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ABSTRACT
We design the first node-differentially private algorithm for

approximating the number of connected components in a

graph. Given a database representing an 𝑛-vertex graph𝐺 and

a privacy parameter 𝜀, our algorithm runs in polynomial time

and, with probability 1−𝑜 (1), has additive error𝑂 ( Δ∗ ln ln𝑛
𝜀 ),

where Δ∗ is the smallest possible maximum degree of a span-

ning forest of 𝐺. Node-differentially private algorithms are

known only for a small number of database analysis tasks. A

major obstacle for designing such an algorithm for the number

of connected components is that this graph statistic is not ro-

bust to adding one node with arbitrary connections (a change

that node-differential privacy is designed to hide): every graph
is a neighbor of a connected graph.

We overcome this by designing a family of efficiently com-

putable Lipschitz extensions of the number of connected com-

ponents or, equivalently, the size of a spanning forest. The

construction of the extensions, which is at the core of our

algorithm, is based on the forest polytope of 𝐺. We prove sev-

eral combinatorial facts about spanning forests, in particular,

that a graph with no induced Δ-stars has a spanning forest of

degree at most Δ. With this fact, we show that our Lipschitz

extensions for the number of connected components equal

the true value of the function for the largest possible mono-

tone families of graphs. More generally, on all monotone sets

of graphs, the ℓ∞ error of our Lipschitz extensions is nearly

optimal.

1 INTRODUCTION
Counting the number of features in a graph, ranging from lo-

cal structures such as edges, triangles, wedges and other small

motifs [MSOI
+
02, XWC

+
22, CMMT22] to more global features

such as the number of connected components [Fra78, KMAF10,

KLM
+
14, KW20], is a family of foundational tasks in graph

mining. Such counts are used both in feature-based approaches

to anomaly detection in graphs [ATK15] and as quality criteria

for generative models [XWC
+
22]. Specifically, the number of

connected components is a basic statistic for understanding

the structure of a network at the most fundamental level. Its

uses range from determining the number of classes in a pop-

ulation [Goo49] to approximating such diverse statistics as

the weight of the minimum spanning tree [CRT05] and the

number of documented deaths in the Syrian war [CSS18].

When the underlying network data captures private rela-

tionships between people, publishing the number of connected

components in the network can leak those individuals’ sen-

sitive information. Differential privacy [DMNS16] is a widely

studied and deployed formal privacy guarantee for data anal-

ysis. The output distributions of a differentially private algo-

rithm must look nearly indistinguishable for any two input

databases that differ only in the data of a single individual. In

this work, we focus on relational databases that store graphs

where nodes represent individuals and edges capture rela-

tionships between them. There are two natural adaptations

of differential privacy for graph databases: edge differential
privacy and node differential privacy (or, more concisely, edge-
privacy and node-privacy) [HLMJ09]. For edge-privacy, first

investigated by Nissim et al. [NRS07], the indistinguishability

requirement applies to any two graphs that differ in one edge.

In contrast, for node-privacy (first studied by three concurrent

works [BBDS13, KNRS13, CZ13]), it applies to any two graphs

that differ in one node and all its adjacent edges. Node-privacy

is more suitable for databases representing networks of people,

since, in this context, it protects each individual (node) and all

their connections (adjacent edges). However, node-privacy is

much harder to attain than edge-privacy, since it hides much

larger changes to the database and provides much stronger

privacy protections.

We design the first node-private algorithm for approximat-

ing the number of connected components in a graph database.

We show that our algorithm runs in polynomial time and give

an upper bound on its additive error. The bound is low for

real-world networks and typical graphs arising from random

network models.

Connectivity of graph databases has not been previously

investigated in the context of node-privacy. Let 𝑓cc (𝐺) denote
the number of connected components in a graph 𝐺 . Obtain-

ing an edge-private algorithm for approximating 𝑓cc is trivial.

Without privacy guarantees, approximating 𝑓cc with additive

error has been studied in the literature on sublinear-time al-

gorithms [CRT05, BKM14, KW20].

