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ABSTRACT
We study synthetic data release for answeringmultiple linear queries

over a set of database tables in a differentially private way. Two

special cases have been considered in the literature: how to release

a synthetic dataset for answering multiple linear queries over a

single table, and how to release the answer for a single counting

(join size) query over a set of database tables. Compared to the

single-table case, the join operator makes query answering chal-

lenging, since the sensitivity (i.e., by how much an individual data

record can affect the answer) could be heavily amplified by complex

join relationships.

We present an algorithm for the general problem, and prove

a lower bound illustrating that our general algorithm achieves

parameterized optimality (up to logarithmic factors) on some simple

queries (e.g., two-table join queries) in the most commonly-used

privacy parameter regimes. For the case of hierarchical joins, we

present a data partition procedure that exploits the concept of

uniformized sensitivities to further improve the utility.

CCS CONCEPTS
• Information systems→ Database query processing; Query
optimization; • Security and privacy→ Data anonymization
and sanitization; •Theory of computation→Theory of data-
base privacy and security.
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1 INTRODUCTION
Synthetic data release is a very useful objective in private data anal-

ysis. Differential privacy (DP) [17, 18] has emerged as a compelling

model that enables us to formally study the tradeoff between util-

ity of released information and the privacy of individuals. In the

literature, there has been a large body of work that studies syn-

thetic data release over a single table, e.g., the private multiplicative

weight algorithm [25], the histogram-based algorithm [43], the ma-

trix mechanism [33], the Bayesian network algorithm [45], and

other works on geometric range queries [7, 9, 11, 19, 20, 28, 34, 35]

and datacubes [13].

Data analysis over multiple private tables connected via join

operators has been the subject of significant interest within the

area of modern database systems. In particular, the challenging

question of releasing the join size over a set of private tables has

been studied in several recent works including the sensitivity-based

framework [15, 16, 30], the truncation-basedmechanism [14, 32, 42],

as well as in works on one-to-one joins [37, 41], and on graph

databases [6, 10]. In practice, multiple queries (as opposed to a

single one) are typically issued for data analysis, for example, a

large class of linear queries on top of join results with different

weights on input tuples, as a generalization of the counting join size

query. One might consider answering each query independently

but the utility would be very low due to the limited privacy budget,

implied by DP composition rules [17, 18]. Hence the question that

we tackle in this paper is: how can we release synthetic data for

accurately answering a large class of linear queries over multiple

tables privately?

1.1 Problem Definition
Multi-way Join and Linear Queries. A (natural) join query can

be represented as a hypergraphH = (x, {x1, . . . , xm }) [1], where
x is the set of vertices or attributes and each xi ⊆ x is a hyperedge

or relation. Let dom(x) be the domain of attribute x . Define D =
dom(x) =

∏
x ∈x dom(x), and Di = dom(xi ) =

∏
x ∈xi dom(x) for

any i ∈ [m]. For attribute(s) y, we use πyt to denote the value(s)

that tuple t displays on attribute(s) y.
Given an instance I =

(
RI
1
, . . . ,RIm

)
ofH , each table RIi : Di →

Z≥0 is defined as a function from domain Di to a non-negative

integer, indicating the frequency of each tuple in Di . This is more

general than the setting where each tuple appears at most once

in each relation, since it can capture annotated relations [24] with

non-negative annotations. The input size of I is defined as the sum

of frequencies of all data records, i.e., n =
∑
i ∈[m]

∑
t ∈Di R

I
i (t).
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We encode the natural join as a function ρ : ×i ∈[m]Di → {0, 1},

such that for each combination ®t = (t1, . . . , tm ) ∈ ×i ∈[m]Di of

tuples, ρ(®t) = 1 if and only if πxi∩xj ti = πxi∩xj tj for each pair of

i, j ∈ [m], i.e., ti , tj share the same values on the common attributes

between xi and xj . Given a join queryH and an instance I, the join
result is also represented as a function JoinI : D→ Z≥0, such that

for any combination ®t = (t1, . . . , tm ) ∈ ×i ∈[m]Di ,

JoinI
(
®t
)
= ρ(®t)

∏
i ∈[m]

RIi (ti ) .

The join size of instance I over join queryH is therefore defined as

count(I) =
∑

®t ∈×i∈[m]Di

JoinI
(
®t
)
.

For each i ∈ [m], we have a family Qi of linear queries defined

over Di such that for q ∈ Qi , q : Di → [−1,+1]. Let Q = ×i ∈[m]Qi .
For each linear query q = (q1, . . . ,qm ) ∈ Q, the result over instance
I is defined as

q(I) =
∑

®t=(t1, ...,tm )∈×i∈[m]Di

ρ
(
®t
) ∏
i ∈[m]

qi (ti ) · R
I
i (ti ).

Our goal is to release a function F : ×i ∈[m]Di → N such that all

queries in Q can be answered over F as accurately as possible, i.e.,

minimizing the ℓ∞-error α = max

q∈Q
|q(I) − q(F)|, where

q(F) =
∑

®t=(t1, ...,tm )∈×i∈[m]Di

F(®t)
∏
i ∈[m]

qi (ti ).

We study the data complexity [44] of this problem and assume

that the size of join query is a constant. When the context is clear,

we just drop the superscript I from RI, JoinI.

DP Setting. Two DP settings have been studied in the relational

model, depending on whether foreign key constraints are consid-

ered or not. The one considering foreign key constraints assumes

the existence of a primary private table, and deleting a tuple in

the primary private relation will delete all other tuples referencing

it; see [14, 32, 42]. In this work, we adopt the other notion, which

does not consider foreign key constrains, but defines instances to

be neighboring if one can be converted into the other by adding/re-

moving a single tuple; this is the same as the notion studied in some

previous works [30, 31, 38, 41].
1

Definition 1.1 (Neighboring Instances). A pair I = (R1, . . . ,Rm )
and I′ = (R′

1
, . . . ,R′m ) of instances are neighboring if there exists

some i ∈ [m] and t∗ ∈ Di such that:

• for any j ∈ [m] ∖ {i}, Rj (t) = R′j (t) for every t ∈ Dj ;

• Ri (t) = R′i (t) for every t ∈ Di ∖ {t
∗} and |Ri (t

∗) − R′i (t
∗)| = 1.

Definition 1.2 (Differential Privacy [17, 18]). For ϵ,δ > 0, an

algorithm A is (ϵ,δ )-differentially private (denoted by (ϵ,δ )-DP)
if for any pair I, I′ of neighboring instances and any subset S of

outputs, Pr(A(I) ∈ S) ≤ eϵ · Pr(A(I′) ∈ S) + δ .

1
Our definition corresponds to the add/remove variant of DPwhere a record is added/re-

moved from a single database Ri . Another possible definition is based on substitution

DP. Add/remove DP implies substitution DP with only a factor of two increase in the

privacy parameters; therefore, all of our results also apply to substitution DP.

Notation. For simplicity of presentation, we henceforth assume

throughout that 0 < ϵ ≤ O(1) and 0 ≤ δ ≤ 1/2. Furthermore,

all lower bounds below hold against an algorithm that achieves

the stated error α with probability 1 − β for some sufficiently small

constant β > 0; we will omit mentioning this probabilistic part for

brevity. For notational ease, we define the following quantities:

f lower(D,Q, ϵ) =

√
1

ϵ
·
√
log |D|, and

f upper(D,Q, ϵ,δ ) = f lower(D,Q, ϵ) ·
√
log |Q| · log 1/δ .

When D,Q, ϵ,δ are clear from context, we will omit them. Let

λ = 1

ϵ log
1

δ , which is a commonly-used parameter in this paper.

1.2 Prior Work
We first review the problem of releasing synthetic data for a single

table, and mention two important results in the literature. In the

single table case, nearly tight upper and lower bounds are known:

Theorem 1.3 ([25]). For a single table R of at most n records, a

family Q of linear queries, and ϵ,δ > 0, there exists an algorithm

that is (ϵ,δ )-DP, and with probability at least 1 − 1/poly(|Q|) pro-

duces F such that all queries in Q can be answered to within error

α = O
(√
n · f upper

)
using F.

Theorem 1.4 ([8]). For every sufficiently small ϵ > 0, sufficiently

large n, nD ≥ nO (1) and nQ ≥ (n · lognD )
O (1)

, there exists a family

Q of queries of size nQ on a domain D of size nD such that any

(ϵ, 1/nω(1))-DP algorithm that takes as input a database of size at

most n, and outputs an approximate answer to each query in Q to

within error α must satisfy α ≥ Ω̃
(
min

{
n,
√
n · f lower

})
.

Another related problem that has been widely studied by the

database community is how to release the join size of a query

privately, i.e., count(I) for every input instance I. Note that count(I)
is essentially a special linear query q = (q1, . . . ,qm ) with qi :

Di → {+1} for every i ∈ [m]. A popular approach of answering

the counting join size query is based on the sensitivity framework,

which first computes count(I), then computes the sensitivity of the

query (measuring the difference between the query answers on

neighboring database instances), and releases a noise-masked query

answer, where the noise is drawn from some zero-mean distribution

calibrated appropriately according to the sensitivity. It is known

that the local sensitivity of counting join size query, defined as

LScount(I) = max

I′:(I,I′) are neighboring
|count(I) − count(I′)|,

where the maximum is over all neighboring instances I′ of I, cannot
be directly used for calibrating noise, as LScount(I), LScount(I′) for a
pair I, I′ of neighboring databases can be used to distinguish them.

Global sensitivity (e.g., [18]) defined as

GScount(I) = max

I
LScount(I),

where the maximum is over all instances I, could be used but the

utility is unsatisfactory in many instances. Smooth upper bounds

on local sensitivity [40] have instead been considered; they offer

much better utility than global sensitivity. Examples include smooth

sensitivity, which is the smallest smooth upper bound but usually

cannot be efficiently computed, and residual sensitivity [15], which
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is a constant-approximation of smooth sensitivity but can be ef-

ficiently computed and used in practice. See Section 3 for formal

details.

We note that the sensitivity-based framework can be adapted

to answering any single linear query, as long as the sensitivity of

the specific linear query is correctly computed. However, we are

not interested in answering each linear query individually, since

the privacy budget (implied by DP composition) would blow up

with the number of queries to be answered, which would be too

costly when the query space is extremely large. Instead, we aim

to release a synthetic dataset such that any arbitrary linear query

can be freely answered over it while preserving DP. In building our

data release algorithm, we also resort to the existing sensitivities

derived for the counting join size query but in a more careful way.

