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ABSTRACT
The global population is aging. These older adults face changes in
health that result in increasing frailty. Digital biomarkers created by
passive, continuous sensors offer an early indicator of impending
frailty that can be used to delay or reverse frailty. Building on the
notion of a human as a complex system, we introduce and compare
three methods to model and estimate the complexity of indoor hu-
man behavior. Each method offers potential benefits for estimating
human frailty. We introduce a formalization of the approaches, ex-
tend their use for arbitrary-size sensor suites, and demonstrate how
they can be used to visualize and calculate a person’s behavioral
complexity based on smart home data collected continuously for
an older adult subject.

CCS CONCEPTS
• General and reference→ Experimentation; •Mathematics
of computing→ Information theory; Markov processes; Time
series analysis; • Human-centered computing → Empirical
studies in ubiquitous and mobile computing.
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1 INTRODUCTION
Aging involves an array of biopsychosocial changes which interact
in multidimensional, dynamic pathways to produce a range of
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common symptom profiles, or syndromes, frequently experienced
by older adults. There is a growing consensus among researchers
that the heterogeneous trajectories of aging syndromes cannot be
fully understood without a complex systems approach [5]. Such an
approach views humans as complex systems with multiple levels
of factors interacting in nonlinear ways. These complex dynamics
result in the emergence of system properties, such as homeostasis
or resilience, which are greater than the sum of the lower-scale
factors. From a complex systems framework, loss of complexity
in any part of the human system may lead to the same emergent
outcomes of frailty and decline [12].

Mounting evidence suggests that the complexity of a person’s
observable behavior signals (e.g. gait variability and standing pos-
tural sway among others) could serve as a ’digital biomarker’ of the
body’s level of frailty [5]. Digital biomarkers created passively via
ubiquitous sensing technologies offer new opportunities for con-
tinuous, minimally obtrusive, and remotely delivered assessment
of health conditions in ecologically valid real-world settings [4].
Frailty, a geriatric syndrome characterized by functional decline
across multiple physiologic systems and reduced capacity to over-
come internal and external stressors, can be conceptualized as a
complex system on the brink of failure [15]. Measuring change of
complexity of the human system’s signals would then be an indi-
cator of how much complexity has been lost and, therefore, how
close the system is to failure (i.e., frailty). This Loss of Complexity
Hypothesis may explain why an individual with health deficits re-
lated to cardiovascular disease develops the same phenotypic frailty
presentation as another individual with a diagnosis of COPD and
no cardiovascular disease or another individual with mild deficits
in a number of physiologic domains but no formal chronic disease
diagnosis [8, 12].

The progression of frailty severity can be slowed if not altogether
reversed, making early identification and intervention of worsening
frailty a critical function of geriatric healthcare [9]. Compared to
conventional health measures of frailty, which are not amenable
to continuous measurement and can be time consuming, expen-
sive, and physically invasive, digital biomarkers based on purely
passively-collected smart home sensor data would further minimize
patient burden and may extend the reach of community prevention
and early intervention of frailty.

In this paper, we propose measuring the complexity of human
indoor activity using smart home sensor data, defined as the level
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of randomness and irregularity of sensor transition patterns, as a
potential digital biomarker for detecting change in a person’s frailty.
The central hypothesis motivating this work is that the complexity
of smart home movement trajectories of older adults diminishes
with health decline and frailty. We introduce a novel approach to
quantify and visualize the complexity of smart home data using
universal sequence maps (USM) with the Rényi quadratic entropy
measure (USM-Rényi) [18]. A USM is a bijective projection of a
sequence from a discrete state space (e.g., sequence of sensor read-
ings) to a real-valued state space. We expand the original formula
for USM-Rényi to symbolic sequences of arbitrary alphabet size and
compare its sensitivity to changes with two other entropy measures
designed for short time series, Approximate Entropy and Sample
Entropy, using Monte Carlo Simulations.

Our contributions include formalizations of behavior complexity
measures and a new proof of USM-Rényi for arbitrary alphabet
sizes. We demonstrate which entropy measure converges fastest
and provides the narrowest error on short sample lengths. Addi-
tionally, we present a novel application of the USM algorithm to
the visualization of smart home motion motifs at multiple scales.
Our analysis demonstrates how these visualizations can easily dis-
criminate days with and without novel complex activity (due to
visitors and housekeeping) in a case example.