Instance-based accuracy. Amajor obstacle for designing a node-

private algorithm for 𝑓cc is that this graph statistic is sensitive

to adding one node with arbitrary connections: every graph

𝐺 can be changed to a connected graph 𝐺 ′ by adding a new

node adjacent to all nodes in 𝐺 . By definition, the output

distributions of a node-private algorithm A must be nearly

indistinguishable on 𝐺 and 𝐺 ′. If 𝑓cc (𝐺) is large, A must be
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inaccurate on at least one of𝐺 and𝐺 ′. Thus, meaningful worst

case guarantees for approximating 𝑓cc are impossible.

To overcome this lower bound, we provide instance-based

accuracy guarantees. Our bound on the error is roughly Δ∗,
the smallest possible maximum degree of a spanning forest

of the input database 𝐺 . In particular, Δ∗ is always at most

the maximum degree of the graph, though it can be much

smaller. Previous works on node-private algorithms either do

not analyze accuracy at all or analyze it through lenses that are

too coarse (for example, by looking at the maximum degree)

or too task-specific for our purposes; see the discussion in

Section 1.2.

The core of our algorithm is a construction of a family of

efficiently computable Lipschitz extensions of 𝑓cc that provide
good approximations to the true function values.

Background on Lipschitz extensions. The framework of Lips-

chitz extensions for designing node-private algorithms was

proposed by three concurrent works [BBDS13, KNRS13, CZ13]

and subsequently refined [RS16b, RS16a].

Definition 1.1 (Node-neighboring graphs; node-dis-

tance; Δ-Lipschitz functions). Two graphs 𝐺 and 𝐺 ′ are
node-neighbors if one can be obtained from the other by remov-
ing a vertex and all of its adjacent edges.

The node-distance 𝑑 (𝐺,𝐺 ′) between two graphs𝐺 and𝐺 ′ is
the smallest number of modifications needed to obtain 𝐺 ′ from
𝐺 , where each modification is either the removal of one node
and all of its adjacent edges, or the insertion of one node with
arbitrary edges incident on it.

Let G denote the set of all graphs. A function ℎ : G → R is Δ-
Lipschitz on a set 𝑆 of graphs if |ℎ(𝐺) − ℎ(𝐺 ′) | ≤ Δ · 𝑑 (𝐺,𝐺 ′)
for all 𝐺,𝐺 ′ ∈ 𝑆 . When 𝑆 = G, we refer to 𝑓 as Δ-Lipschitz,
without specifying 𝑆 .

A Δ-Lipschitz function can be approximated node-privately

with error Θ(Δ) (with high probability and for constant pri-

vacy parameter) using the standard Laplace mechanism (see

Theorem 2.2).

Given a function 𝑓 and a parameter Δ, a Lipschitz exten-
sion 𝑓Δ is defined by first identifying an anchor set of graphs
on which 𝑓 is Δ-Lipschitz. Then 𝑓Δ is made identical to 𝑓

on the anchor set and is extended outside the set so that it

is Δ-Lipschitz on G. Instead of approximating the sensitive

function 𝑓 , a node-private algorithm A can release 𝑓Δ (for an

appropriately chosen Δ) via the Laplace mechanism. The error

of A on a graph 𝐺 is |𝑓 (𝐺) − 𝑓Δ (𝐺) | plus the noise added for

privacy, which is Θ(Δ). The Generalized Exponential Mecha-

nism (GEM) [RS16b] can be used to select the value of Δ that

approximately minimizes the expected error. The resulting

algorithm has small error on graphs 𝐺 for which there is a

small Δ such that 𝑓Δ (𝐺) ≈ 𝑓 (𝐺).
Lipschitz extensions can be defined for any metric space. A

line of work in functional analysis seeks to understand general

conditions under which, given a function 𝑓 and a subset of its

domain, a Lipchitz extension to the entire domain exists [BL98].

Such an extension always exists for real-valued 𝑓 [McS34].

However, it is not known to be efficiently computable even

when 𝑓 is computable in polynomial time. The main challenge

for utilizing the framework of Lipschitz extensions lies in

designing efficiently computable extensions that match the

desired function on a large subset of the domain.