In the remaining of this paper, when we mention “sensitivity”

without a specific function, it should be assumed that the function

is counting join size of an input instance, i.e., count(I).

1.3 Our Results
We first present the basic join-as-one approach for releasing a syn-

thetic dataset for multi-table queries, which computes the join

results as a single table and uses existing algorithms for releasing

synthetic dataset for a single table. The error will be a function of

the join size and the residual sensitivity of count(·).

Theorem 1.5. For any join queryH , an instance I, a family Q of

linear queries, and ϵ > 0, δ > 0, there exists an (ϵ,δ )-DP algorithm
that with probability at least 1 − 1/poly(|Q|) produces F that can be

used to answer all queries in Q within error:

α = O

((√
count(I) · RSβ

count
(I) + RSβ

count
(I) ·
√
λ

)
· f upper

)
,

where count(I) is the join size of H over I and RS
β
count
(I) is the β-

residual sensitivity of I for β = 1/λ.

We next present the parameterized optimality with respect to

the join size and the local sensitivity of count(·).

Theorem 1.6. Given arbitrary parameters OUT ≥ ∆ > 0 such

that OUT/∆ is sufficiently large and a join queryH , for every suffi-

ciently small ϵ > 0, nD ≥ OUTO (1) and nQ ≥ (OUT · lognD )O (1),
there exists a family Q of queries of size nQ on domain D of size

nD such that any (ϵ, 1/nω(1))-DP algorithm that takes as input a

multi-table database overH of input size at most n, join size OUT
and local sensitivity ∆, and outputs an approximate answer to each

query in Q to within error α must satisfy

α ≥ Ω̃
(
min

{
OUT,

√
OUT · ∆ · f lower

})
.

For the typical setting with ϵ = Ω(1),δ = O
(
1

nc
)
for some

constant c , |Q| ≤ nO (1) and λ = O (logn).
The gap between the upper bound in Theorem 1.5 and the lower

bound in Theorem 1.6—ignoring poly-logarithmic factors—boils

down to the gap between smooth sensitivity and local sensitivity

used in answering count(·) in a private way, which appears in

answering such a single query in a different form.

From the upper bound in terms of residual sensitivity, we exploit

the idea of uniformized sensitivity
2
to further improve Theorem 1.5,

by using a more fine-grained partition of input instances. For the

class of hierarchical queries, which has been widely studied in the

context of various database problems [4, 12, 21, 27], we obtain a

more fine-grained parameterized upper bound in Theorem C.2 and

lower bound in Theorem C.3. In the main text, we include Theo-

rem 4.4 and Theorem 4.5 for the basic two-table join to illustrate

the high-level idea. We defer all details to Section 4.

2 PRELIMINARIES
We introduce some commonly-used concepts, terminologies, and

primitives used in this paper.

Notation. For random variables X ,Y and scalars ϵ > 0,δ ∈ [0, 1),
we use X ≈(ϵ,δ ) Y for short if Pr[X ∈ S] ≤ eϵ · Pr[Y ∈ S] + δ
and Pr[Y ∈ S] ≤ eϵ · Pr[X ∈ S] + δ for all sets S of outcomes.

For convenience, we sometimes write the distribution in place of

a random variable drawn from that distribution. E.g., a + D is a

shorthand for a+X , whereX is a random variable with distribution

D (denoted X ∼ D).

(Truncated) Laplace Distribution. The Laplace distribution with

parameter b, denoted Lapb , has probability density function (PDF)

Lapb (x) ∝ e−|x |/b . The shifted and truncated Laplace distribution

with parameters b and τ , denoted TLapτb , is the distribution sup-

ported on [0, 2τ ] whose PDF over the support satisfies TLapτb (x) ∝

e−|x−τ |/b . The DP guarantees of the Laplace and truncated Laplace

distributions arewell-known (e.g., [18, 22, 23]): for any pairu,v with

|u −v | ≤ ∆, u + Lap∆/ϵ ≈(ϵ,0) v + Lap∆/ϵ and u + TLapτ
∆/ϵ ≈(ϵ,δ )

v + TLapτ
∆/ϵ for τ = τ (ϵ,δ ,∆) = ∆

ϵ ln

(
1 + eϵ−1

δ

)
. Note here that

τ (ϵ,δ ,∆) ≤ O(∆ · λ) when ϵ is a constant.

Exponential Mechanism. The exponential mechanism (EM) [36]

selects a “good” candidate from a set C of candidates. The goodness

is defined by a scoring function s(I, c) for an input dataset I and a

candidate c ∈ C and is assumed to have sensitivity at most one.

Then, the EM algorithm consists of sampling each candidate c ∈ C
with probability ∝ exp (−0.5ϵ · s(I, c)); this algorithm is (ϵ, 0)-DP.

3 JOIN-AS-ONE ALGORITHM
In this section, we present our join-as-one algorithm for general join

queries, which computes the join results as a single function and

then invokes the single-table private multiplicative weights (PMW)

algorithm [25] (see Algorithm 2). While this is apparently simple,

there are many challenging issues in putting everything together.

(All missing proofs are in Appendix B.)

3.1 Algorithms for Two-Table Query
We start with the simplest two-table query. Assume the join query

H is given by the hypergraphwith vertices x = {A,B,C} and hyper-
edges x1 = {A,B}, x2 = {B,C}. For i ∈ {1, 2}, we define the degree
of a join value b ∈ dom(B) in Ri (i.e., the frequencies of data records
displaying join value b in Ri ) to be degi,B (b) =

∑
t ∈Di :πB t=b

Ri (t).

2
A similar idea of uniformizing degrees of join values, i.e., how many tuples a join

value appears in a relation, has been used in query processing [29], but we use it in a

more complicated scenario to achieve uniform sensitivity.
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The maximum degree of any join value in dom(B) is denoted as

∆ = max

b ∈dom(B)
max{deg

1,B (b), deg1,B (b)}; note that ∆ = LScount(I).

A Natural (but Flawed) Idea. Consider the following algorithm:

• Compute the join result J = Join
I
and release a synthetic dataset

J̃1 for J by invoking the single-table PMW algorithm;

We now briefly explain why this algorithm violates DP. Let J̃ , ˜J ′ be
the synthetic dataset released by this algorithm for two neighbor-

ing databases I, I′ respectively. By the property of the single-table

PMW algorithm, the total number of tuples over the whole domain

stays unchanged, i.e., count(I) =
∑
®t ∈D1×D2

J̃ (®t) and count(I′) =∑
®t ∈D1×D2

˜J ′(®t). However, I, I′ could have dramatically different

join sizes: Figure 1 shows two neighboring databases with join

sizes n and 0 respectively. Thus, J̃ , ˜J ′ can be used by an adversary

to distinguish I, I′, which makes the algorithm not DP.

Another Natural (but Still Flawed) Idea. To remedy the leakage

in the above algorithm, we seek to protect the total number of

tuples in the released dataset, say, by padding with dummy tuples:

(1) Compute the join result J = JoinI and release a synthetic dataset
J̃1 for J by invoking the single-table PMW algorithm;

(2) ∆̃← ∆ + TLapτ (ϵ/2,δ/2,1)
2/ϵ ;

(3) J̃2 ← random sample of η records from D1 × D2, where η ∼

TLapτ (ϵ/2,δ/2, ∆̃)
2∆̃/ϵ

;

(4) Release the union of these two datasets: F = J̃1 ∪ J̃2;

As noted, the local sensitivity cannot be directly used for privately

releasing the join size, however, the global sensitivity of LScount(·)

is 1. Hence, the second step is to obtain an upper bound on the

local sensitivity, which will be used to calibrate the noise needed

to mask the join size of I. More specifically, for any neighboring

databases I, I′, let F,F′ be the synthetic datasets released for I, I′

respectively. As mentioned,

∑
t ∈D1×D2

F(t) ≈(ϵ,δ )
∑
t ∈D1×D2

F′(t),
which resolves the information leakage of the join size. However, it

turns out that this approach can still lead to the distinguishability of

neighboring databases I, I′. Indeed, consider the following example.

Example 3.1. Consider neighboring instances I, I′ in Figure 1.

Assume ϵ = Θ(1) and δ = O(1/nc ) for some constant c . Let J̃1, J̃
′
1

be the synthetic datasets released for J , J ′ respectively. As J̃ (®t) = 0

for each ®t ∈ D1 × D2, ˜J ′(®t) = 0 also holds for every ®t ∈ D1 × D2.
Let D′ = (dom(A) × {b1}) × ({b1, c1}). In contrast, with probability

at least 1 − 1/poly(|Q|), there exists some constant c1 such that∑
®t ∈D′ J̃1

(
®t
)
≥ n − c1 ·

√
n · f upper, for answering count(·) within

an error of O(
√
n · f upper). Moreover, ∆ = n, hence ∆̃ = O(n logn)

and η = O(n log2 n). The probability that no tuple in D′ is sam-

pled by J̃ ′
2
is (1 − n/n3)c2 ·n log

2 n = (1 − 1/n2)n
2 ·
c
2
logn2

n > 1/e

for some constant c2. Together, Pr[
∑
®t ∈D′ F(®t) = 0] < 1/poly(|Q|)

and Pr[
∑
®t ∈D′ F

′(®t) = 0] > 1/e , thus violating the DP condition

1/e < 1/poly(|Q|) · eΘ(1) +O(1/nc ).

Our Algorithm. The main insight in the idea that works is to

change the order of the two steps in the previous flawed version.

More specifically, we first pad dummy tuple to join results and then

release the synthetic dataset for the “noisy” join results.

R1 R2

A B C
a1

a2

a3

an

c2

c1

c3

cn

b1

R′
1 R′

2

a1

a2

a3

an

c2

c1

c3

cn

b2

b3

bn bn

b3

b2

b1

A B C

Figure 1: A pair of neighboring instances I (left) and I′ (right)
for two-table join with dom(A) = {a1, . . . ,an }, dom(B) =
{b1, . . . ,bn }, and dom(C) = {c1, . . . , cn }.

