
comparison of the five configurations. All results are normalized to
CPU-Only. DrPIM improves the average performance by 50% over

388

DrPIM: An Adaptive and Less-blocking Data Replication Framework for
Processing-in-Memory Architecture

GLSVLSI '23, June 5–7, 2023, Knoxville, TN, USA

CPU-Only, and 49% over Coarse-Grained. To generate data replicas
and perform multi-grained coherence for the dispatched pages,
DrPIM retains most of Ideal’s benefits, coming within on average
13.8% of the performance of Ideal.

Effectiveness of Replica Generation: We also evaluate the
effectiveness of the entire replica generation framework. Fig. 4
shows the average number of candidate pages and the average
number of replicas generated in the last epoch. DrPIM detects
seven candidate pages per epoch on average, and 63.7% of them
are dispatched for replica generation. In each epoch, DrPIM
generates about 14 replicas to perform finer-grained coherence.

Figure 3: Normalized performance evaluation.

Figure 4: The number of generated replicas.

Data movement energy: Fig. 5 shows the normalized data
movement energy evaluation for all schemes except CPU-Only.
DrPIM reduces data-moving energy across all workloads by 1.16x
and 1.94x over Coarse-Grained and Message-Passing schemes,
respectively. During the execution, Message-Passing suffers from
massive data synchronization, which causes significant data-
moving energy. In contrast, DrPIM can benefit from multi-grained
coherence, which reduces coherent conflicts while retaining the
low coherent traffic.

4.3 Overhead
To identify candidate pages, DrPIM needs to track the banks with
the most significant remote access. It can be implemented by
simply maintaining an access counter for each bank. To pick up
pages with the top N read ratio in the bank, DrPIM should hold a
counter for each page in the bank. For an 8GB HMC, each bank
has 16MB storage, that is 4096 pages per bank by default. To track
the remote read amount of 4096 pages, it leads to an extra
log2(4096)×4096=6KB to each vault controller. Such overhead can
be migrated by integrating the logic into the cache of the vault
core, as the in-memory cache hit rate is relatively low.

5 CONCLUSIONS
In this paper, we propose DrPIM, an adaptive data replication
framework. DrPIM automatically detects data regions that suffer

from data synchronization. We also propose dedicated algorithms
to create replicas at the optimal location and invalidate stale or
defunct replicas. Regional finer-grained data management is
applied in DrPIM to reduce the data access contention caused by
the coarse-grained coherence. Experiment shows that DrPIM can
achieve a speedup of 1.5x over the state-of-the-art and provide a
less-blocking execution for PIM systems.

Figure 5: Normalized data movement energy evaluation.

ACKNOWLEDGMENTS
This work was supported in part by the National Natural Science
Foundation of China (62102005, 62104230), Anhui Natural Science
Foundation (2008085QF330, 2108085QF265), The University
Synergy Innovation Program of Anhui Province (GXXT-2021-011),
and the Research Program of Anhui Normal University (751968).

REFERENCES
[1] Li, Zerun, Xiaoming Chen, and Yinhe Han. "Optimal Data Allocation for Graph

Processing in Processing-in-Memory Systems." 2022 27th Asia and South Pacific
Design Automation Conference (ASP-DAC). IEEE, 2022.

[2] Boroumand, Amirali, et al. "CoNDA: Efficient cache coherence support for near-
data accelerators." Proceedings of the 46th International Symposium on Computer
Architecture. 2019.

[3] Giannoula, Christina, et al. "Syncron: Efficient synchronization support for
near-data-processing architectures." 2021 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). IEEE, 2021.

[4] Xu, Sheng, et al. "CuckooPIM: an efficient and less-blocking coherence
mechanism for processing-in-memory systems." Proceedings of the 24th Asia and
South Pacific Design Automation Conference. 2019.

[5] Boroumand, Amirali, et al. "LazyPIM: Efficient support for cache coherence in
processing-in-memory architectures." arXiv preprint: 1706.03162 (2017).