Our Lipschitz extensions for 𝑓cc. Our Lipschitz extensions for
the number of connected components are computable in poly-

nomial time. Given a parameter Δ and a graph 𝐺 , the value of

our Lipschitz extension 𝑓Δ (𝐺) is obtained by solving a linear

program over the forest polytope of 𝐺 . Let 𝑆Δ be the anchor

set of 𝑓Δ, i.e., the set of graphs 𝐺 with 𝑓Δ (𝐺) = 𝑓cc (𝐺). Then
𝑆Δ contains all graphs that have a spanning forest of degree

at most Δ. This feature of our construction allows us to bound

the error of the algorithm by the smallest possible maximum

degree of a spanning forest of the graph.

We show that our construction of Lipschitz extensions is

nearly optimal. We consider two notions of optimality. First,

we compare our sets 𝑆Δ to the largest possible anchor sets.

To make optimal anchor sets well defined, we require them

to be monotone, i.e., if 𝐺 is in the set, so are all of its induced

subgraphs. As it turns out, the largest monotone anchor set

is unique and characterized in terms of the down-sensitivity
of 𝑓 , a quantity introduced by the name of “empirical global

sensitivity” by Chen and Zhou [CZ13]. The down-sensitivity

of 𝑓 at a graph 𝐺 , denoted 𝐷𝑆𝑓 (𝐺), measures the maximum

change in the value of 𝑓 between any two node-neighboring

induced subgraphs of 𝐺 . Let 𝑆∗Δ = {𝐺 | 𝐷𝑆𝑓 (𝐺) ≤ Δ}. Then
𝑆∗Δ is the largest monotone anchor set for the function 𝑓 and

parameter Δ. A Lipschitz extension for the set 𝑆∗Δ exists for

all functions 𝑓 (it is defined and analyzed in LemmaA.3). In

general, the evaluation of the extension takes exponential time

even if 𝑓 is efficiently computable. We show that 𝑆∗Δ−1 ⊆ 𝑆Δ,

i.e., the anchor set for our Lipschitz extension with parameter

Δ contains the largest monotone anchor set for parameter

Δ − 1. When the Lipschitz extension is used in our algorithm,

that difference of 1 barely changes the noise added for privacy.

Moreover, our construction runs in polynomial time.

The second notion of optimality we consider is more gen-

eral. It was introduced by Cummings and Durfee [CD20]. They

study the ℓ∞ error of the extension, measured locally over

all induced subgraphs of any given graph. According to this

measure, the error of our Lipschitz extension 𝑓Δ on induced

subgraphs of a graph 𝐺 is at most twice the error of the best

Lipschitz extension with parameter Δ − 1 on the same set

of graphs. The best extension does not have to be efficiently

computable and is selected separately for each 𝐺 .

1.1 Our Results
We consider databases that represent undirected, unweighted

graphs𝐺 with vertex set𝑉 (𝐺) and edge set 𝐸 (𝐺). We start by

formally defining the privacy notion of our algorithm.

Definition 1.2 (Node-privacy). A randomized algorithm
A is 𝜀-node-private if for all node-neighboring graphs𝐺,𝐺 ′ and
all events 𝑆 in the output space of A,

Pr[A(𝐺) ∈ 𝑆] ≤ 𝑒𝜀 Pr[A(𝐺 ′) ∈ 𝑆] .

Our first idea is to restate the problem of estimating 𝑓cc,

the number of connected components, in terms of estimating

the size of a spanning forest. Let 𝑓sf (𝐺) denote the number of
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edges in a spanning forest of𝐺 . The reason 𝑓sf is an easier func-

tion to work with is that it is monotone (nondecreasing) under

the addition of nodes and edges, whereas 𝑓cc can increase or

decrease when we insert a new node with arbitrary edges. The

relationship between the two functions is straightforward:

𝑓cc (𝐺) = |𝑉 (𝐺) | − 𝑓sf (𝐺) . (1)

The number of nodes in a graph can be easily estimated

with an 𝜀-node-private algorithm with additive error 𝑂 (1/𝜀)
by using the standard Laplace mechanism. Henceforth, we

state our results in terms of approximating 𝑓sf , with the un-

derstanding that it is equivalent to approximating 𝑓cc with

additive error. Our main result is a polynomial-time, 𝜀-node-

private algorithm for approximating 𝑓sf . Its error is upper

bounded by 𝑂 (Δ∗ ln ln𝑛) for constant 𝜀.