Algorithm 1: TwoTable(I = {R1,R2})

1 ∆̃← ∆ + TLapτ (ϵ/2,δ/2,1)
2/ϵ ;

2 return PMWϵ/2,δ/2, ∆̃(I); ▶ Algorithm 2;

Algorithm 2: PMWϵ,δ, ∆̃(I = {R1, . . . ,Rm })

1 n̂ = count(I) + TLapτ (ϵ/2,δ/2, ∆̃)
2∆̃/ϵ

;

2 F0 ← n̂ times uniform distribution over D: F0(x) =
n̂
|D |

;

3 ϵ ′ ← ϵ
16

√
k ·log(1/δ )

;

4 foreach i = 1, . . . ,k do
5 Sample a query qi ∈ Q using the ϵ ′-DP EM with score

function si (I,q) = 1

∆̃
· |q(Fi−1) − q(I)|;

6 mi ← qi (I) + Lap∆̃/ϵ ′ ;
7 Update for each x ∈ D:

Fi (x) ∝ Fi−1(x) × exp
(
qi (x) · (mi − qi (Fi−1)) ·

1

2n̂

)
;

8 return Avgki=1Fi ;

(1) ∆̃← ∆ + TLapτ (ϵ/2,δ/2,1)
2/ϵ ;

(2) J̃2 ← random sample of η records from D1 × D2, where η ∼

TLapτ (ϵ/2,δ/2, ∆̃)
2∆̃/ϵ

;

(3) We compute the join result J = Join(H , I) and release a syn-

thetic dataset F for J ∪ J̃2 by invoking the single-table PMW

algorithm;

We observe that this approach can be further simplified by releasing

a synthetic dataset for the join result J directly by invoking the

single-table PMW algorithm, but starting from an initial uniform

distribution parameterized by n̂ = count(I)+η. Algorithm 1 contains

a complete description for releasing synthetic dataset for two-table

joins. Since n̂ is private and the single-table algorithm [25] releases

a private synthetic dataset for J , Algorithm 1 also satisfies DP, as

stated in Lemma 3.2.

Lemma 3.2. Algorithm 1 is (ϵ,δ )-DP.

Error Analysis. As shown in Appendix A, with probability 1 −

1/poly(|Q|), Algorithm 2 returns a synthetic dataset F such that ev-

ery linear query in Q can be answered over Fwithin error (omitting

f upper): O
(√

count(I) · (∆ + λ) + (∆ + λ) ·
√
λ
)
. Then, we arrive at:
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Figure 2: A hard instance constructed for two-table join,
with n = 9, ∆ = 3 and OUT = 27.

Theorem 3.3. For any two-table instance I, a family Q of linear

queries, and ϵ > 0, δ > 0, there exists an algorithm that is (ϵ,δ )-DP,
and with probability at least 1− 1/poly(|Q|) produces F such that all

linear queries in Q can be answered to within error:

α = O
(
(
√
count(I) · (∆ + λ) + (∆ + λ) ·

√
λ) · f upper

)
,

where count(I) is the join size of I, and ∆ = LScount(I).

3.2 Lower Bounds for Two-Table Join
The first lower bound is based on the local sensitivity:

Theorem 3.4. For any ∆ > 0, there exists a family Q of queries

such that any (ϵ,δ )-DP algorithm that takes as input a database I
with local sensitivity at most ∆ and outputs an approximate answer

to each query in Q to within error α , must satisfy α ≥ Ω (∆).

Our second lower bound is via a reduction to the single-table

case: we create a two-table instance where R1 encodes the single-
table and R2 “amplifies” both the sensitivity and the join size by a

factor of ∆. This eventually results in the following lower bound:

Theorem 3.5. Given arbitrary parameters OUT ≥ ∆ > 0 such

that OUT/∆ is sufficiently large, for every sufficiently small ϵ >

0, nD ≥ OUTO (1) and nQ ≥ (OUT · lognD )O (1), there exists a

family Q of queries of size nQ on domain D of size nD such that any

(ϵ, 1/nω(1))-DP algorithm that takes as input a two-table database

over H of input size at most n, join size OUT and local sensitivity

∆, and outputs an approximate answer to each query in Q to within

error α must satisfy

α ≥ Ω̃
(
min

{
OUT,

√
OUT · ∆ · f lower

})
.

Proof. Let n = OUT
∆ . From Theorem 1.4, there exists a set Qone

of queries on domainD for which any (ϵ,δ )-DP algorithm that takes

as input a single-table database T ∈ D and outputs an approximate

answer to each query in Qone within error α requires that α ≥

Ω̃
(
min

{
n,
√
n · f lower(D,Qone, ϵ)

})
. For an arbitrary single-table

database T : D→ Z+, we construct a two-table instance I of join
size OUT, and local sensitivity ∆ as follows:

• Set dom(A) = D, dom(B) = D × [n], and dom(C) = [∆].
• Let R1(a, (b1,b2)) = 1[a = b1∧b2 ≤ T (a)] for all a ∈ dom(A) and
(b1,b2) ∈ dom(B).
• Let R2(b, c) = 1 for all b ∈ dom(B) and c ∈ dom(C).

Algorithm 3: MultiTable(I)

1 β ← 1/λ;

2 ∆̃← RS
β
count
(I) · eTLap

τ (ϵ/2,δ /2,β )
2β/ϵ

;

3 return PMWϵ/2,δ/2, ∆̃(I);

It can be easily checked that I has join size at most OUT and

local sensitivity ∆, and that two neighboring databases T ,T ′ result
in neighboring instances I, I′. Finally, let Q1 contain queries from

Qone applied on its first attribute (i.e., Q1 := {q ◦ πA | q ∈ Qone}),
and let Q2 contain only a single query qall-one : D2 → {+1}. An
example is illustrated in Figure 2.

Our lower bound argument is a reduction to the single-table

case. Let I(OUT,∆) be the set of all instances of join size OUT
and local sensitivity ∆. Let A be an algorithm that takes any two-

table instance in I(OUT,∆), and outputs an approximate answer

to each query in Q within error α ′. For each query q ∈ Qone, let
q′ = (q ◦ πA,qall-one) be its corresponding query in Q. Let q̃′(I) be
the approximate answer for query q̃′. We then return q̃(T ) = q̃′(I)/∆
as an approximate answer to q(T ).

We first note that this algorithm for answering queries in Qone
is (ϵ,δ )-DP due to the post-processing property of DP. The error

guarantee follows immediately from the observation that q′(I) =
∆ · q(T ). Therefore, from Theorem 1.4, we can conclude that

α ′ ≥ ∆ · Ω̃(min{n,
√
n · f lower(D,Qone, ϵ)})

= Ω̃
(
min{OUT,

√
OUT ·

√
∆ · f lower}

)
. □

3.3 Multi-Table Join
We next extend the join-as-one approach to multi-table queries.

First, notice that Algorithm 1 does not work in the multi-table

setting because LScount(·) may itself have a large global sensitivity

(unlike the two-table case where the global sensitivity of LScount(·)

is 1.) Hence, we will have to find other ways to perturb the join size,

and then use this noisy join size to parameterize the initial uniform

distribution of the single-table PMW algorithm. As noted, several

previous works have proposed various smooth upper bounds on the

local sensitivity [40]: For β > 0, Sβ (·) is a β-smooth upper bound

on local sensitivity, if (1) Sβ (I) ≥ LScount(I) for every instance I;
and (2) for any pair of neighboring instances I, I′, Sβ (I′) ≤ eβSβ (I).

The smallest smooth upper bound on local sensitivity is denoted

as smooth sensitivity. However, as observed by [15], it takesnO (logn)

time to compute smooth sensitivity for count(·), which is very ex-

pensive especially when the input size n of underlying instance

is large. Fortunately, we do not necessarily need smooth sensitiv-

ity: any smooth upper bound on local sensitivity can be used for

perturbing the join size. In building our data release algorithm,

we use residual sensitivity, which is a constant-approximation of

smooth sensitivity, and more importantly can be computed in time

polynomial in n.
To introduce the definition of residual sensitivity, we need the

following terminology. Given a join queryH = (x, {x1, . . . , xm })
and a subset E ⊆ [m] of relations, its boundary, denoted as ∂E , is

the set of attributes that belong to relations both in and out of E, i.e.,
∂E = {x | x ∈ xi ∩ xj , i ∈ E, j < E}. Correspondingly, its maximum
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boundary query is defined as
3
:

TE (I) = max

t ∈dom(∂E)

∑
t ′∈dom(∪i∈Exi ):π∂E t ′=t

∏
i ∈E

RIi (πxi t
′). (1)

Definition 3.6 (Residual Sensitivity [15, 16]). Given β > 0, the

β-residual sensitivity of count(·) over I is defined as

RS
β
count
(I) = max

k≥0
e−βk · L̂S

k
count
(I),

where L̂S

k
count
(I) = max

s∈Sk
max

i ∈[m]

∑
E⊆[m]∖{i }

T[m]∖{i }∖E (I) ·
∏
j ∈E

sj , for

Sk =
{
s = (s1, . . . , sm ) :

∑m
i=1 si = k, si ∈ Z

≥0,∀i ∈ [m]}.
It is well-known that RS

β
count
(·) is a smooth upper bound on

LScount(·) [15]. However, we do not use it (as in [15]) to calibrate

the noise drawn from a Laplace or Cauchy distribution. In our data

release problem, we always find an upper bound ∆̃ for RS
β
count
(I),

which is then passed to the single-table PMW algorithm. To com-

pute ∆̃, we observe that ln

(
RS

β
count
(·)

)
has global sensitivity at

most β . Therefore, adding to it an appropriately calibrated (trun-

cated and shifted) Laplace noise provides an upper bound that is

private. The idea is formalized in Algorithm 3. Its privacy guarantee

is immediate:

Lemma 3.7. Algorithm 3 is (ϵ,δ )-DP.

Error analysis.By definition of TLap, we have
���TLapτ (ϵ/2,δ/2,β )

2β/ϵ

��� ≤
2τ (ϵ/2,δ/2, β) ≤ O

(
β
ϵ · log(1/δ )

)
= O(1) and therefore ∆̃ is a

constant-approximation ofRS
β
count
(I), i.e., ∆̃ = Θ(RS

β
count
(I)). Hence

n̂ = O
(
count(I) + RSβ

count
(I) · λ

)
. Putting everything together, the

total error (omitting f upper) is:

O
(√

n̂ ·
√
∆̃
)
= O

(√
count(I) · RSβ

count
(I) + RSβ

count
(I) ·
√
λ

)
.