[6] Sanchez, Daniel, and Christos Kozyrakis. "ZSim: Fast and accurate
microarchitectural simulation of thousand-core systems." ACM SIGARCH
Computer architecture news. 41.3 (2013): 475-486.

[7] Leidel, John D., and Yong Chen. "Hmc-sim-2.0: A simulation platform for
exploring custom memory cube operations." 2016 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW). IEEE, 2016.

[8] Leskovec, Jure, and Rok Sosič. "Snap: A general-purpose network analysis and
graph-mining library." ACM Transactions on Intelligent Systems and Technology
(TIST). 8.1 (2016): 1-20.

0.5

1

1.5

2

ATF BFS PR SP

S
p
e
e
d
u
p

com-youtube

0.5

1

1.5

2

ATF BFS PR SP

S
p
e
e
d
u
p

Wiki-Talk

0.5

1

1.5

2

ATF BFS PR SP

S
p
e
e
d
u
p

cit-Patents

0.5

1

1.5

2

ATF BFS PR SP

S
p
e
e
d
u
p

com-orkut

0.5

1

1.5

2

ATF BFS PR SP

S
p
e
e
d
u
p

com-lj

0.5

1

1.5

2

ATF BFS PR SP

S
p
e
e
d
u
p

soc-LiveJournal1

0
6
12
18
24
30
36
42

0

5

10

15

A
T

F

B
F

S

P
R S
P

A
T

F

B
F

S

P
R S
P

A
T

F

B
F

S

P
R S
P

A
T

F

B
F

S

P
R S
P

A
T

F

B
F

S

P
R S
P

A
T

F

B
F

S

P
R S
P

com-youtube wiki-talk cit-Patents com-orkut com-lj soc-

LiveJournal1

A
v
e
r
a
g

e
 N

u
m

b
e
r
 o

f
r
e
p

li
c
a
s

g
e
n

e
r
a
te

d
 p

e
r
 e

p
o

c
h

A
v
e
r
a
g

e
 n

u
m

b
e
r
 o

f
c
a
n

d
id

a
te

p
a
g

e
s

p
e
r
 e

p
o

c
h

Undispatched Pages Dispatched Pages replicas

0

1

2

3

C
o

ar
se

-G
ra

in
e
d

M
e
ss

a
g
e
-P

as
si

n
g

D
rP

IM

Id
e
a
l

C
o

ar
se

-G
ra

in
e
d

M
e
ss

a
g
e
-P

as
si

n
g

D
rP

IM

Id
e
a
l

C
o

ar
se

-G
ra

in
e
d

M
e
ss

a
g
e
-P

as
si

n
g

D
rP

IM

Id
e
a
l

C
o

ar
se

-G
ra

in
e
d

M
e
ss

a
g
e
-P

as
si

n
g

D
rP

IM

Id
e
a
l

C
o

ar
se

-G
ra

in
e
d

M
e
ss

a
g
e
-P

as
si

n
g

D
rP

IM

Id
e
a
l

ATF BFS PR SP AVG

N
o

r
m

a
li

ze
d

 e
n

e
r
g

y

com-youtube

0

0.5

1

1.5

2

C
o

ar
se

-G
ra

in
e
d

M
e
ss

a
g
e
-P

as
si

n
g

D
rP

IM

Id
e
a
l

C
o

ar
se

-G
ra

in
e
d

M
e
ss

a
g
e
-P

as
si

n
g

D
rP

IM

Id
e
a
l

C
o

ar
se

-G
ra

in
e
d

M
e
ss

a
g
e
-P

as
si

n
g

D
rP

