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ABSTRACT 
Processing-in-Memory (PIM) architecture suffers from frequent 
data synchronization, which raises inevitable coherent stalls and 
consumes more energy. This paper presents DrPIM, an adaptive 
and less-blocking data replication framework for Processing-in-
Memory architecture to address such issues. The key insights are 
1) finer-grained data management for the conflict data region and 
2) the automatic generation and invalidations of data replications. 
The above two schemes significantly decrease the critical path of 
data synchronization and the access latency for conflict data, thus 
providing a less-blocking execution. Evaluations show that DrPIM 
achieves a speedup of 1.5x over the state-of-the-art and reduces 
the data-moving energy by 49%. 
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1  INTRODUCTION 
PIM is considered a promising technique to hit the memory wall. 
Despite the significant benefits of PIM, data coherence and 
synchronization are still the main challenges in PIM systems [1]. 
Experiments showed that an ideal PIM system, i.e., a PIM system 
without data coherence penalty, can double the performance of 
the state-of-the-art PIM designs [2]. 

Prior works [2, 3, 4] have proposed several designs to alleviate 
the overhead of data coherence and synchronization in PIM. Some 
works migrate a conventional shared memory model, allowing a 
global directory-based lock to provide exclusive access to the same 
data region. Traditional coherence mechanisms, e.g., MESI and 
MOESI, are extended and applied. However, such schemes are 
impractical as massive broadcast traffic travels through a narrow 
off-chip link, which brings potential damage to the system. To 
minimize the coherent traffic caused by cache-line updates, many 
others provide dedicated message-passing schemes by designing 
specified programming models, data placement, and structures. 
Although well-designed, these approaches leave efforts to the 
programmers, resulting in high programming complexity. For 
instance, SynCron [3] adds low-cost hardware to support efficient 
PIM synchronization but requires manual shared data lock 
management like lock_acquire() and lock_release(). To further 
reduce the off-chip synchronization and get compatible with the 
existing architecture, others [2] perform a coarse-grained 
coherence which further enlarges the coherent granularity to a 
page or a bank [4]. As a result, even though a small portion of the 
data is accessed, the whole data region is flush to the memory, 
adding more latency and energy consumption in some cases [5]. 

To overcome the challenge of PIM coherence without extra 
programming complexity, we propose DrPIM, an adaptive and 
less-blocking data replication framework for PIM architecture. 
DrPIM provides finer-grained data management for the conflict 
data region and automatically generates data replications to 
decrease the critical path of data synchronization. DrPIM is 
transparent and works well with the existing programming model 
and requires no modifications to the source code.  
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2 DATA REPLICATION IN PIM 
To understand why PIM can benefit from data replication 
schemes, we need first to quantify the impact of replica placement 
on the system. Our target system is a PIM system with multiple 
HMCs organized in a mesh topology like Fig. 1. It performs a lock-
based coarse-grained coherence under the granularity of a page. In 
PIM systems with HMCs, data synchronization latency and energy 
are demonstrated by 1) the distance between data residence and 
execution location, and 2) coherent stalls caused by the spin-lock 
feature. If data replication is applied in the PIM system, shared 
data could be distributed in multiple cubes or vaults. In-memory 
logic could access the data from the nearest replicas for a shorter 
distance to reduce access latency and data-moving energy. Besides, 
data replication may provide lock-free data access to alleviate the 
coherent stalls. However, only read can benefit from data 
replications, as write will destroy any existing replicas of the same 
data region in the memory. Therefore, the benefit of data 
replication is closely related to the remote read pattern of the 
applications. To make an observation of the read pattern in PIM, 
use the following terminology: 
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Figure 1: An illustration of the HMC-based PIM system. 
HMCs are organized in a mesh topology and interconnected 
through off-chip links. 

Center of Read Access (
ARC ): a 

ARC  of a page refers to the 
equivalent position to store the page where all reads to the page 
have the shortest accessing distance. In a mesh HMC topology, 

ARC  can be defined as a coordinate: 
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in which HMCs is the set of all cubes, 
iX  and 

iY  are the x and y 
coordinate of the cube i . 

iN  is the read amount of read access to 
the page of the cube i . 

The Average Read Manhattan Distance (
ARD ): a 

ARD  of a 
page refers to the average read distance to access the page, which 
is expressed in the inter-cube hops. It is obvious that ARD  is the 
Manhattan distance to the 

ARC  of the page. 
ARD  can be defined as: 
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in which 
ARxC  and ARyC  are the x and y coordinate of 

ARC . 