2 RELATEDWORK
To date, few studies of digital biomarker technologies targeting
frailty utilize an ambient sensor platform or passive monitoring,
and none utilize a complex systems framework of aging [17]. Schütz
et al. [2022] include entropy as one of 1,269 digital biomarkers they
explored from smart home data for 45 older adults using a “holistic
systems” machine learning approach to predict frailty among other
outcomes. Of their markers, they found fridge entropy to be mod-
erately negatively correlated (r=-0.25) with frailty. Because their
entropymeasure was based on the uncorrelated frequency of hourly
readings, the approach misses higher-order behavior complexities
such as transitions between locations.

Other smart home studies explore correlated entropy measures
that do reflect these multi-order transitions. Unlike our study, these
related analyses focus primarily on movement predictability, rather
than health outcomes [19, 20]. Howedi et al. [2020] leveraged Sam-
ple Entropy and Approximate Entropy, two measures we analyze
in this paper also, to identify periods of multi-occupancy in smart
home data. In order to detect change in complexity of motion trajec-
tories, we need measures which reflect multi-order complexity of
motion trajectories that are reliable with relatively short time series.
Of these studies, only Wang et al. [2023] explored the sensitivity of
the measures to sequence length and none explored the sensitivity
of the entropy measures to number of sensors (i.e., alphabet size),
even though information entropy and its derivatives are known to
be sensitive to both alphabet size and sequence length [7].

3 SMART HOME DATA
For our study, we analyze data collected by ambient sensors as
part of the CASAS Smart Home in a Box [6]. As shown in Figure 1,
sensors include motion detectors, magnetic door sensors, ambient

Figure 1: CASAS SHiB. Infraredmotion detectors are installed
inside the refrigerator and in each functional area of the
house. Magnetic door closure sensors are attached to external
doors and selected cabinets. Sensor readings are stored by
the smart home for analysis.

light and temperature sensors. All sensors generate a reading when-
ever they detect a change in state (e.g., when motion starts or stops
in a sensor’s field of view.) Each sensor reading includes a corre-
sponding date, time, sensor identifier, and sensed state (ON/OFF
for motion, OPEN/CLOSED for doors, numeric values for light
and temperature sensors). As in [19, 20] we construct our motion
trajectories using the ON and OPEN readings, excluding OFF and
CLOSE.

4 METHODOLOGY
We model human behavior based on movement trajectories cap-
tured by smart home sensors. We assume that a person’s trajectory
is a non-stationary stochastic process whose complexity changes
over time in association with health status. We then can use the
model to estimate the complexity of the underlying "human sys-
tem" and the model is used as a basis for estimating a person’s
frailty. Throughout the paper, we represent a smart home sen-
sor reading trajectory as a symbolic sequence, 𝑋 , whose alphabet
𝑆 = {𝑠1, . . . , 𝑠𝑑 } represents the set of sensors with cardinality 𝑑 and
𝑥𝑖 represents the reading generated at index 𝑖 in sequence 𝑋 . In our
methods, we implement and compare three methods for estimating
complexity of smart home sensor sequences: USM, Approximate
Entropy, and Sample Entropy. We compare the performance of each
method on short symbolic sequences using Monte Carlo simulation
and demonstrate the potential of USM methodology in a smart
home case study.

4.1 Method 1: Universal Sequence Maps (USM)
Universal sequence mapping maps a sequence with a discrete alpha-
bet to a real-valued state space in Rd. USMs function as generalized
order-free Markov transition matrices of symbolic sequences (i.e.,
sequences of sensor readings). We compute an entropy estimate of
a sequence 𝑋 based on the density of USM coordinates.