Extending the previous lower bound argument on the two-table

query, we can obtain the lower bound on the multi-table query

in Theorem 1.6. Moreover, we give the worst-case analysis on the

error achieved above in Appendix B.

4 UNIFORMIZED SENSITIVITY
So far, we have shown a parameterized algorithm for answering

linear queries whose utility is in terms of the join size and the

residual sensitivity. A natural question arises: can we achieve a

more fine-grained parameterized algorithm with better utility?

Let us start with an instance of two-table join (see Figure 3),

with input size Θ(n), join size Θ(n
√
n), and local sensitivity

√
n.

Algorithm 1 achieves an error of O(n). However, this instance is
beyond the scope of Theorem 3.5, as the degree distribution over

join values is extremely non-uniform. Revisiting the error bound

in Theorem 3.3, we can gain an intuition regarding why Algo-

rithm 1 does not perform well on this instance. The costly term is

O(
√
count(I) ·

√
∆), where ∆ is the largest degree of join values in

the input instance I. However, there are many join values whose

3
The semi-join result of Ri ⋉ t is defined as function R′i : Di → Z+ such that

Rt (t ′) = R(t ′) if πxi t
′ = πxi t and 0 otherwise.

A B C A B C

B2

B1

Blog
√
n

Figure 3: An instance beyond the scope of Theorem 3.5.
There are

√
n join values in attribute B, where there is exactly

one join value with degree i in both R1,R2 for every i ∈ [
√
n].

Algorithm 4: Uniformizeϵ .δ (I)

1 I← Partitionϵ/2,δ/2(I);
2 foreach I′ ∈ I do
3 F(I′) ← MultiTableϵ/2,δ/2(I′); ▶Algorithm 3;

4 return
⋃

I′∈I F(I′);

degree is much smaller than ∆. Therefore, a natural idea is to uni-

formize sensitivities, i.e., partition the input instance into a set of

sub-instances by join values, where join values with similar sensi-

tivities are in the same sub-instance. We then invoke our previous

join-as-one algorithm as a primitive on each sub-instance indepen-

dently, and return the union of the synthetic datasets generated for

all sub-instances. Our uniformization framework is illustrated in

Algorithm 4. (All missing proofs are given in Appendix C).

4.1 Uniformized Two-Table Join
As mentioned, there is quite an intuitive way to uniformize a two-

table join. As described in Algorithm 5, the high-level idea is to

bucket join values in dom(B) by their maximum degree in R1 and
R2. To protect the privacy of individual tuples, we draw a random

sample from TLapτ (ϵ/2,δ/2,1)
2/ϵ and add it to a join value’s degree,

before determining to which bucket it should go. Recall that λ =
1

ϵ log
1

δ . Let γ0 = 0 and γi = 2
iλ for all i ∈ N. Conceptually,

we divide [0,n + λ] into ℓ = ⌈log(nλ + 1)⌉ buckets, where the ith
bucket is associated with (γi−1,γi ] for i ∈ [ℓ]. The set of values from
dom(B)whose maximum noisy degree inR1 andR2 falls into bucket
i is denoted as Bi . For each i , we identify tuples in R1,R2 whose
join value falls into Bi as Ri

1
,Ri

2
, which forms the sub-instance

(Ri
1
,Ri

2
). More specifically, Ri

1
: Bi → Z≥0, such that Ri

1
(t) = R1(t)

if πBt ∈ Bi and Ri
1
(t) = R1(t) otherwise. R

i
2
is defined similarly.

Finally, we return all the sub-instances as the partition.

Lemma 4.1. Algorithm 4 on two-table join is (ϵ,δ )-DP.

The key insight in Lemma 4.1 is that adding or removing one

input tuple can increase or decrease the degree of one join value

b ∈ dom(B) by at most one. Hence, Algorithm 5 satisfies (ϵ,δ )-DP
by parallel composition [37]. Moreover, since each input tuple par-

ticipates in exactly one sub-instance, and Algorithm 2 preserves

(ϵ,δ )-DP for each sub-instance by Lemma 3.2, Algorithm 4 pre-

serves (2ϵ, 2δ )-DP by basic composition [18].
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Algorithm 5: Partition-TwoTableϵ,δ (I = {R1,R2})

1 foreach i ∈ N do Bi ← ∅;

2 foreach b ∈ dom(B) do
3 d̃egB (b) = max{deg

1,B (b), deg2,B (b)} + TLap
τ (ϵ,δ,1)
1/ϵ ;

4 i ← max

{
1,

⌈
log

1

λ · d̃egB (b)
⌉}
;

5 Bi ← Bi ∪ {b};

6 foreach i with Bi , ∅ do
7 foreach j ∈ {1, 2} do
8 Rij : dom(D1) → Z

≥0
such that for any t ∈ D1,

Rij (t) = Rj (t) if πBt ∈ B
i
and Rij (t) = 0 otherwise;

9 return
⋃
i :Bi,∅{(R

i
1
,Ri

2
)};

Error Analysis. Note that n is not explicitly used in Algorithm 5

as this is not public, but it is easy to check that there exists no join

value in dom(B) with degree larger than n under the input size

constraint. Hence, it is safe to consider i ∈ [ℓ] in our analysis.

Given an instance I over the two-table join, let π = {B1π , . . . ,Bℓπ }
be the partition of dom(B) generated by Algorithm 5. Let Iiπ =
(Ri

1
,Ri

2
) be the sub-instance induced by Biπ . Let F

i
be the synthetic

dataset generated for Iiπ . From Theorem 3.3, with probability 1 −

1/poly(|Q|), the error for answering any linear query defined on(
dom(A) × dom(Biπ )

)
×

(
dom(Biπ ) × dom(C)

)
with Fi is (omitting

f upper) αi = O

(√
count(Iiπ ) · 2i · λ + 2i · λ3/2

)
. By a union bound,

with probability 1− 1/poly(|Q|), the error for answering any linear

query in Q with ∪iF
i
is (omitting f upper):

α ≤
∑
i ∈[ℓ]

αi ≤ λ3/2 · (∆ + λ) +
√
λ ·

∑
i ∈[ℓ]

√
count(Iiπ ) ·

√
2
i , (2)

since

∑
i ∈[ℓ] 2

i ≤
∑
i ∈[⌈log(∆+λ)⌉] 2

i = O (∆ + λ). Moreover, we

observe that Algorithm 4 achieves better (or at least not worse

than) error than Algorithm 1 (if ignoring λ), since

(2) ≤ λ3/2 · (∆ + λ) +
√
λ ·

√ ∑
i ∈[ℓ]

count(Iiπ ) ·
√ ∑

i ∈[ℓ]

2
i

= λ3/2 · (∆ + λ) +
√
λ ·

√
count(I) ·

√
∆ + λ,

where the first inequality is implied by the Cauchy–Schwarz in-

equality. Furthermore, we observe that the gap between the error

achieved by Algorithm 4 and Algorithm 1 can be polynomially large

in terms of the data size; see Example 4.2.

Example 4.2. Consider an instance I of two-table join, which

further amplifies the non-uniformity of instance in Figure 3. For

i ∈ {0, 1, · · · , 2
3
log

2
k}, there are k2/8i distinct join values in

dom(B) with deg
1,B (b) = deg

2,B (b) = 2
i
. Obviously, ∆ = k2/3.

It can be easily checked that the input size is n ≤ 2k2 and join

size is count(I) = 2

3
k2 log

2
k . For simplicity, we assume ϵ = Θ(1)

and δ = 1/nc for some constant c , therefore λ = Θ(1). Algorithm 1

achieves an error of (omitting f upper) α = O(
√
count(I) · ∆) =

O(k4/3). By uniformization, join values with the same degree will

be put into the same bucket (even after adding a small noise).

In this way, Algorithm 5 achieves an error of (omitting f upper):

α = O(k2/3 +
∑

i ∈[ 2
3
log

2
k ]

√
k2/8i · 2i · 2i ·

√
2
i ) = O(k log

2
k), improv-

ing Algorithm 1 by a factor of k1/3 = O(n1/6).

Although the partition generated by Algorithm 5 is randomized

due to noisy degrees (line 3), it is not far away from a fixed partition

based on true degrees. As shown in Appendix C, Algorithm 5 can

have its error bounded bywhat can be achieved through the uniform

partition below (recall that ℓ = ⌈log n
λ ⌉ and γi = λ · 2i for i ∈ [ℓ]):

Definition 4.3 (Uniform Partition). For an instance I = (R1,R2), a
uniform partition of dom(B) is π∗ =

{
B1π ∗ , . . . ,B

ℓ
π ∗

}
such that for

any i ∈ [ℓ], b ∈ Biπ ∗ if max

{
deg

1,B (b), deg2,B (b)
}
∈ (γi−1,γi ].

Theorem 4.4. For any two-table instance I, a family Q of linear

queries, and ϵ > 0, δ > 0, there exists an algorithm that is (ϵ,δ )-DP,
and with probability at least 1− 1/poly(|Q|) produces F such that all

linear queries in Q can be answered to within error:

α = O
©«(λ

3

2 (∆ + λ) +
∑
i ∈[ℓ]

√
count

(
Iiπ ∗

)
·
√
2
i · λ) · f upper

ª®¬ ,
where ℓ = ⌈log n

λ ⌉ and I
i
π ∗ is the sub-instance of I induced by B

i
π ∗ .

Let

−−−→
OUT =

〈
OUTi ∈ Z≥0 : i ∈ [ℓ],

∑
i OUT

i ∈ [0,n2]
〉
be a join

size vector. An instance I = (R1,R2) conforms to

−−−→
OUT if

• for every i ∈ [ℓ], count
(
Iiπ ∗

)
= Θ

(
OUTi

)
;

• count(I) = Θ
(∑

i ∈[ℓ]OUT
i
)
.

Then, we introduce a more fine-grained lower bound parameterized

by the join size distribution under the uniform partition, and show

that Algorithm 4 is optimal up to poly-logarithmic factors. The

proof is given in Appendix C.