IM

Id
e
a
l

C
o

ar
se

-G
ra

in
e
d

M
e
ss

a
g
e
-P

as
si

n
g

D
rP

IM

Id
e
a
l

C
o

ar
se

-G
ra

in
e
d

M
e
ss

a
g
e
-P

as
si

n
g

D
rP

IM

Id
e
a
l

ATF BFS PR SP AVG

N
o

r
m

a
li

ze
d

 e
n

e
r
g

y

wiki-talk

0

1

2

3

C
o

ar
se

-G
ra

in
e
d

M
e
ss

a
g
e
-P

as
si

n
g

D
rP

IM

Id
e
a
l

C
o

ar
se

-G
ra

in
e
d

M
e
ss

a
g
e
-P

as
si

n
g

D
rP

IM

Id
e
a
l

C
o

ar
se

-G
ra

in
e
d

M
e
ss

a
g
e
-P

as
si

n
g

D
rP

IM

Id
e
a
l

C
o

ar
se

-G
ra

in
e
d

M
e
ss

a
g
e
-P

as
si

n
g

D
rP

IM

Id
e
a
l

C
o

ar
se

-G
ra

in
e
d

M
e
ss

a
g
e
-P

as
si

n
g

D
rP

IM

Id
e
a
l

ATF BFS PR SP AVG

N
o

r
m

a
li

ze
d

 e
n

e
r
g

y

cit-Patents

0

1

2

3

C
o

ar
se

-G
ra

in
e
d

M
e
ss

a
g
e
-P

as
si

n
g

D
rP

IM

Id
e
a
l

C
o

ar
se

-G
ra

in
e
d

M
e
ss

a
g
e
-P

as
si

n
g

D
rP

IM

Id
e
a
l

C
o

ar
se

-G
ra

in
e
d

M
e
ss

a
g
e
-P

as
si

n
g

D
rP

IM

Id
e
a
l

C
o

ar
se

-G
ra

in
e
d

M
e
ss

a
g
e
-P

as
si

n
g

D
rP

IM

Id
e
a
l

C
o

ar
se

-G
ra

in
e
d

M
e
ss

a
g
e
-P

as
si

n
g

D
rP

IM

Id
e
a
l

ATF BFS PR SP AVG

N
o

r
m

a
li

ze
d

 e
n

e
r
g

y

com-orkut

0

1

2

3

C
o

ar
se

-G
ra

in
e
d

M
e
ss

a
g
e
-P

as
si

n
g

D
rP

IM

Id
e
a
l

C
o

ar
se

-G
ra

in
e
d

M
e
ss

a
g
e
-P

as
si

n
g

D
rP

IM

Id
e
a
l

C
o

ar
se

-G
ra

in
e
d

M
e
ss

a
g
e
-P

as
si

n
g

D
rP

IM

Id
e
a
l

C
o

ar
se

-G
ra

in
e
d

M
e
ss

a
g
e
-P

as
si

n
g

D
rP

IM

Id
e
a
l

C
o

ar
se

-G
ra

in
e
d

M
e
ss

a
g
e
-P

as
si

n
g

D
rP

IM

Id
e
a
l

ATF BFS PR SP AVG

N
o

r
m

a
li

ze
d

 e
n

e
r
g

y

com-lj

0

1

2

3

C
o

ar
se

-G
ra

in
e
d

M
e
ss

a
g
e
-P

as
si

n
g

D
rP

IM

Id
e
a
l

C
o

ar
se

-G
ra

in
e
d

M
e
ss

a
g
e
-P

as
si

n
g

D
rP

IM

Id
e
a
l

C
o

ar
se

-G
ra

in
e
d

M
e
ss

a
g
e
-P

as
si

n
g

D
rP

IM

Id
e
a
l

C
o

ar
se

-G
ra

in
e
d

M
e
ss

a
g
e
-P

as
si

n
g

D
rP

IM

Id
e
a
l

C
o

ar
se

-G
ra

in
e
d

M
e
ss

a
g
e
-P

as
si

n
g

D
rP

IM

Id
e
a
l

ATF BFS PR SP AVG

N
o

r
m

a
li

ze
d

 e
n

e
r
g

y

soc-LiveJournal1

389