Generating the USM space is based on the algorithm for chaos
game representation (CGR, [11]). First, each symbol in a sequence
is assigned to a vertex of a unit hypercube such that the vertex
coordinates {𝑌 } of the USM hypercube are equal to the rows of
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Figure 2: CGR plot of sequences with a shared suffix. The
last 4 symbols of 𝑎 are ’AGGA’ and the last 4 of 𝑏 are ’GGGA’.
The highlighted sub-quadrant contains the coordinate of the
sequences’ last symbol, the quadrant size corresponds to the
suffix length.

the 𝑑 × 𝑑 identity matrix, reflecting a one-hot encoding of 𝑆 . Next,
starting at the beginning of the sequence, the USM coordinate, 𝑎𝑖 ,
for each symbol in 𝑋 is computed iteratively as the midway point
between the vertex associated with that symbol and the previous
symbol’s coordinate. This is given by Equation 1, where 𝑦𝑖 is the
vertex coordinate associated with the 𝑖𝑡ℎ symbol in 𝑋 .

𝑎𝑖 = 𝑎𝑖−1 +
1
2
(𝑦𝑖 − 𝑎𝑖−1), 𝑖 = 1, . . . , 𝑁 (1)

This approach ensures that the USM projection is always bijec-
tive, no matter the alphabet size [2]. Theoretically, this means that a
single USM coordinate contains information of the entire sequence
and conversely the entire sequence could be recovered from a single
coordinate. USM is therefore a universal, non-parametric method
for analyzing the statistical properties on multiple scales of sym-
bolic sequences of any alphabet size. CGR/USM images, such as
the one shown in Figure 2, reveal characteristic patterns related to
the density of different 𝑘-grams in the sequence. This is because
all coordinates within the same sub-quadrant will always share
the same 𝑘 preceding symbols. Therefore, the Euclidean distance
between any two points in the USM does not indicate the near-
ness within the parent sequence but rather the length of a shared
suffix. Because of this property, the USM map depicts all 𝑘-gram
frequencies simultaneously. This makes the USM an order free gen-
eralization of a Markov Chain Transition Matrix, with the 𝑘𝑡ℎ order
transition frequencies equal to the density of coordinates within
the sub-quadrants with side lengths 2−𝑘 [1].

Based on this property, Vinga and Almeida proposed a method
for measuring the continuous Rényi entropy of 4-dimensional USM
(i.e., to analyze sequences with an alphabet of size 4) based on calcu-
lating the density distribution of a USMwith a Parzen kernel density
estimate with Gaussian kernel density function [18]. The equation
for this 4-dimensional USM-Rényi is given in Equation 2, where
𝑑𝑖 𝑗 is the squared Euclidean distance between USM coordinates 𝑎𝑖
and 𝑎 𝑗 and 𝜎 determines the size of the kernel.

𝐻2 (𝑈𝑆𝑀) = −𝑙𝑛 1
𝑁 2

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

1
16𝜋2𝜎4

exp
(
− 1
4𝜎2

𝑑𝑖 𝑗

)
(2)

We now offer a new proof that extends this Rényi equation
for an alphabet of any size, 𝑑 . Rényi entropy was introduced as a
generalization of Shannon entropy and includes an order param-
eter 𝛼 which determines the weighted contribution of improba-
ble events to the overall entropy measure. The limit of Rényi en-
tropy lim𝛼→1 𝐻𝛼 (𝑋 ) is Shannon’s entropy measure. The formula
for Rényi entropy of a continuous probability density function 𝑓 (𝑥)
is:

𝐻𝛼 (𝑋 ) = 1
1 − 𝛼

ln
∫

𝑓 𝛼 (𝑥)𝑑𝑥 (3)

We first substitute the kernel density equation of a spherical
Gaussian kernel [18] for 𝑓 (𝑥) in Equation 3:

𝐻2 (𝑈𝑆𝑀) = − ln
∫

(
1
𝑁

𝑁∑︁
𝑖=1

1
(2𝜋)𝑑/2 |𝜎2𝐼𝑑 |1/2

𝑒 (−
1
2 (𝑥−𝑎𝑖 )

𝑇 (𝜎2𝐼𝑑 )−1 (𝑥−𝑎𝑖 ))
)2

𝑑𝑥

= − ln
∫

1
𝑁 2

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1(

1
(2𝜋)𝑑/2 |𝜎2𝐼𝑑 |1/2

𝑒 (−
1
2 (𝑥−𝑎𝑖 )