Theorem 1.3 (Node-private algorithm for the size of

the spanning forest). There exists an 𝜀-node-private algo-
rithm A that, given an 𝑛-node graph 𝐺 and a parameter 𝜀 > 0,
runs in polynomial time. Let Δ∗ be the smallest possible maxi-
mum degree of a spanning forest of 𝐺 . If 𝐸 (𝐺) ≠ ∅, then, with
probability 1 − 𝑜 (1), the output of the algorithm satisfies

|A(𝐺) − 𝑓sf (𝐺) | ≤ Δ∗ ·𝑂
( ln ln𝑛

𝜀

)
. (2)

Note thatΔ∗ is at most themaximum degree of𝐺 . Therefore,

the error bound in (2) also holds when Δ∗ is replaced with the

maximum degree of 𝐺 .

1.1.1 Our Lipschitz extensions for 𝑓sf . Our main technical

contribution and the key tool in our algorithm design is a con-

struction of a family of Lipschitz extensions for the size of the

spanning forest. Recall from Section 1 that the first challenge

in designing a family of Lipschitz extension is identifying their

anchor sets. The anchor set of our Lipschitz extension 𝑓Δ con-

tains the set of graphs that have a spanning forest of degree

at most Δ (called a spanning Δ-forest). One can easily see that

𝑓sf is Δ-Lipschitz on this set.

The construction of 𝑓Δ is based on the forest polytope of

the input graph. The vertices of the polytope, represented

by vectors 𝑥 ∈ {0, 1}𝐸 , correspond to forest subgraphs of 𝐺 ,

where the weight of an edge is an indicator for whether the

edge is in the forest. The forest polytope contains all convex

combinations of the forest subgraphs of 𝐺 . We consider the

degree-bounded forest polytope of a graph, parameterized

by Δ. It introduces the additional requirement that the total

weight of the edges incident on each vertex is at most Δ. Then
𝑓Δ (𝐺) equals the total maximum weight that can be assigned

to the edges of 𝐺 , while ensuring that the vector of weights

is in the Δ-bounded forest polytope. We show that 𝑓Δ is Δ-
Lipschitz. It is also computable in polynomial time using an

LP solver and an efficient linear separation oracle.

Our extensions and their analysis are described in Section 3.

1.1.2 Relation to Down-sensitivity. The down-sensitivity of

a function, defined next, provides a useful lens for thinking

about instance-dependent guarantees [CZ13, RS16a].

Definition 1.4 (Down-sensitivity [CZ13]). For two graphs
𝐻,𝐻 ′, we write𝐻 ⪯ 𝐻 ′ (or𝐻 ≺ 𝐻 ′) if𝐻 is an induced (or proper

induced) subgraph of 𝐻 ′. The down-sensitivity of 𝑓 : G → R
at 𝐺 , denoted by 𝐷𝑆𝑓 (𝐺), is defined as

𝐷𝑆𝑓 (𝐺) = max
𝐻 ⪯𝐻 ′⪯𝐺

𝐻,𝐻 ′ neighbors

|𝑓 (𝐻 ′) − 𝑓 (𝐻 ) |.

The down-sensitivity of 𝑓sf and of 𝑓cc differ by at most 1 on

all graphs (since their sum, |𝑉 |, changes by at most 1 between

node-neighboring graphs).

Within the framework of Lipschitz extensions, the down-

sensitivity characterizes the largest monotone anchor set that

is possible for a Δ-Lipschitz extension. It plays an impor-

tant role in the accuracy guarantees in previous work on

node-private algorithms. We show that the error of our al-

gorithm for the size of the spanning forest (and the number

of connected components) can be bounded in terms of the

down-sensitivity (Theorem 1.5 below). The theorem provides

a comparable result to existing theorems on subgraph counts

and degree distributions [CZ13, RS16a].

Theorem 1.5 (Down-sensitivity guarantee of algo-

rithm for the size of the spanning forest). If 𝐸 (𝐺) ≠ ∅,
with probability 1 − 𝑜 (1), the algorithm in Theorem 1.3 satisfies

|A(𝐺) − 𝑓sf (𝐺) | ≤ 𝐷𝑆𝑓sf (𝐺) ·𝑂
( ln ln𝑛

𝜀

)
.