Theorem 4.5. Given a join size vector

−−−→
OUT, for every sufficiently

small ϵ > 0, nD ≥ (logOUT)O (1) and nQ ≥ (OUT · lognD )O (1),
there exists a family Q of queries of size nQ on a domain D of size nD
such that any (ϵ,o(1/n))-DP algorithm that takes as input a two-table

instance of input size at most n while conforming to

−−−→
OUT, and outputs

an approximate answer to each query in Q to within error α must sat-

isfy α ≥ Ω̃

(
max

i ∈[ℓ]
min

{
OUTi ,

√
OUTi ·

√
2
i · λ · f lower

})
, for ℓ =

⌈log n
λ ⌉.

4.2 Uniformized Hierarchical Join
This uniformization technique, surprisingly, can be further ex-

tended beyond two-table queries to the class of hierarchical queries.

A join queryH = {x, {x1, . . . , xm }} is hierarchical, if for any pair

x ,y of attributes, either atom(x) ⊆ atom(y), or atom(y) ⊆ atom(x),
or atom(x) ∩ atom(y) = ∅, where atom(x) = {i ∈ [m] : x ∈ xi } is
the set of relations containing attribute x . One can always orga-

nize the attributes of a hierarchical join into a tree such that every

relation corresponds to a root-to-node path (see Figure 4).

We show how to exploit this nice property to improve Algo-

rithm 3 on hierarchical joins with uniformization. Recall that the

essence of uniformization is to decompose the instance into a set of

sub-instances so that we can upper bound the residual sensitivity as

tight as possible, as implied by the error expression in Theorem 1.5.
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Figure 4: Left is the attribute tree for hierarchical join H
with x = {A,B,C,D, F ,G,K ,L}, x1 = {A,B,D}, x2 = {A,B, F },
x3 = {A,B,G,K}, x4 = {A,B,G,L}, and x5 = {A,C}. Right is the
residual query defined on E = {3, 4, 5}with ∂E = {A,B}. More-
over,

∧
345
= {A} and

∨
345
= {A,B,C,G,K ,L}.HE, ∂E is discon-

nected with CE = {{3, 4}, {5}}. T345(I) can be upper bounded
by mdeg

5
(A) ·mdeg

34
(AB) ·mdeg

3
(ABG) ·mdeg

4
(ABG).

In Definition 3.6, the residual sensitivity is built on the join sizes of

a set of maximum boundary queries TE (I)’s, but these statistics are
too far away from being the partition criteria. Instead, we find an

upper bound of residual sensitivity in terms of degrees.

4.2.1 An Upper Bound on TE . In a hierarchical joinH , we de-

note T as the attribute tree for H . For any E ⊆ [m], the partial
attributes ∂E forms a connected subtree of T including the root (see

Figure 4). To derive an upper bound on TE , we identify a broader

class of q-aggregate queries by generalizing aggregate attributes

from ∂E to any subset of attributes that form a connected subtree

of T including the root (i.e., sitting on top of T ). For simplicity, we

define

∧
E = ∩i ∈Exi and

∨
E = ∪i ∈Exi .

Definition 4.6 (q-aggregate Query). For a hierarchical joinH =

(x, {x1, . . . , xm }), an instance I, and a subset E ⊆ [m] of relations,
assume that a subset y ⊆

∨
E of attributes satisfies the following

property
4
: for any x1,x2 ∈ x, if atom(x1) ⊆ atom(x2) and x1 ∈ y,

then x2 ∈ y. A q-aggregate query defined over E on y is defined as

TE,y(I) = max

t ∈dom(y)

∑
t ′∈dom(

∨
E ):πyt ′=t

∏
i ∈E

Ri (πxi t
′).

It is not hard to see TE (I) = TE, ∂E (I) from (1). Below, we focus

on an upper bound for TE,y(I) with general y characterized by

Definition 4.6, which boils down to the product ofmaximum degrees:

Definition 4.7 (Maximum Degree). For a hierarchical join H =

(x, {x1, . . . , xm }), an instance I, E ⊆ [m] and y ⊆
∧
E , the degree

of tuple t ∈ dom(y) is:

deg
I
E,y(t) =


∑

t ′∈dom(xi ):πyt ′=t

Ri (t
′) if |E | = 1, say E = {i}��{t ′ ∈ ΨE (I) : πyt ′ = t}

��
otherwise,

where ΨE (I) =
{
π∧

E
t ′ : t ′ ∈ dom(

∨
E ),

∏
i ∈E Ri (πxi t

′) > 0

}
. The

maximum degree is defined as mdeg
I
E (y) = max

t ∈dom(y)
deg

I
E,y(t).

We next show an upper bound on TE,y(I) using mdeg
I
E (y)’s.

When the context is clear, we drop the superscript I frommdeg
I
E (y).

4
The same property on y has been characterized by q-hierarchical queries [4], where y
serves as the set of output attributes there.

Case (1). When |E | = 1, say E = {i}, we note that y ⊆ xi and
TE,y(I) is essentially equivalent to mdegi (y), since

TE,y(I) = max

t ∈dom(y)

∑
t ′∈dom(xi ):πyt ′=t

Ri (t
′) = mdegE (y).

Case (2). In general, letHE,y = (
∨
E −y, {xi − y : i ∈ E}) be the

residual join defined on relations in E after removing attributes y.
We next distinguish two cases based on the connectivity

5
ofHE,y:

Case (2.1): HE,y is disconnected. Let CE be the set of con-

nected subqueries ofHE,y. We can further decompose TE,y(I) as:

TE,y(I) = max

t ∈dom(y)

∏
E′∈CE

∑
t ′∈dom(

∨
E′ ):πy∩(∨E′ )t ′=t

∏
i ∈E′

Ri (πxi t
′)

≤
∏

E′∈CE

max

t ∈dom(y)

∑
t ′∈dom(

∨
E′ ):πy∩(∨E′ )t ′=t

∏
i ∈E′

Ri (πxi t
′)

=
∏

E′∈CE

TE′,y∩(
∨
E′ )
(I),

since y ∩ (
∨
E′) ⊆

∨
E′ and y ∩ (

∨
E′) satisfies the property in

Definition 4.7, if y satisfies the same property.

Case (2.2):HE,y is connected. In this case, we have y ⊊
∧
E .

TE,y(I) ≤ mdegE (y) · max

t ∈dom(
∧
E )

∑
t ′∈dom(

∨
E ):π∧

E t
′=t

∏
i ∈E

Ri (πxi t
′)

= mdegE (y) ·TE,
∧
E
(I),

since

∧
E ⊆

∨
E and

∧
E satisfies the property in Definition 4.7.

Hence, TE,y(I) is eventually upper bounded by a product chain

of maximum degrees (see Figure 4). A careful inspection reveals

that the maximum degrees participating inTE (I) for y = ∂E are not

arbitrary; instead, they display rather special structures captured

by Lemma 4.8, which is critical to our partition procedure.

Lemma 4.8. Every maximum degree mdegE′(y) participating in
the upper bound of TE (I) corresponds to a distinct attribute x ∈ x
such that E ′ = atom(x) and y corresponds to the ancestors of x in T .

4.2.2 Partition with Maximum Degrees. After getting an up-

per bound onTE (I), we now define degree configuration for hierarchi-

cal joins, similarly to the two-table join. Our target is to decompose

the input instance into a set of sub-instances (which may not be

tuple-disjoint), such that each sub-instance is characterized by one

distinct degree configuration, and join results of all sub-instances

form a partition of the final join result.

Definition 4.9 (Degree Configuration). For a hierarchical joinH =

(x, {x1, . . . , xm }), a degree configuration is defined as σ : 2
[m] ×

2
x → Z≥0 ∪ {⊥} such that for any E ⊆ [m] and y ⊆ x, σ (E, y) , ⊥
if and only if there exists an attribute x ∈ x such that E = atom(x)
and y is the set of ancestors of x in the attribute tree T ofH .

Algorithm 6 recursively decomposes the input instance by at-

tributes in a bottom-up way on T , and invokes Algorithm 7 as a

primitive to further decompose every sub-instance. Algorithm 7

5
A multi-way join H = (x, {xi : i ∈ [m]}) can be modeled it as a graphGH , where
each xi is a vertex and an edge exists between xi , xj if xi ∩ xj , ∅. H is connected if

GH is connected, and disconnected otherwise. For disconnected H, we can decompose

it into multiple connected subqueries by finding all connected components forGH via

graph search algorithm, where each component indicates a connected subquery of H.
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Algorithm 6: Partition-Hierarchicalϵ,δ (H , I)

1 I← {I}, T ← an attribute tree ofH ;

2 while there exists a non-visited node in T do
3 I′ ← ∅;

4 x ← a leaf or any node whose children are all visited;

5 foreach I′ ∈ I do
6 I′ ← I′ ∪ Decomposeϵ,δ (I′,x); ▶Algorithm 7 ;

7 I← I′, Mark x as visited;

8 return I;

Algorithm 7: Decomposeϵ,δ (I,x)

1 y← {y ∈ x : atom(x) ⊊ atom(y)}, E ← atom(x);
2 foreach i ∈ N do yi ← ∅;
3 foreach t ∈ dom(y) do
4 d̃eg

I
E,y(t) = deg

I
E,y(t) + TLap

τ (ϵ,δ,1)
1/ϵ ;

5 i ← max

{
1,

⌈
log

1

λ · d̃eg
I
E,y(t)

⌉}
;

6 yi ← yi ∪ {t};

7 foreach i with yi , ∅ do
8 foreach j ∈ E do
9 RIj,i : dom(Dj ) → Z such that for t ∈ Dj , R

I
j,i (t) =

RIj (t) if πyt ∈ y
i
and RIj,i (t) = 0 otherwise;

10 return
⋃
i :yi,∅

{
{RIj,i : j ∈ E} ∪ {R

I
j : j < E}

}
;

takes as input an attribute x and an instance I that has been decom-

posed by all descendants of x , and outputs a set of sub-instances

such that their join results form a partition of join result of I, and
for every sub-instance I′, degI

′

atom(x ),y(t) is roughly the same for

every tuple t ∈ dom(y), where y is the set of ancestors of x in T .