𝑇 (𝜎2𝐼𝑑 )−1 (𝑥−𝑎𝑖 ))
)

×
(

1
(2𝜋)𝑑/2 |𝜎2𝐼𝑑 |1/2

𝑒 (−
1
2 (𝑥−𝑎 𝑗 )𝑇 (𝜎2𝐼𝑑 )−1 (𝑥−𝑎 𝑗 ))

)
𝑑𝑥

(4)

Applying the constant coefficient rule of integration and the sum-
mation rule of integration, we move the integral operator inside the
summation. The entropy is now a convolution of the two Gaussians:

𝐻2 (𝑈𝑆𝑀) = − ln
1
𝑁 2

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

1
(2𝜋)𝑑/2 |𝜎2𝐼𝑑 + 𝜎2𝐼𝑑 |1/2

×

𝑒 (−
1
2 (𝑎𝑖−𝑎 𝑗 )𝑇 (𝜎2𝐼𝑑+𝜎2𝐼𝑑 )−1 (𝑎𝑖−𝑎 𝑗 ))

Because we are using a fixed kernel volume approach, 𝜎2 is held
constant across all kernels, so we can further simplify 𝜎2𝐼𝑑 + 𝜎2𝐼𝑑
to 2𝜎2𝐼𝑑 . Then |2𝜎2𝐼𝑑 |1/2 = (2𝑑𝜎2𝑑 )1/2 = 2𝑑/2𝜎𝑑 and (2𝜎2𝐼𝑑 )−1 =
1

2𝜎2 𝐼𝑑 . The former equality is due to the fact that the determinant of
a 𝑑 × 𝑑 scalar matrix is the scalar constant raised to the 𝑑𝑡ℎ power,
|𝑐𝐼𝑑 | = 𝑐𝑑 . The latter is due to the fact that the inverse of a diagonal
matrix is a diagonal matrix whose principal diagonal is made up
of the reciprocals of the elements of the original matrix, which
in this case is 1

2𝜎2 . Plugging these two simplified terms into the
entropy equation, we can perform further simplifications based on
the properties of matrix-vector multiplication involving scalars and
the identity matrix:
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𝐻2 (𝑈𝑆𝑀) = − ln
1
𝑁 2

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

1
(2𝜋)𝑑/22𝑑/2𝜎𝑑

𝑒

(
− 1

2 (𝑎𝑖−𝑎 𝑗 )𝑇 1
2𝜎2 𝐼𝑑 (𝑎𝑖−𝑎 𝑗 )

)

= − ln
1
𝑁 2

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

1
(2𝜋1/2𝜎)𝑑

𝑒

(
− 1

4𝜎2 (𝑎𝑖−𝑎 𝑗 )𝑇 (𝑎𝑖−𝑎 𝑗 )
)
(5)

For𝑢 and 𝑣 𝑑-vectors, the product of the vector of the form (𝑢−𝑣)
with its transpose (𝑢 − 𝑣)𝑇 is equivalent to the squared Euclidean
distance between 𝑢 and 𝑣 . Let 𝑑𝑖 𝑗 represent the squared Euclidean
distance between 𝑎𝑖 and 𝑎 𝑗 , then the entropy is rewritten as shown
in Equation 6, which we observe is congruous with Equation 2
when 𝑑 = 4.

𝐻2 (𝑈𝑆𝑀) = − ln
1
𝑁 2

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

1
(2𝜋1/2𝜎)𝑑

𝑒

(
− 1

4𝜎2 𝑑𝑖 𝑗

)
(6)

4.2 Method 2: Approximate Entropy (ApEn)
In addition to the USM derivation of entropy, we consider two
other popular entropy methods for detecting change in complexity
of time series which have previously been applied to smart home
data. The first of these, Approximate Entropy, is commonly used to
compare the complexity of short real-valued sequences. However,
it has been shown to perform well for binary symbolic sequences
and should in theory be appropriate for alphabets of any size [13].