An analogous statement holds with 𝑓cc replacing 𝑓sf when

we modify the algorithm according to (1).

To prove Theorem 1.5, we establish a connection between

the down-sensitivity of 𝑓sf at graph 𝐺 and the existence of

a degree-bounded spanning forest of 𝐺 . Lemma 1.6 together

with Theorem 1.3 immediately imply Theorem 1.5.

Lemma 1.6. Let Δ∗ denote the smallest possible maximum
degree of a spanning forest of a graph𝐺. Then Δ∗ ≤ 𝐷𝑆𝑓sf (𝐺) +
1.

Lemma 1.6 is obtained from two combinatorial results about

spanning forests of graphs. The first, Lemma 1.7, characterizes

the down-sensitivity of 𝑓sf via the size of induced stars of 𝐺 .

Given an integer 𝑘 ≥ 1 and vertices 𝑣0, . . . , 𝑣𝑘 ∈ 𝑉 (𝐺), we
say that these vertices form an induced 𝑘-star centered at 𝑣0 in

𝐺 if (𝑣0, 𝑣𝑖 ) ∈ 𝐸 (𝐺) for all 𝑖 ∈ [𝑘] and (𝑣𝑖 , 𝑣 𝑗 ) ∉ 𝐸 (𝐺) for all
𝑖, 𝑗 ∈ [𝑘] .

Lemma 1.7. For a graph𝐺 , let 𝑠 (𝐺) denote the largest integer
such that 𝐺 has an induced 𝑠 (𝐺)-star. Then

𝐷𝑆𝑓sf (𝐺) = 𝑠 (𝐺).

Note that 𝑠 (𝐺) can be much lower than the maximum de-

gree of𝐺 due to the requirement that the 𝑠 (𝐺)-star be induced.
The second result, Lemma 1.8, states that a graph with no large

induced stars has a low-degree spanning forest.

Lemma 1.8. A graph with no induced Δ-stars has a spanning
Δ-forest.

Lemma 1.8 is the key link in the chain connecting the down-

sensitivity of 𝑓sf to our algorithm’s accuracy. The proof is

constructive: we give a procedure that adds one vertex at

a time to the spanning forest, modifying it at each step to

maintain the degree bound.
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Down Sensitivity, Anchor Sets, and Our Extensions. As

discussed in Section 1, one way to measure the quality of

a Lipschitz extension is in terms of its anchor set. Given

a function 𝑓 and parameter Δ, the largest possible mono-

tone anchor set of any Δ-Lipschitz extension of 𝑓 is the set

𝑆∗Δ = {𝐺 | 𝐷𝑆𝑓 (𝐺) ≤ Δ}. By “largest” we mean that every

monotone subset of an anchor set is a subset of 𝑆∗Δ. We give

an explicit Lipschitz extension with anchor set 𝑆∗Δ and a proof

of the optimality of 𝑆∗Δ in Section A. However, for general 𝑓 ,

the construction need not be efficient, even if 𝑓 is computable

in polynomial time.

The Lipschitz extensions 𝑓Δ (for 𝑓sf ) used in our main al-

gorithm are efficiently computable and have anchor sets that

nearly match those of the extension based on down-sensitivity:

their anchor sets 𝑆Δ contain all graphs with down-sensitivity

at most Δ − 1, which means they contain the largest possible

monotone anchor set for Lipschitz parameter Δ − 1.

Lemma 1.9 (Nearly Optimal Anchor Sets). Let 𝐺 be a
graph and Δ ≥ 𝐷𝑆𝑓sf (𝐺) + 1. Then 𝑓Δ (𝐺) = 𝑓sf (𝐺). Conse-
quently, for all Δ ≥ 1,

𝑆∗Δ−1 ⊆ 𝑆Δ .

We prove Lemmas 1.6–1.9 in Section 4.

1.1.3 Optimality of our Lipschitz extensions in terms of ℓ∞
error. Next, we analyze the optimality of our Lipschitz exten-

sion in the vein of results of Cummings and Durfee [CD20].