Fig. 2a shows the distribution of remote read requests to the 
locked pages from the in-memory logic derived from PageRank 
using the soc-LiveJournal1 dataset in an 8x8 mesh PIM system. The 
overall 

ARC  and 
ARD  can be computed using equations (1) and 

(2). As depicted in Fig. 2b, most of the 
ARC  are located near the 

cube with the coordinates (2, 3) (denoted as •) and the average 

ARD  is about 4.14, which indicates that each remote read to the 

original page (data owner, denoted as blue •) has to wait for page 
unlocking and then travels through more than four HMCs on 
average. However, suppose we create two replicas of the page 
(denoted as red • ) and perform sub-regional coherence 
independently. In that case, nearby in-memory logic can benefit 
from a shorter distance and less coherent stalls. 
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Figure 2: a) distribution of remote read requests to the 
locked pages from all in-memory logic for PageRank using 
the soc-LiveJournal1 dataset. b) An example of replica 
generation. 

3 DRPIM FRAMEWORK 
DrPIM includes three steps: 1) a replica generation scheme that 
finds the optimal pages, location, and the number of replicas to 
minimize the critical path of data synchronization, 2) a replica 
invalidation approach to minimize the overhead caused by 
inefficient replicas placement, and 3) a synchronization 
mechanism to prevent replicas from being inconsistent with 
others. The above three steps must be executed periodically at run-
time to invalidate any out-of-date replicas and reproduce new 
ones. In the following of this paper, we use the term epoch to 
denote the time interval to re-think the effectiveness of existing 
replicas in the memory. 

3.1 Replica Generation 
To perform data replication and gain enough benefits, DrPIM 
performs three phases: First, DrPIM selects the candidate pages 
that may benefit from data replication. Second, DrPIM establishes 
a benefits evaluation to determine if a candidate page should be 
dispatched and is ready for data replication. Third, DrPIM 
calculates the optimal location and the number of replicas for each 
dispatched page and then generates the replicas for them. 

Candidate Page Identification Phase. To identify the 
optimal pages that may benefit from replication, the most accurate 
way is to track every remote access (both reads and writes) and 
maintain an access list. However, such implementation introduces 
non-trivial overheads since it adds unneglected bits per page. To 
keep the overhead low, DrPIM only records the pages within the 
most significantly accessed bank (denoted as 

iBank ) in the last 

epoch and uses that to identify candidate pages. 
iBank  can be 

easily captured by snooping on the broadcast traffic in the vault 
logic. 
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To pick up candidate pages inside 
iBank , more definitions are 

needed. We use the term Read Ratio, denoted as pr , to represent 

the percentage of remote reads in all remote accesses to a page. 
Read Ratio can be defined as: 

p

p

j

j HMCs

N
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N


=


                                     (3) 

Since only remote reads could benefit from data replication, 
Read Ratio can partly represent if a shared page was frequently 
accessed during its locked-in time. Therefore, DrPIM only picks up 
candidate pages from 

iBank  that 1) have the top N read ratio and 

2) exceed a pre-defined threshold 
rrT . The first condition ensures 

that DrPIM only selects frequently read pages, and the second 
prevents DrPIM from selecting pages that are frequently updated, 
which may affect the efficacy of DrPIM. The determination of the 
parameter N is dataset-related. In our experiments, N can be very 
small in most cases. 

Page Dispatching Phase. In this phase, DrPIM establishes a 
profit function to estimate the benefits of replicating a candidate 
page, which is defined as: 

( )p ARp p p costProfit D r N T = +                        (4) 

where ARpD , pr , and pN  are the average read Manhattan distance, 

Read Ratio, and the remote read amount of candidate page p ,   
and   are relative weights. Equation (4) reflects the benefits of 
data replication come from two aspects: First, the more access 
distance is (that is, ARp pD N ), the more benefits from replication, 

since data replication can reduce 
ARD  for the page, which reduces 

the data synchronization energy. Second, the larger the Read Ratio 
is (that is, p pr N ), the fewer stalls caused by coherence. Besides, 

DrPIM only dispatches the candidate page when the profit 
function exceeds a fixed threshold, 

costT . When candidate pages 

are satisfied with Equation (4), DrPIM dispatches the page for the 
next phase. 