ApEn requires two parameters to be defined, the embedding
dimension𝑚 and tolerance 𝑟 . Given a sequence 𝑋 of length 𝑁 and
parameters𝑚 = 2 and 𝑟 = 1, ApEn generates a set of vectors of
𝑚 values from a sliding window moved over 𝑋 . For each vector
in the set, 𝑥𝑚 (𝑖), the maximum element-wise distance (Chebyshev
distance) is calculated. Let𝐵𝑖 represent the number of vectors whose
Chebyshev distance is ≤ 𝑟 . We then calculate the values:

𝐶𝑚
𝑖 (𝑟 ) = 𝐵𝑖/(𝑁−𝑚+1)𝜙𝑚 (𝑟 ) = (𝑁−𝑚+1)−1

𝑁−𝑚+1∑︁
𝑖=1

𝑙𝑛𝐶𝑚
𝑖 (𝑟 ) (7)

Next, the steps are repeated for vectors of size 𝑚 + 1 and 𝐴𝑖 ,
specified as the number of vectors with Chebyshev distance from
𝑥𝑚+1 (𝑖) ≤ 𝑟 . Finally, ApEn(m,r) is defined as lim𝑁→∞ [𝜙𝑚 (𝑟 ) −
𝜙𝑚+1 (𝑟 )], which is estimated as:

𝐴𝑝𝐸𝑛(𝑚, 𝑟, 𝑁 ) = 𝜙𝑚 (𝑟 ) − 𝜙𝑚+1 (𝑟 )

≈ (𝑁 −𝑚)−1
𝑁−𝑚∑︁
𝑖=1

−𝑙𝑛(𝐴𝑖/𝐵𝑖 )
(8)

The above statistic is typically approximated by only considering
the range 1 ≤ 𝑖 ≤ 𝑁 −𝑚 for the calculation of 𝐴𝑖 and 𝐵𝑖 , thus
excluding the vector at index 𝑖 = 𝑁 − 𝑚 + 1, and allowing the
formula to be simplified as shown above.

4.3 Method 3: Sample Entropy (SampEn)
One drawback of ApEn is its bias on super short sequences that
causes ApEn to skew to 0, sometimes incorrectly implying sequence
regularity [14]. Richman and Moorman [2000] introduced Sample
Entropy as a way to reduce this bias. The process of extracting
vectors and calculating 𝐴(𝑟 ) and 𝐵(𝑟 ) is performed similarly to

ApEn, except that the match of 𝑥𝑚 (𝑖) with itself is not included in
the totals, as it is with ApEn and instead of approximating the final
value as shown in Equation 8, the value is calculated as the limit
(lim𝑁→∞), of the negative logarithm of the ratio between 𝐴𝑚 (𝑟 )
and 𝐵𝑚 (𝑟 ) and the statistic SampEn(m, r, N) as:

𝑆𝑎𝑚𝑝𝐸𝑛(𝑚, 𝑟, 𝑁 ) = −𝑙𝑛
[
𝐴𝑚 (𝑟 )/𝐵𝑚 (𝑟 )

]
(9)

5 CONVERGENCE ANALYSIS
Because we model a person’s frailty based on movement entropy,
we are interested in determining how well the three proposed
methods, USM-Rényi, ApEn, and SampEn, converge and distin-
guish sequences from distributions of different complexity. We
conduct experiments to comparatively evaluate these methods us-
ing a Monte Carlo simulation of synthetic symbolic sequence data.
All analyses are conducted using Python 3 and source code for USM
functions can be found here https://doi.org/10.5281/zenodo.8180741.
Other functions and data available on request.

We generate 103 samples of independent and identically dis-
tributed (i.i.d.) uniformly random sequences of length 500 to 10000
for alphabet sizes ranging from 4 to 23. For each sample sequence,
we compute ApEn and SampEn for each𝑚 = (1, 2, 3, 4) with the
tolerance 𝑟 = 0 as 𝑟 is not needed when dealing with symbolic
sequences [13]. We also compute USM coordinates and USM-Rényi
entropy with the same kernel variance values, 𝜎2, used in [18].
To understand the precision of each entropy measure we estimate
the standard error (SE) of its sampling distribution as the standard
deviation of the entropy estimates for each sequence length and
distribution.