Lemma 4.10. For input instance I, let I be the set of sub-instances
returned by Algorithm 7. I satisfies the following properties:

• For any ®t ∈ ×i ∈[m]Di , there exists some I′ ∈ I such that JoinI
(
®t
)
=

Join
I′ (®t ) and JoinI′′ (®t ) = 0 for any I′′ ∈ I − {I′}.

• Each input tuple appears in O (logc n) sub-instances of I, where c
is a constant depending onm;

• Each sub-instance I ∈ I corresponds to a distinct degree configura-
tion σ such that for any E ∈ [m] and y ⊆ x with σ (E, y) , ⊥:

d̃eg

I
E,y(t) ∈

(
λ · 2σ (E,y)−1, λ · 2σ (E,y)

]
holds for any t ∈ dom(y).

Lemma 4.11. Algorithm 4 is (O(logc n) ·ϵ,O(logc n) ·δ )-DP, where
c is a constant depending onm.

The logarithmic factor in Lemma 4.11 arises since each input tu-

ple participates in O(logc n) sub-instances, implied by Lemma 4.10.

We present the error analysis of Algorithm 4 for hierarchical joins

and a parameterized lower bound in Appendix C.

5 CONCLUSIONS AND DISCUSSION
In this paper, we proposed algorithms for releasing synthetic data

for answering linear queries over multi-table joins. Our work opens

up several interesting directions listed below.

Non-Hierarchical Queries. Perhaps the most immediate ques-

tion is if uniformization can benefit the non-hierarchical case, even

for the simplest joinH defined on x = {A,B,C} with x1 = {A,B},
x2 = {B,C}, and x3 = {C,D}. In determining the residual sensitiv-

ity in Definition 3.6, we observe thatT23(I) ≤ mdeg
2
(B) ·mdeg

3
(C),

T12(I) ≤ mdeg
1
(B) · mdeg

2
(C), and T13 ≤ mdeg

1
(B) · mdeg

3
(C). It

is easy to uniformizemdeg
1
(B),mdeg

3
(C) by partitioning R1,R3 by

attributes B,C respectively. However, it is challenging to uniformize

mdeg
2
(B),mdeg

2
(C) by partitioning R2, while keeping the number

of sub-instances small. For example, a trivial strategy simply puts

every individual tuple t ∈ D2 with R2(t) > 0, together with tuples

in R1,R3 that can be joined with t , as one sub-instance. In this

case, it is great to have small mdeg
2
(B) and mdeg

2
(C), but each

tuple from R1 or R3 may participate in mdeg
1
(B) or mdeg

3
(C) sub-

instances, hence the privacy consumption increases linearly when

applying the parallel decomposition! Alternatively, one may uni-

formizemdeg
2
(B) andmdeg

2
(C) independently, say with partitions

π1 of dom(B) and π2 of dom(C). However, the degrees deg2,B as

well as deg
2,C are defined on the whole relation R2, hence we may

still end up with very non-uniform distribution of deg
2,B , deg2,C

when restricting to a sub-instance induced by Biπ1 ,C
j
π2 together.

We leave this interesting question for future work.

Query-Specific Optimality. Throughout this work, we consider
worst-case set Q of queries parameterized by its size. Although

this is a reasonable starting point, it is also plausible to hope for

an algorithm that is nearly optimal for all query sets Q. In the

single-table case, this has been achieved in [5, 26, 39]. However,

the situation is more complicated in the multi-table setting since

we have to take the local sensitivity into account, whereas, in the

single-table case, the query family already dictates the possible

change resulting from moving to a neighboring dataset. This is also

an interesting open question for future research.

Instance-Specific Optimality. We have considered worst-case

instances in this work. One might instead prefer to achieve finer-

grained instance-optimal errors. For the single-table case, [2] ob-

served that an instance-optimal DP algorithm is not achievable,

since a trivial algorithm can return the same answer(s) for all input

instances, which could work perfectly on one specific instance but

poorly on all remaining instances. To overcome this, a notion of

“neighborhood optimality” has been proposed [2, 16], where we

consider not only a single instance but also its neighbors at some

constant distance. We note, however, that this would not work in

our setting when there are a large number of queries. Specifically,

if we again consider an algorithm that always returns the true

answer for this instance, then its error with respect to the entire

neighborhood set is still quite small—at most the distance times the

maximum local sensitivity in the set. This is independent of the

table size n, whereas our lower bounds show that the dependence

on n is inevitable. As such, the question of how to define and prove

instance-optimal errors remains open for the multi-query case.
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A GUARANTEES OF PMW
In this section, we prove the guarantees of the single-table PMW

algorithm (Algorithm 2). We stress that this is essentially the same

as the proof in [25], but we reprove it for completeness.

TheoremA.1. Let I, I′ be neighboring instances such that |count(I)−
count(I′)| ≤ ∆. Then, Algorithm 2 satisfies the following:

• (Privacy) PMW(I) ≈(ϵ,δ ) PMW(I′).
• (Utility)With probability at least 1−1/poly(|Q|), PMW(I) produces
a dataset such that all queries in Q can be answered to within error

α = O

(
(

√
count(I) · ∆̃ + ∆̃ ·

√
λ) · f upper

)
.

Privacy Guarantee. Let I = (R1, . . . ,Rm ) and I′ = (R′
1
, . . . ,R′m ),

with |count(I)−count(I′)| ≤ ∆. By the privacy guarantee of the trun-

cated Laplace mechanism, we have n̂ + TLapτ (ϵ/2,δ/2, ∆̃)
2∆̃/ϵ

≈(ϵ/2,δ/2)

n̂′ + TLapτ (ϵ/2,δ/2, ∆̃)
2∆̃/ϵ

. Let us now condition on n̂ = n̂′. Let F,F′

be the synthetic data generated for I, I′ correspondingly. The algo-
rithm starts with the same uniform distribution. Furthermore, in

each update, the guarantees of the EM and the Laplace mechanism

ensure that (conditioned on results from iteration 1, . . . , i − 1 being
the same), we have (i,mi ) ≈2ϵ ′ (i

′,m′i′). By applying advanced

composition, we can conclude that, conditioned on n̂ = n̂′, we have
that F ≈(ϵ/2,δ/2) F

′
. Finally, by basic composition (over the n̂′ part

and the computation of F part), we can conclude that F ≈(ϵ,δ ) F
′
.

Utility Guarantee. For convenience, let J denote the join result

of I, and let n = |count(I)|. Define ξi = maxq |q(Fi−1) − q(J)| as the
maximum error over all queries in terms of Fi−1 and J. Now we are

going to bound the maximum error of the PMW algorithm:

max

q
|q(avgi≤kFi ) − q(J)| = max

q
|avgi≤kq(Fi ) − q(J)|,

which can be further upper bounded by

≤ max

q
avgi≤k |q(Fi )−q(J)| ≤ avgi≤k max

q
|q(Fi )−q(J)| ≤ avgi≤k ξi .

We next state the guarantees from the exponential mechanism and

the Laplace mechanism. Let γ = ∆̃ · log |Q|/ϵ ′.
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Lemma A.2. With probability at least 1 − 2k/|Q|c for any c ≥ 0,

for all 1 ≤ i ≤ k , we have:

|qi (Fi−1) − qi (J)| ≥ ξi − (2c + 2) × γ , and |mi − qi (J)| ≤ c × γ .

Proof. For the first inequality, we note that the probability EM

with parameter ϵ ′ and sensitivity ∆̃ selects a query with quality

score at least r less than the optimal is bounded by

Pr[|qi (Fi−1)−qi (J)| < ξi−(2c+2)/ϵ
′] ≤ |Q|×exp

(
−
γ · ϵ ′

∆̃

)
≤

1

|Q|c
.

For the second inequality, we note that |mi − qi (J)| ≤ c · γ if and

only if

���Lap∆̃/ϵ ′ ��� ≤ c · γ . From Laplace distribution, we have:

Pr

[���Lap∆̃/ϵ ′ ��� > c · (∆̃/ϵ ′) · log |Q|
]
≤ exp(−c · log |Q|) = 1/|Q|c .

A union bound over 2k events completes the proof. □

We consider how the PMW mechanism can improve the approx-

imation in each round where qi (Fi ) −qi (J) has large magnitude. To

capture the improvement, we use the relative entropy function:

Ψ′i =
1

n

∑
x ∈D
J(x) log

(
J(x)

Fi (x)

)
, Ψi =

n

n̂
· Ψi .

Here, we can only show that Ψ0 ≤ log |D| and Ψi ≥ −1.
We next consider how Ψ changes in each iteration:

Ψi − Ψi−1 =
1

n̂
·
∑
x ∈D
J(x) · log

(
Fi (x)

Fi−1(x)

)
=

1

n̂
· qi (J) · ηi −

n

n̂
log βi ,

whereηi =
1

2n̂
· (mi − qi (Fi−1)) and βi =

1

n̂
·
∑
x ∈D

exp(qi (x)ηi )Fi−1(x).

Using the fact that exp(x) ≤ 1+x +x2 for |x | ≤ 1 and |qi (x)ηi | ≤ 1,

βi ≤
1

n̂
·
∑
x ∈D
(1 + qi (x)ηi + q

2

i (x)η
2

i )Fi−1(x)

≤
1

n̂
·
∑
x ∈D
(1 + qi (x)ηi + η

2

i )Fi−1(x) ≤ 1 +
1

n̂
· ηiqi (Fi−1) + η

2

i .

Then, we can rewrite Ψi − Ψi−1 =
1

n̂ · qi (J) · ηi − log βi . Plugging
the upper bound on βi , we have

Ψi − Ψi−1 ≥
ηi
n̂
· qi (J) −

(ηi
n̂
· qi (Fi−1) + η

2

i

)
≥

1

4n̂2

(
(ξi − 4γ )

2 − γ 2
)
,

By rewriting the last inequality, we have

ξi ≤
√
4n̂2 · (Ψi − Ψi−1) + γ 2 + 4 × γ .

Then, avgi≤k ξi ≤
√
4n̂2 · avgi≤k (Ψi − Ψi−1) + γ

2 + 4γ ≤ 2n̂ ·√
log |D |

k

+5γ , which can be bounded byO

(
n̂ ·

√
log |D |

k +
log |Q | ·∆̃

√
k ·log(1/δ )
ϵ

)
.