Replica Generation Phase. Upon a page having been 
dispatched for replication, DrPIM determines the optimal location 
and the number of copies of the page. We propose a regional-
based algorithm to make such a decision. The main idea of this 
algorithm is to separate all HMCs into four sub-regions recursively 
and evaluate the benefit of generating replicas in the sub-region, 
which is shown in Algorithm 1. It has the following three major 
steps. First, as for an HMC interconnection topology graph G , we 
generate 

ARC and
ARD  for a dispatched page p , using the remote 

read matrix M  monitored by the memory controller of each vault 
in the last epoch (lines 1-2). If the region has no more than two 
HMC cubes the algorithm is completed (lines 3-5), as there is no 
need to generate replicas in other vaults of the same cube. If not, 
we partition the region into four sub-regions (line 6). For instance, 
for an 8x8 mesh HMCs system with (2,3)ARC = and 4.14ARD  , the 
algorithm partitions the region into four groups: {(0~2, 0~3), (0~2, 
4~7), (3~7, 0~3), (3~7, 4~7)}. Then a loop is executed until all the 

sub-regions are traversed (line 7). Next, we compute the 
ARC and

ARD of the sub-region for p  (lines 8-10), and use the following 

benefit equation to evaluate the profit to create a replica in the 
sub-region (line 11): 

( ) (1 )( )p p p AR ARsub p p sub sub repReplica N r D D N r x x y y T= − − − − + −    (5) 

where pN  is the remote read amount of the sub-region 
subG . 

( )p p AR ARsubN r D D−  refers to the distance save of all remote read in 

subG  if the replica is generated; ( )sub subx x y y− + − stands for the 
average Manhattan distance from global 

ARC  to regional 
ARsubC . 

(1 )( )p p sub subN r x x y y− − + −  represents the synchronization overhead 
to establish the replica. We also add a threshold, repT , to make the 
evaluation sense (line 11). If repT  is reached, DrPIM adds 

ARsubC  to 
the replica generation lists and performs this algorithm for the 
sub-region recursively to find if more replicas should be placed in 
the sub-region (lines 12-13). Once the position and the number of 
replicas are determined, DrPIM transfers the data to destiny 
instantly and broadcasts the replica generation messages as long 
as the data owner is still clean. 
Algorithm1 Replica Generation Algorithm  

Input: HMC interconnection topology graph G ; Remote read matrixM  to a dispatched 

page p  in the last epoch; Read ratio of the page 
pr  in the last epoch; 

Output: The coordinate set of generated replicas { }Rep  
{ }Rep   function ( , , )pReplicaGeneration G M r  

1: ( , ) ( , )ARx y calculateC G M  

2: ( , , , )AR ARD calculateD G M x y  

3: if ( ) 2numofCubes G   then  
4:         return 
5: end if 

6: { } {(0 ' ,0 ' ),(0 ' , ' ),SubRegion x x y y x x y y n=                        

                             ( ' ,0 ' ),( ' , ' )}x x n y y x x n y y n                       

7:  foreach { }subG SubRegion  do 

8:          ( , )sub subM getSubRegionMatrix M G , 
P subN M=  

9:         ( , ) ( , )sub sub AR sub subx y calculateC G M  

10:       ( , , , )ARsub AR sub sub sub subD calculateD G M x y  

11:        if (1 )( )p p AR p p sub sub repN r D N r x x y y T− − − + −   do 

12:                { } ( , )sub subRep x y+=  

13:                ( , , )sub sub pReplicaGeneration G M r  
14:        end if 
15: end foreach 

3.2  Replica Coherence and Synchronization 
In DrPIM, we propose a regional finer-grained coherence scheme 
for data coherence and synchronization. For dispatched page and 
its replicas, DrPIM divides the shared page into K  sub-regions 
and keeps the lock bit independently. The idea of adopting 
regional finer-grained coherence comes from [5], which suggests 
that only a few cache lines in each shared page are modified in 
PIM systems. Such implementation in DrPIM guarantees that 
conflict pages with replicas retain most of the fine-grained 
coherence’s less-blocking benefits while the others can enjoy 
much less coherent traffic brought by coarse-grained coherence. 