The size of 𝜎2 in the USM-Rényi estimate roughly corresponds
to the length 𝑘 of k-gram density being estimated [18], therefore
there is a congruence between 𝜎2 and the value of𝑚 used in ApEn
and SampEn. Pairwise Pearson’s correlations between USM-Rényi,
ApEn and SampEn for each value of 𝜎2 and𝑚 reveal that while for
certain pairs of𝑚 and 𝜎2 there is strong correlation (|𝑟 | ≥ 0.9 for
some pairs), the entropy measures are not one to one interchange-
able and may each offer unique insight into the complexity of a
sequence. However, analysis of the distributions and pairwise Pear-
son’s correlations of the USM-Rényi values reveals for 𝜎2 < 1𝑥10−7
𝑆𝐸 ≈ 0 and for 𝜎2 ≥ 0.1 USM-Rényi estimates are completely
correlated with each other (𝑟 = 1). This implies no new informa-
tion is gained regarding the complexity of the distribution of USM
coordinates from kernel variances beyond these cutoffs and so
we limit the remainder of our analyses to 𝜎2 values in the range
1𝑥10−7 ≤ 𝜎2 ≤ 0.1.

For all entropy estimates, convergence rates are slower as the
alphabet size, 𝑑 , increases. For 𝑑 = 23 USM-Rényi values for each
𝜎2 converge for 𝑛 ≥ 2500 with small SE relative to the absolute
values of the entropy measure. The absolute value of USM-Rényi is
consistently greater for larger alphabet size for 1𝑥10−7 ≤ 𝜎2 ≤ 0.01,
though an inflection does occur at 0.0316 < 𝜎2 ≤ 0.056 where the
signs of the estimates flip from negative to positive.

One downside to SampEn is it may return an undefined result
when there are no𝑚 + 1 length vector matches. In our simulations,
the rate at which SampEn was undefined increased with alphabet
size, such that, for𝑑 = 23, 65% and 19% of SampEn(m=3) values were
undefined for 𝑛 = 500 and 𝑛 = 1000 respectively. And SampEn(m=4)

https://doi.org/10.5281/zenodo.8180741
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(a) Plot of mean entropy measures for i.i.d sequences length 10000
for each alphabet size. The top two plots show mean ApEn and Sam-
pEn against values of𝑚. The bottom plot shows Mean USM-Rényi for
each 𝜎2. Error bars represent the estimated SE of the sampling distri-
bution. Note that SE are very small for all entropy estimates except
SampEn(m=3) and SampEn(m=4).

(b) Plot of mean entropy measures for sequences of length 5000 and
alphabet 4 for i.i.d distribution and two first order markov chains of
different entropy rates in the limit as 𝑁 → ∞. The true entropy rate
for MC1 A is 1.059 and MC1 B is 1.308. Error bars not shown as SE are
so small they are not visible at this scale.

Figure 3: Ability of entropy estimates to distinguish sequences with different underlying distributions.

was undefined for nearly all 500 and 1000 length sequences and
was undefined for 65% and 16% of sequences length 2500 and 5000
respectively. For i.i.d. uniform distributions both ApEn and SampEn
should converge to the same value for any 𝑚. Our results show
this is the case for SampEn but not ApEn. ApEn(m=1) converges
by 𝑛 = 2500 for 𝑑 = 23 but even for sequences length 10000, ApEn
convergence is progressively worse for increasing𝑚 and 𝑑 (Figure
3). Despite this slow convergence, for 𝑛 ≥ 2500 the spread of ApEn
is very narrow with 𝑆𝐸 < 0.01 for all𝑚. SampEn, on the other hand,
converges quickly for each value of𝑚 even with the smallest sample
sizes but the SE for SampEn values is much larger than ApEn to
the point of overlapping with other distributions (Figure 3a). For
𝑑 = 23, the SE of SampEn(m=2) for 𝑛 = 2500 is 0.06, nearly an order
of magnitude larger than for ApEn(m=2) at 𝑛 = 2500 (𝑆𝐸 = 0.008).