They design an algorithm for constructing a Lipschitz exten-

sion for general 𝑓 . Their construction is 2-competitive with

the optimal extension with the same Lipschitz parameter. To

measure the error of an extension 𝑓Δ, we define Err𝐺 (𝑓Δ, 𝑓 )
as max𝐻 ⪯𝐺 |𝑓Δ (𝐻 ) − 𝑓 (𝐻 ) |. Cummings and Durfee compare

Err𝐺 (𝑓Δ, 𝑓 ) to Err𝐺 (𝑓 ∗, 𝑓 ) for all functions 𝑓 ∗ of bounded
sensitivity. We give such a comparison for our Lipschitz ex-

tension for the size of the spanning forest.

Definition 1.10 (Functions of bounded sensitivity).

Let G be the set of all undirected, unweighted graphs. For a
Lipschitz parameter Δ > 0, define

FΔ = {𝑓 : G → R | 𝑓 is Δ-Lipschitz}.

Theorem 1.11 (Optimality of our Lipschitz extension).

Let Δ ≥ 1 and 𝑓Δ be our Lipschitz extension with parameter Δ
for the size of the spanning forest. If Err𝐺 (𝑓Δ, 𝑓sf ) > 0 then

Err𝐺 (𝑓Δ, 𝑓sf ) ≤
(
2 · min

𝑓 ∗∈FΔ−1
Err𝐺 (𝑓 ∗, 𝑓sf )

)
− 1. (3)

Cummings and Durfee show that for all functions 𝑓 , their

Lipschitz extension, denoted by 𝑓 ′Δ, satisfies Err𝐺 (𝑓
′
Δ, 𝑓 ) ≤

2min𝑓 ∗∈FΔ Err𝐺 (𝑓 ∗, 𝑓 ), Instead, in our result, the error of

the extension is compared against the more restricted class

of functions of sensitivity Δ − 1. However, our extension is

computable in polynomial time, as opposed to the exponen-

tial construction of [CD20]. The core of the proof is a lemma

(Lemma 5.2) which, intuitively, explains the error of our Lips-

chitz extension 𝑓Δ by attributing the error on a graph𝐺 to one

of its induced subgraphs. To prove it, we use a combinatorial

result of Win [Win89] on the decomposition of graphs with

no spanning Δ-forests. We prove Lemma 5.2 and Theorem 1.11

in Section 5.

Theorem 1.11 provides a strong type of optimality. In par-

ticular, it implies Lemma 1.9 on the optimality of the anchor

sets 𝑆Δ.

1.1.4 Performance of our algorithm on specific graph families.
We show that our algorithm provides a good approximation to

𝑓cc (the number of connected components) for two common

graph models: the Erdős-Rényi model 𝐺 (𝑛, 𝑝) for subconstant
𝑝 , and the geometric graph model.

The 𝐺 (𝑛, 𝑝) model generates a random 𝑛-node graph by

independently adding an edge between each pair of nodes

with probability 𝑝 . Erdős and Rényi [ER60] showed that the

connectivity of 𝐺 changes with 𝑝. Consider the regime where

𝑛𝑝 = 𝑐 for some constant 𝑐 > 0. With probability 1− 𝑜 (1), the
graph will have 𝑓cc = Ω(𝑛) and maximum degree 𝑂 (log𝑛).
By Theorem 1.3 and (1), our node-private algorithm’s estimate

of 𝑓cc will then have additive error ±𝑂 ((log𝑛)/𝜀) and relative
error 𝑂 ((log2 𝑛)/𝜀𝑛).

A random geometric graph𝐺 is defined by a set of𝑛 vertices

𝑉 in the unit square, i.e., 𝑉 ⊆ [0, 1] × [0, 1], and a distance

parameter 𝑟 ∈ (0, 1). An edge exists between two vertices in

𝑉 if their Euclidean distance is at most 𝑟 [Pen03]. Geometric

graphs have low-degree spanning forests, namely, of degree

at most 6 [BBK
+
11]. We provide an alternative proof of this

fact, via Lemma 1.8: a geometric graph does not have induced

6-stars because it is impossible to fit 6 points in the unit disk

so that the distance between all points is strictly greater than

1. By Lemma 1.8, a geometric graph has a spanning 6-forest.
By Theorem 1.3 and (1), our algorithm gives a ±𝑂 ((ln ln𝑛)/𝜀)
approximation to 𝑓cc in geometric graphs. Random geomet-

ric graphs and their variants have been used to model cer-

tain aspects of real-world networks, including social graphs

[BLM
+
15, FFV06] and mobile networks [PSSS13, Zin22].