To perform regional finer-grained coherence, DrPIM maintains 
a directory-based table, denoted as Replica Page Table in the vault 
controller. Each entry of the Replica Page Table holds K  valid bits 
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of each sub-region of the page, the original data’s location, and the 
location of all replicas of the same page. Whenever a write request 
to the pages occurs, DrPIM first broadcasts a message to all other 
replicas of the same page and invalids the corresponding valid bit 
of the accessed sub-regions. Then DrPIM forwards the write 
request to the location where the original data resides (i.e., data 
owner in Fig. 2b) to apply data modifications. Only the data owner 
holds the dirty data of sub-regions. If a memory request accesses 
the invalidate sub-region of a replica (say, the sub-region has been 
modified), the request will also be forwarded to the data owner’s 
location. This mechanism ensures that all modifications to pages 
with replicas can only be applied at the data owner while 
providing lock-free access for read requests to unmodified sub-
regions. 

3.3  Replica Invalidation 
Since the memory access pattern changes throughout the 
application execution, the effectiveness of replicas should be re-
evaluated periodically too. Removing inefficient replicas can free 
up memory space and decrease the synchronization overhead. 

The replication invalidation in DrPIM is relatively simple: if a 
replica needs to be invalidated, it must meet at least one of the 
following conditions: 1) all sub-regions of the page are all invalid, 
2) the replica is rarely read but written frequently, and 3) the 
replica page table is full meanwhile a newly generated replica 
evicts the entry. 
Algorithm2 Replica Invalidation Algorithm  

Input:   Replica Page Table of data owner 
ownerRPT ;  

1:  foreach 
i ownerEntry RPT  do 

2:          if { } iValidBits Entry  is all invalidate do 

3:                  foreach 
j iReplica Entry  do 

4:                          ( )jInvalidate Replica  

5:                  end foreach 

6:                 ( )iRemove Entry  

7:          else 

8:                  foreach 
j iReplica Entry  do 

9:                          ( )j jRPT findRPTofReplica Replica  

10:                        , ( , )valid all j jN N getAccessCounter RPT Replica  

11:                         if /valid all vN N T  do 

12:                                 ( )jInvalidate Replica  

13:                         end if 

14:                end foreach 

15:                if ( )iReplicaCount Entry  is 0 do 

16:                        ( )iRemove Entry  

17:                end if 

18:        end if 

19: end foreach 

As for Condition 1, DrPIM should invalidate the replicas of the 
page immediately as all data accesses to the page have to be 
forwarded to the data owner, which lessens the effectiveness of 
data replication. As for Condition 3, the replicas should also be 
invalidated immediately if the invalidation is caused by the Replica 
Page Table’s eviction since no inconsistency will occur. As for 
Condition 2, DrPIM uses the following algorithm to perform 
replication invalidation at the end of each epoch (see Algorithm 2). 
DrPIM first traverses through all entries of the data owner’s 
Replica Page Table to find if any dispatched page has no 
unmodified sub-regions (lines 1-3). If so, it indicates that every 
access to the replicas of the page must be forwarded to the data 

owner (say, meet Condition 1). Therefore, DrPIM invalidates all 
replicas of the page and removes the corresponding entry in the 
Replica Page Table (lines 4-6). Else, DrPIM will iterate all the 
replicas of the page to check their effectiveness using the 
following equation (lines 8-10): 

/valid all vN N T                                         (6) 

where 
validN and 

allN  are the valid access amount and total access 

amount to the replica in the last epoch, thus /valid allN N  indicates if 

the page can benefit from lock-free reads. The percentage should 
be lower than a threshold, 

vT  (lines 11-14). After performing 
invalidation, if there is no replica for a dispatched page, DrPIM 
will free up the corresponding entry. 

4 EVALUATION 

4.1 Experimental Setup 
Simulation configurations: We use an in-house simulator that 
integrates ZSim [6] and HMCSim [7] to simulate the behavior of 
DrPIM. The detailed architecture parameters of DrPIM are listed in 
Table 1. We compare DrPIM with four schemes: 1) CPU-Only: a 
conventional architecture that employs HMCs as the main 
memory without any memory offloading. All the evaluated 
applications are executed with 32 threads. 2) A Coarse-Grained 
scheme enables the coarse-grained coherence of page granularity 
in PIM systems. 3) A Message-Passing scheme that performs like 
TESSERACT architecture. 4) An Ideal scheme without any 
synchronization latency and energy overhead. 