By taking k =
n̂ ·ϵ ·
√
log |D |

∆̃ ·log |Q | ·
√
log(1/δ )

, we can obtain the minimized er-

ror as O(
√
n̂ · ∆̃ · f upper). Finally, recall that n̂ ≤ n +O(∆̃ · λ). This

means that the error is at most O((
√
n · ∆̃ + ∆̃ ·

√
λ) · f upper).

B MISSING PROOFS IN SECTION 3
B.1 Upper Bound Proofs
For neighboring instances I, I′,

��
count(I) − count(I′)

�� ≤ ∆̃, which
follows the definition of LScount(I) and the non-negativity of TLap.

Proof of Lemma 3.2. It can be checked that LScount(·) has global

sensitivity of 1. Therefore, theDP guarantee of the truncated Laplace

mechanism implies that ∆̃ (computed on Line 1) is (ϵ/2,δ/2)-DP.
Applying the basic composition over this guarantee and the pri-

vacy guarantee in Theorem A.1, we can conclude that the entire

algorithm is (ϵ,δ )-DP. □

Proof of Lemma 3.7. It follows from the definition that the global

sensitivity of ln(RS
β
count
(I)) is at most β . Furthermore, observe that

Line 2 can be rewritten as ∆̃← exp

(
ln(RS

β
count
(I)) + TLapτ (ϵ/2,δ/2,β )

2β/ϵ

)
.

Therefore, by the guarantee of truncated Laplace mechanism and

the post-processing property of DP, we can conclude that ∆̃ is

(ϵ/2,δ/2)-DP. Again, applying the basic composition of this guar-

antee and the privacy guarantee in Theorem A.1, we can conclude

that the entire algorithm is (ϵ,δ )-DP. □

B.2 Lower Bound Proofs
Themain idea behind proving Theorem 1.6 is similar to that of Theo-

rem 3.5, where one relation encodes the single table, and remaining

tables “amplify” both sensitivity and join size by a ∆ factor.

Proof of Theorem 1.6. Let n = OUT
∆ . From Theorem 1.4, there

exists a set Qone of queries on domain D for which any (ϵ,δ )-DP
algorithm that takes as input a single-table instance T ∈ D and

outputs an approximate answer to each query in Qone within ℓ∞-

error α requires that α ≥ Ω̃
(
min

{
n,
√
n · f lower(D,Qone, ϵ)

})
. For

an arbitrary single-table instance T : D → Z+, we construct a

multi-table instance I for H of input size m, join size OUT, and
local sensitivity ∆ as follows. We pick the relation with the smallest

number of attributes to encode T . W.l.o.g., we assume that |x1 | =
mini |xi |. Asm ≥ 2, there must exist an attribute y ∈ x − x1. Let
x ∈ x1 be an arbitrary attribute. Let k = |x − x1 |.

• Set dom(x) = D × [n] for each x ∈ x1, and dom(y) = [∆1/k ] for

each y ∈ x − x1;
• Let R1((a,b), . . . (a,b)) = 1[b ≤ T (a)] for all a ∈ D and b ∈ [n].
• For i > 1, let Ri (t) = 1 for all t ∈ Di ;

It can be easily checked that I has join sizeOUT and local sensitivity
∆, and that two neighboring instances T ,T ′ result in neighboring

instances I, I′. Finally, let Q1 contain queries from Qone applied on

its first value of every attribute (i.e., Q1 := {q◦πx,1 | q ∈ Qone}) for
x ∈ x1, and let Qi contain only a single query qall-one : Di → {+1}
for every i ≥ 2. The remaining argument follows exactly the same

for the two-table case as in the proof of Theorem 3.5. □

Theorem B.1. For any ∆ > 0, ϵ > 0, δ > 0, and γ > 0 such that

eϵ · γ + δ < 1 − γ , there exists a family Q of linear queries such that

any (ϵ,δ )-DP algorithm that takes as input an instance I with local

sensitivity at most ∆ and answers each query in Q to within error α
with probability 1 − γ , must satisfy α ≥ Ω (∆).
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Proof. Let Q = {count}. Let I, I′ be neighboring instances of

local sensitivity at most ∆ such that |count(I) − count(I′)| ≥ Ω(∆).
Suppose there is an (ϵ,δ )-DP algorithm A that achieves error

α < |count(I) − count(I′)|/2 with probability at least 1 − γ . Let
˜count(I), ˜count(I′) be the join sizes released for I, I′ respectively.

Then, as A preserves (ϵ,δ )-DP, it must be that

1 − γ ≤ Pr

(
˜count(I) ∈ [count(I) − α , count(I) + α]

)
≤ eϵ · Pr

(
˜count(I′) ∈ [count(I) − α , count(I) + α]

)
+ δ

< eϵ ·
(
1 − Pr

(
˜count(I′) ∈ [count(I′) − α , count(I′) + α]

) )
+ δ

≤ eϵ · γ + δ < 1 − γ ,

a contradiction. □

B.3 Worst-Case Error Bound
We distinguish two cases below: (1) Ri : Di → {0, 1}; (2) Ri : Di →
Z≥0. For simplicity, we assume ϵ = Θ(1) and δ = 1/nc for some

constant c > 0. Therefore, λ = Θ(1) and β = Θ(1).
In the first case, we recall the AGM bound [3] on the maximum

join size of a multi-way join. More specifically, let ρ(H) be the frac-
tional edge covering number of H , which is the minimum value

of

∑
i ∈[m]Wi subject to (1)

∑
i :x ∈xi Wi ≥ 1 for each x ∈ x and

(2)Wi ∈ [0, 1] for each i ∈ [m]. Then, count(I) ≤ nρ(H) for any
instance I of input size n. Now, we give an upper bound on the

worst-case error. The residual sensitivity RS
β
count
(I) simply degener-

ates to [15]: O

(
max

i ∈[m]
max

E⊆[m]∖{i }
T[m]∖{i }∖E (I)

)
= O

(
max

E⊊[m]
TE (I)

)
.

So,TE (I) is bounded by themaximum join size ofHE, ∂E = (∪e ∈Ee∖
∂E, {xi ∖ ∂E : i ∈ E}). From the AGM bound, we have TE (I) ≤
nρ(HE, ∂E )

. The worst-case error in Theorem 1.5 has a closed-form

of Oλ,f upper

(√
nρ(H) · max

E⊊[m]
nρ(HE, ∂E )

)
. On the other hand, this

is always smaller (at least not larger) thanOλ,f upper (n
ρ(H)), i.e., the

maximum join size of the input join query.

In the second case, the AGM bound does not hold any more. A

simpler tight bound on the maximum join size is Θ(nm ). Corre-
spondingly, maxE⊊[m]TE (I) ≤ nm−1. Putting everything together,

theworst-case error in Theorem 1.5 has a closed-form ofOλ,f upper
(
nm−

1

2

)
.

C MISSING PROOFS IN SECTION 4
C.1 Two-Table Join

Lemma C.1. Algorithm 5 is (ϵ,δ )-DP.

Proof. Define LScount(I) = maxb ∈dom(B){deg
I
1,B (b), deg

I
2,B (b)}.

It is simple to observe that the global sensitivity of LScount is one.

Furthermore, the output partition is simply a post-processing of

the truncated Laplace mechanism, which satisfies (ϵ,δ )-DP. □

Proof of Lemma 4.1. FromLemmaC.1 the partition I is (ϵ/2,δ/2)-
DP. Furthermore, TwoTable (Algorithm 1) is (ϵ/2,δ/2)-DP and is

applied on disjoint parts of input data. Thus, by the parallel compo-

sition theorem and the basic composition theorem, we can conclude

that the entire algorithm is (ϵ,δ )-DP. □

Proof of Theorem 4.4. Given an input instance I of the two-
table join, let π1 =

{
B1
1
, . . . ,Bℓ

1

}
be a fixed partition of dom(B), such

that b ∈ Bi
1
if and only if max{deg

1,B (b), deg2,B (b)} ∈ (γi−1,γi ].

Let π2 =
{
B1
2
, . . . ,Bℓ

2

}
be the partition of dom(B) returned by Al-

gorithm 5. If b ∈ Bi
2
, max{deg

1,B (b), deg2,B (b)} ∈ (γi−1 − λ,γi ].

It is easy to see that Bi
1
⊆ Bi

2
∪ Bi+1

2
. For simplicity, we denote

the join size contributed by values in Bi
1
∩ Bi

2
and in Bi

1
∖ Bi

2

as xi ,yi respectively. Then, the cost of Algorithm 5 under par-

tition π2 is

∑
i ∈[ℓ]
√
xi + yi−1 ·

√
λ · 2i ≤

∑
i ∈[ℓ](

√
xi +

√
yi−1) ·

√
2
i · λ ≤ 2

∑
i ∈[ℓ]
√
xi + yi ·

√
2
i · λ, thus can be bounded by that

under π1. □

Proof of Theorem 4.5. Our proof consists of two steps:

• Step (1): There exists a family Qi of queries such that any (ϵ,δ )-
DP algorithm that takes as input an instance of join size OUTi

and local sensitivity ∆i = Θ(2i · λ), and outputs an approximate

answer to each query in Qi to within error α i must require

αi ≥ Ω̃
(
min

{
OUTi ,

√
OUTi · 2i · λ · f lower

})
.

• Step (2): There exists a family Q of linear queries such that

any (ϵ,δ )-DP algorithm that takes as input an instance I that
conforms to

−−−→
OUT and answers each query in Q to within error α

must require α ≥ Ω̃

(
max

i
min

{
OUTi ,

√
OUTi · 2i · λ · f lower

})
.

We first focus on step (1) for an arbitrary i ∈ [⌈log(nλ )⌉]. Let ni
be an arbitrary integer such that ni · λ · 2

i−1 ≤ OUTi ≤ ni · λ · 2
i
.

Set ∆i =
OUTi
ni , where ∆i ∈ (λ · 2

i−1, λ · 2i ]. From Theorem 1.4, let

Qione be the set of hard queries on which any (ϵ,δ )-DP algorithm

takes as input any single-table T i ∈ ({0, 1}d )ni , and outputs an

approximate answer to each query in Qione to within error α must

require α ≥ Ω̃
(
min{ni ,

√
ni · f

lower(D,Qione, ϵ)}
)
. For an arbitrary

single-tableT i ∈ ({0, 1}d )ni , we can construct a two-table instance

(Ri
1
,Ri

2
) as follows:

• Set dom(A) = D, dom(B) = D × [n] and dom(C) = [∆i ];
• Let Ri

1
(a, (b1,b2)) = 1[a = b1∩b2 ≤ T (a)] for all a ∈ dom(A) and

(b1,b2) ∈ dom(B).
• Let Ri

2
= 1 for all b ∈ dom(B) and c ∈ dom(C).