We also use simulated Markov Chains to gauge the ability of the
entropy measures to distinguish between sequences with the same
alphabet size but different probability distributions. We generate
103 sequences of length 𝑛 = 5000 from two first-order Markov
Chains with entropy rate, computed following the method in [19],
of 1.059 and 1.308 respectively. All three entropy estimates correctly
estimate the i.i.d. sequences to be the most complex and MC1 A as
the least complex (Figure 3b). While all three methods have narrow
enough SEs to distinguish between the distributions, the relative
range of ApEn and SampEn is much smaller than USM-Rényi.

6 SMART HOME CASE STUDY
We highlight the use of USM to analyze the complexity of smart
home behavior data through a case study. To illustrate the analysis,
we use a technique proposed by Almeida and Vinga [3] to generate
2D representations of USMs. In this visualization, each sensor in
the home is assigned to one vertex in an equilateral polygon. The

density of points plotted by the USM algorithm creates a fractal-
like pattern of sub-polygons (i.e. sub-quadrants in the 4d version
shown in Figure 2) representing multi-order transitions between
locations. We analyze maps (Figure 4) generated from three days
of data from 13 smart home motion detectors placed around the
home of an 83-year-old female resident. For comparison, Figure 4a
demonstrates how synthetic uniform random data for this smart
home configuration generates amapwith fully filled nested polygon
rings.

The remaining plots in Figure 4 represent three different days
of (self-reported) activity: a normal day, a day with housekeeping
activities, and a day with a visitor in the home. On the normal
day, we observe that the most complete rings occur within a room,
with occasional transitions between bedroom and bathroom, living
room and sink, and entryway and living room. Overall, transitions
between distinct areas of the home are less common.

In contrast, the days with housekeeping and visitor activities
generate darker, more complete rings. Figure 4c shows the distribu-
tion of motion is fairly uniform for the housekeeping day, while the
visitor day highlights more frequent multi-order transitions in and
between the living room, kitchen, and dining area. The USM maps
align with the reported activities of the participant, visualizing both
the amount and diversity of movement within the space, including
transitions between regions. This visualization provides a valuable
foundation for analyzing movement complexity as an indicator of
frailty.

7 DISCUSSION AND CONCLUSION
In this paper, we introduce and compare entropy estimates of smart
home-based human behavior as a foundation for analyzing frailty.
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(a) Simulated uniform random. (b) Normal day. (c) Day with housekeeping. (d) Day with a visitor.

Figure 4: USM plots for 13 motion sensors in a smart home. The completeness of nested sub-polygons indicates the relative
frequency of transitions from other locations.

In addition to the popular approximate and sample entropy mea-
sures, we also consider universal sequence maps for analyzing such
data. We provide a proof of USM based Rényi entropy for any alpha-
bet size. This is a useful advance as USMs provide a simple method
to compute the multi-order transition frequencies of smart home
behaviors which can be described by an arbitrary number of ambi-
ent sensors. USMs also provide a valuable method for visualizing
behavior complexity from collected ambient sensor readings.

Our analysis shows that these entropy measures are very depen-
dent on both sequence length and alphabet size. While all methods
converge on simulation data, faster convergence also sometimes
coexisted with larger error. Researchers should exercise caution
when drawing conclusions related to differences in entropy of smart
home data if the sequences are very short or of different lengths,
or if they come from smart homes with different sensor counts. Of
the methods we analyzed, USM-Rényi showed a favorable balance
of convergence rate, precision, and relative consistency across dif-
ferent alphabets and distributions compared to ApEn and SampEn.

A limitation of the work is that analysis is based on simulation
data. We conjecture that behavior complexity, estimated by en-
tropy of ambient sensor data, is an indicator of frailty. Further work
is needed to validate this based on clinical assessment of subject
frailty and how it compares with other behavior features such as
total within-room and between-room movement. Additionally, our
visualizations reflect periods of increased complexity that are due
to visitors in the home. Analysis of frailty will need to control for
such cases to analyze behavior that is based on one specific person
in the home. This work provides a new method to model behavior
complexity from smart home sensor data, capturing temporal move-
ment patterns and creating a foundation for passive, continuous
in-home health assessment.
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