1.2 Prior Work on Private Graph Analysis
Of the two natural adaptations of differential privacy to net-

work data, edge-privacy is easier to achieve and (as a result) has

been studied more extensively. Edge-private algorithms are

known for a wide range of graph statistics and modeling tasks;

see, for example, [NRS07, HLMJ09, BBDS12, GRU12, KS12,

Upa13,WWW13,WWZX13, KRSY14, PGM14, LM14, ZCP
+
15,

MCB15, NIR16, RRT19, ZN19, ALJ20, BGM22, DLR
+
22]. The

number of connected components has not been studied explic-

itly under edge-privacy, but it is easy to release with additive

error Θ(1/𝜀), since it can change by at most 1 with the inser-

tion or removal of an edge.

Node privacy is a better fit for social network data, where

one individual’s data consists of all the relationships (edges)

that the individual contributes to the graph. Its much stronger

privacy protection makes it harder to attain. Existing work

addresses subgraph counts [BBDS13, KNRS13, CZ13, DZBJ18,

LML20]; degree and triangle distributions [RS16b, DLL16, LML20];

parameter estimation in stochastic blockmodels [BCS15, BCSZ18,

SU21]; training of graph neural networks [DMS
+
21]; and gen-

erating synthetic graphs [ZNF20]. See [RS16a, MUP
+
22] for
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surveys on node-private algorithms and [XCK
+
21] for imple-

mentations of some of the algorithms.

Existing works on node-privacy that prove rigorous accu-

racy statements generally take one of two approaches. Some

works assume that the input is generated by a distribution from

a specific family and analyze how well their algorithm approx-

imates the parameters of that distribution; that approach does

not fit our setting of arbitrary fixed inputs. Other works seek

to formulate instance-dependent guarantees based on specific

features of a graph, notably the maximum degree [KNRS13,

BBDS13, RS16b, DLL16]. Chen and Zhou [CZ13] give a finer-

grained analysis, showing that the accuracy of their algorithms

for subgraph counts (and implicitly those of [KNRS13]) relates

to the down-sensitivity of the input; that approach was subse-

quently refined and strengthened [RS16b, RS16a].

Our work goes further. We identify a feature of the graph—

Δ∗—that bounds the error of our algorithm and show that Δ∗

can be bounded above in terms of the down-sensitivity of 𝑓sf
(and by extension that of 𝑓cc). Implementing this approach

requires new ideas and combinatorial results, since 𝑓sf has a

significantly different structure from that of subgraph counts:

it is not a sum of quantities computable from the local view

of each node, and it is not supermodular. Consequently, the

connection to down-sensitivity is more subtle.

2 PRELIMINARIES
The most basic private mechanism for releasing a statistic 𝑓

returns the value of 𝑓 with additive noise scaled according to

the global sensitivity of 𝑓 . The noise follows a Laplace distri-

bution. The Laplace distribution with mean 0 and standard

deviation

√
2𝑏, denoted by Lap(𝑏), has probability density

ℎ(𝑧) = 𝑒−|𝑧 |/𝑏

2𝑏
.

Definition 2.1 (Global sensitivity [DMNS16]). Given a
function 𝑓 : G → R, its global sensitivity, 𝐺𝑆𝑓 , is defined as

𝐺𝑆𝑓 = max
neighbors𝐺,𝐺′

|𝑓 (𝐺) − 𝑓 (𝐺 ′) |.

Unless specified otherwise, we use𝐺𝑆𝑓 w.r.t. node-neighbors.

Theorem 2.2 (Laplace Mechanism [DMNS16]). The al-
gorithm A that, given a graph 𝐺 , outputs A(𝐺) = 𝑓 (𝐺) +
Lap(𝐺𝑆𝑓 /𝜀) is 𝜀-node-private.