Table 1: System Configuration  

Component Configuration 

On-chip 

Processors 

4 cores, OoO, 2GHz frequency 
L1 I/D-Caches: 32KB private, 4-way, 4-cycle latency, 64B line  
L2 Cache: 2MB shared, 8-way, 35-cycle latency, 64B line 

Memory 

Model 

64 HMCs organized in an 8×8 mesh (Fig. 3a) 
8GB, 32 vaults per cube, 512 banks 
32 single-issue in-order cores, 2GHz, each per cube 
L1 I/D-Caches: 32KB private, 4-way, 4-cycle latency, 64B line 
Bandwidth: TSV 10GB/s, 320GB per cube; 120GB/s per link; 
Energy: 48pJ/bit on link, 10.48pJ/bit intra-HMC [7] 

DrPIM 

Parameters 

0.7rrT = , 2 = , 40 = , 
cos 1500tT = , 300repT =  

0.6vT = , 16N = , 8K =  
30000 memory accesses each epoch 

Workloads and datasets: We use some typical PIM 
applications, which are also used in [1-5] as listed in Table 2. All 
real-world datasets [8] used are statically partitioned across HMCs, 
where the vertex data is equally distributed across cubes. 

Table 2: Workloads and Datasets 

Workloads Datasets 

Average Teenage Follower (ATF), 

Breadth-First Search (BFS), 

PageRank (PR), 

Bellman-Ford Shortest Path (SP) 

com-youtube (1.1M Vertices, 2.9M Edges),  
wiki-talk (2.3M Vertices, 5M Edges),  
com-orkut (3.1M Vertices, 117M Edges),  
cit-Patents (3.7M Vertices, 16.5M Edges), 
com-lj (4M Vertices, 34.7M Edges), 
soc-LiveJournal1 (4.8M Vertices, 69M Edges) 

4.2 Evaluation Results 
Performance evaluation: Fig. 3 presents a performance 
comparison of the five configurations. All results are normalized to 
CPU-Only. DrPIM improves the average performance by 50% over 
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CPU-Only, and 49% over Coarse-Grained. To generate data replicas 
and perform multi-grained coherence for the dispatched pages, 
DrPIM retains most of Ideal’s benefits, coming within on average 
13.8% of the performance of Ideal.  

Effectiveness of Replica Generation: We also evaluate the 
effectiveness of the entire replica generation framework. Fig. 4 
shows the average number of candidate pages and the average 
number of replicas generated in the last epoch. DrPIM detects 
seven candidate pages per epoch on average, and 63.7% of them 
are dispatched for replica generation. In each epoch, DrPIM 
generates about 14 replicas to perform finer-grained coherence. 

  
Figure 3: Normalized performance evaluation. 

 
Figure 4: The number of generated replicas. 

Data movement energy: Fig. 5 shows the normalized data 
movement energy evaluation for all schemes except CPU-Only. 
DrPIM reduces data-moving energy across all workloads by 1.16x 
and 1.94x over Coarse-Grained and Message-Passing schemes, 
respectively. During the execution, Message-Passing suffers from 
massive data synchronization, which causes significant data-
moving energy. In contrast, DrPIM can benefit from multi-grained 
coherence, which reduces coherent conflicts while retaining the 
low coherent traffic. 

4.3 Overhead 
To identify candidate pages, DrPIM needs to track the banks with 
the most significant remote access. It can be implemented by 
simply maintaining an access counter for each bank. To pick up 
pages with the top N  read ratio in the bank, DrPIM should hold a 
counter for each page in the bank. For an 8GB HMC, each bank 
has 16MB storage, that is 4096 pages per bank by default. To track 
the remote read amount of 4096 pages, it leads to an extra 
log2(4096)×4096=6KB to each vault controller. Such overhead can 
be migrated by integrating the logic into the cache of the vault 
core, as the in-memory cache hit rate is relatively low. 

5 CONCLUSIONS 
In this paper, we propose DrPIM, an adaptive data replication 
framework. DrPIM automatically detects data regions that suffer 

from data synchronization. We also propose dedicated algorithms 
to create replicas at the optimal location and invalidate stale or 
defunct replicas. Regional finer-grained data management is 
applied in DrPIM to reduce the data access contention caused by 
the coarse-grained coherence. Experiment shows that DrPIM can 
achieve a speedup of 1.5x over the state-of-the-art and provide a 
less-blocking execution for PIM systems. 

 

Figure 5: Normalized data movement energy evaluation. 
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