It can be easily checked that (Ri
1
,Ri

2
) has join size OUTi and

local sensitivity ∆i , and that two neighboring instances T i ,T ′i

result in neighboring instances (Ri
1
,Ri

2
), (R′i

1
,R′i

2
) for the two-table

join. Finally, let Qi
1
contain queries from Qione applied on its first

attribute (i.e., Qi
1
:= {q ◦ πA | q ∈ Qone}), and let Q2 contain only

a single query qall-one : D2 → {+1}.
We use an argument similar to Theorem 3.5, showing that if

there exists an (ϵ,δ )-DP algorithm that takes in a two-table in-

stance of join size OUTi and local sensitivity ∆i , and outputs an

approximate answer to each query in Qitwo to within error α , there
exists an (ϵ,δ )-DP algorithm that takes an arbitrary single-table

Ti ∈ ({0, 1})
ni
, and outputs an approximate answer to each query in

Qione to within error
α i
∆i
≥ Ω̃

(
min{ni ,

√
ni · f

lower(D,Qione, ϵ)}
)
;

hence α i ≥ Ω̃
(
min

{
OUTi ,

√
OUTi · 2i · λ · f lower

})
.

Step (2). From Theorem 1.4, let Qtwo be the family of linear queries

over D1 × D2, such that Qtwo =
{
∪i ∈[m]qi : qi ∈ Q

i
two,∀i ∈ [ℓ]

}
.

Consider an (ϵ,δ )-DP algorithm A takes as input an instance that
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conforms to

−−−→
OUT and answers each query in Qtwo to within er-

ror α . If α ≤ Õ

(
max

i
min

{
OUTi ,

√
OUTi · 2i · λ · f lower

})
, there

exists an (ϵ,δ )-DP algorithm that takes an input an instance of join

sizeOUTi and local sensitivity ∆i , and answers each query in Qitwo
for some i within error αi , contradicting Step (1). □

C.2 Hierarchical Join
Proof of Lemma 4.8. Let r be the root of T and let path(r ,x)

be the set of attributes on the path from r to x . The proof has three
steps.

Step 1. We show that for any TE,y involved, if TE,y falls into

case (2.1), then ∂E ⊆ y, and ifTE,y falls into case (2.2), then ∂E = y.
Initially, either case holds forTE, ∂E . Moreover, we observe that the

cases (2.1) and (2.2) are invoked exchangeably, i.e., TE′,y∩(
∨
E′ )

will

fall into case (2.2), andTE,
∧
E
will fall into case (2.1). Next, we show

that this property is preserved in each recursive step:

• HE,y is disconnected. By hypothesis, assume ∂E ⊆ y. Consider
an arbitrary connected subquery E ′′ ∈ CE . For any pair of i ∈ E

′′

and j < E, xi ∩ xj ∈ y. For any pair of i ∈ E ′′ and j ∈ E ∖ E ′′,
xi ∩ xj ∈ y. This way, ∂E ′′ ⊆ y. Together with ∂E ′′ ⊆

∧
E′′ , we

obtain ∂E ′′ ⊆ y ∩ (
∧
E′′). On the other hand, for each attribute

x ∈ y ∩ (
∧
E′′), there must exist some i ∈ E ′′ with x ∈ xi and

some j < E such that x ∈ xj . This way, y ∩ (
∧
E′′) ⊆ ∂E

′′
. Hence,

∂E ′′ = y ∩ (
∧
E′′) for TE′′,y∩(

∧
E′′ )

.

• HE,y is connected. By hypothesis, assume ∂E = y. As y ⊊
∧
E ,

∂E ⊆
∧
E . Hence, TE,

∧
E
falls into case (2.1) and has ∂E ⊆

∧
E .

Note that mdegE (y) is only introduced in case (2.2), hence ∂E = y.
Step 2. From Definition 4.7, y ⊆

∧
E . In Case (1) with |E | = 1,

we must have y , xi , thus y ⊊ xi . In Case (2.2), y ⊊
∧
E follows

the fact thatHE,y is disconnected. Together, y ⊊
∧
E .

Step 3.We first note that E ⊆ atom(x). Suppose i ∈ atom(x)∖E.
We have path(r ,x) ∈ ∂E, hence path(r ,x) ∈ y from Step 1. This
way, y =

∧
E contradicts Step 2. Hence, atom(x) ⊆ E. Together,

we have atom(x) = E. Moreover, as y ⊆
∧
E , there must be y ⊆

path(r ,x ′). Suppose x ′ < y. Then, there exists some relation i < E
with path(r ,x ′) ∈ xi . In this way, x ′ ∈ ∂E and therefore x ′ ∈ y,
yielding a contradiction of x ′ < y. Hence, y = path(r ,x ′). □

Proof of Lemma 4.10. We prove the first property by induction.

In the base case with |I| = 1, these properties hold. Consider an

arbitrary iteration of while loop in Algorithm 6. By hypothesis,

all sub-instances in I have disjoint join results, and their union is

JoinI. Then, it suffices to show that Decompose(I,x) generates a set
of sub-instances of I, such that they have disjoint join results, and

their union is JoinI. The disjointness is easy to show since (Rj,i )i ∈[ℓ]
forms a partition of Rj , for every j ∈ atom(x). The completeness

follows the partition of dom(y) and definition of Rj,i .
For the second property, we show that each tuple t ∈ Ri appears

inO(ℓc ) sub-instances, where c =
∑
x ∈x |atom(x)|. In an invocation

of Partition-Hierarchical(I,x), t appears in O (ℓ) sub-instances
if i < atom(x), and only one sub-instance otherwise. Overall, the

procedure Decomposewill be invoked on every non-leaf node in T ,

thus tuple t ∈ Ri appears in O (
∏

x ∈x ℓ) = O
(
ℓ |x |

)
sub-instances.

Finally, we show that each sub-instance corresponds to a de-

gree characterization. Let us focus on an arbitrary relation xj in

Algorithm 6. For simplicity, let ⟨x1, . . . ,xk ⟩ be the root-to-node

path corresponding to xj . Also, let y1, . . . , yk be the set of ances-

tors of x1, . . . ,xk respectively. When Decompose(I,x1) is invoked,
the sub-instance I′ with deg

I′
atom(x1),y1

(t) ∈
(
λ · 2i−1, λ · 2i

]
for any

t ∈ dom(y1), corresponds to σ (atom(x1), y1) = i . In the subsequent

invocations of Decompose, tuples with the same value t ∈ dom(y1)
always fall into the same sub-instance, hence this property holds.

Thus, each sub-instance returned by Algorithm 6 corresponds to a

distinct degree characterization. □

Proof of Lemma 4.11. Consider two neighboring instances I
and I′. Note that |degIE,y(t) − deg

I′
E,y(t)| ≤ 1 holds for any E ⊆ [m],

y ⊆
∧
E , and t ∈ dom(y). Each tuple inRi contributes to at most |xi |

degrees, i.e., degatom(xi ),y(·). Hence, deg
I ≈(c ′ ·ϵ,c ′ ·δ ) deg

I′
, where

c ′ = maxi ∈[m] |xi | is a join-query-dependent quantity.
Moreover, for each sub-instance Iσ returned, Fσ ≈(3ϵ,3δ ) F

′σ

implied by Lemma 3.2. As each tuple participates in at most O(ℓc )
sub-instances,

⋃
σ F

σ ≈(3ℓc ·ϵ,3ℓc ·δ )
⋃
σ F
′σ

implied by the group

privacy. Putting everything together and using basic composition,

we conclude that Algorithm 4 is (O(ℓc · ϵ),O(ℓc · δ ))-DP. □

Given a degree configuration σ , we can upper boundTE (I) asT σ
E

and RScount(I) as RSσ
count

, using Definition 3.6. Similar to the two-

table case, we define the uniform partition of an instance I using
true degrees as π∗ =

{
Iσπ ∗ : σ is a degree configuration

}
. Similarly,

the error achieved by the partition based on noisy degrees can be

bounded by the uniform one:

Theorem C.2. For any hierarchical joinH and an instance I, a
family Q of linear queries, and ϵ > 0, δ > 0, there exists an algorithm

that is (ϵ,δ )-DP, and with probability at least 1−1/poly(|Q|) produces
F such that all queries in Q can be answered to within error:

α = O

((∑
σ

√
count

(
Iσπ ∗

)
· RSσ

count
· λ + RSσ

count
· λ

)
· f upper

)
,

where σ is over all degree configurations ofH , Iσπ ∗ is the sub-instance
characterized by σ under the uniform partition π∗, and RS

σ
count

be

the residual sensitivity derived for instance characterized by σ .

Let

−−−→
OUT =

{
OUTσ ∈ Z≥0 : σ is a degree configuration

}
be the

join size distribution over the uniform partition π∗. An instance

I conforms to

−−−→
OUT if count(Iσπ ∗ ) = Θ(OUTσ ), for every degree

configuration σ , where Iσπ ∗ is the sub-instance of I under σ ,π∗.
Extending the lower bound argument of Theorem 4.5, we obtain

the following parameterized lower bound for hierarchical queries.

Theorem C.3. Given a hierarchical joinH and an arbitrary pa-

rameter

−−−→
OUT, for every sufficiently small ϵ > 0, nD ≥ OUTO (1) and

nQ ≥ (OUT · lognD )O (1), there exists a family Q of queries of size

nQ on domain D of size nD such that any (ϵ, 1/nω(1))-DP algorithm

that takes as input a multi-table instance overH of input size at most

n while conforming to

−−−→
OUT, and outputs an approximate answer to

each query in Q to within error α , must satisfy

α ≥ Ω̃
(
max

σ
min

{
OUTσ ,

√
OUTσ ·

√
LS

σ
count

· f lower
})
,

where the maximum is over all degree configurations σ of H and

LS
σ
count

= max

i ∈[m]
T σ
[m]∖{i } is the local sensitivity of count(·) under σ .
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