Lemma 2.3 (Tail of Laplace random variable). If 𝑋 ∼
Lap(𝑏), then Pr[|𝑋 | ≥ 𝑡 · 𝑏] = 𝑒−𝑡 .

Differential privacy is preserved under post-processing. Ad-

ditionally, the outputs of multiple private algorithms can be

combined to obtain an algorithm that has privacy protection

linear in the number of composed algorithms.

Lemma 2.4 (Composition and post-processing [DMNS16,

DKM
+
06]). If an algorithm A runs 𝜀-node-private algorithms

A1, ...,A𝑡 and applies a randomized algorithm 𝑔 to the outputs,
then A(𝐺) = 𝑔(A1 (𝐺), . . . ,A𝑡 (𝐺)) is (𝑡𝜀)-node-private.

3 A LIPSCHITZ EXTENSION FOR THE
SIZE OF THE SPANNING FOREST

In this section, we prove Theorem 1.3 by giving a polynomial-

time 𝜀-node-private algorithm for approximating the size of

the spanning forest of a graph 𝐺 .

We start by defining a family of Lipschitz extensions for

𝑓sf that are computable in polynomial time. Recall from Sec-

tion 1.1.1 that our construction is based on the Δ-bounded
forest polytope of the input graph.

Definition 3.1 (Lipschitz extension for the size of the

spanning forest). Given a vector 𝑥 ∈ R𝐸 and an edge 𝑒 ∈ 𝐸,
let 𝑥 (𝑒) denote the value of the vector 𝑥 at edge 𝑒 . For a subset
𝑆 ⊆ 𝑉 , let 𝐸 [𝑆] be the set of edges in the subgraph of 𝐺 induced
by 𝑆 . Let 𝛿 (𝑣) denote the set of edges incident to 𝑣 . For a set of
edges 𝐹 ⊆ 𝐸, denote by 𝑥 (𝐹 ) the value∑𝑒∈𝐹 𝑥 (𝑒). Given Δ > 0,
the Δ-bounded forest polytope of 𝐺 , denoted PΔ (𝐺), consists of
vectors 𝑥 ∈ R𝐸 that satisfy the following constraints:

𝑥 (𝑒) ≥ 0 ∀ 𝑒 ∈ 𝐸; (4)

𝑥 (𝐸 [𝑆]) ≤ |𝑆 | − 1 ∀ 𝑆 ⊆ 𝑉 , |𝑆 | ≥ 2; (5)

𝑥 (𝛿 (𝑣)) ≤ Δ ∀ 𝑣 ∈ 𝑉 . (6)

The Lipschitz extension at 𝐺 with parameter Δ is defined as
𝑓Δ (𝐺) = max𝑥 ∈PΔ (𝐺) 𝑥 (𝐸).

Each 𝑓Δ can be used to privately approximate 𝑓sf by out-

putting a private approximation of 𝑓Δ via the Laplace mecha-

nism. The Laplace noise is scaled according to Δ, which is an

upper bound on the global sensitivity of 𝑓Δ. We use the Gen-

eralized Exponential Mechanism to privately select Δ̂ ∈ [1, 𝑛],
such that 𝑓Δ̂ (𝐺) has the lowest expected error when used to

approximate 𝑓sf (𝐺) via the Laplace mechanism. Finally, we

output the private approximation of 𝑓Δ̂ via the Laplace mech-

anism. This procedure is described in Algorithm 1.

Algorithm 1 Node-Private Size of Spanning Forest

Input: Graph𝐺 , privacy parameter 𝜀 > 0, failure probability

𝛽 ∈ (0, 1).
1: RunAlgorithm 4 (based onGEM [RS16b]) with parameters

𝜀/2 and 𝛽 and access to Algorithm 2, to obtain Δ̂.

2: 𝑓Δ̂ (𝐺) ← EvalLipschitzExtension(𝐺, Δ̂).
3: Return 𝑓Δ̂ (𝐺) + 𝑍 where 𝑍 ∼ Lap( 2Δ̂𝜀 ).

Algorithm 2 EvalLipschitzExtension

Input: Graph 𝐺 , Lipschitz parameter Δ ∈ [1, 𝑛].
1: Solve the linear program from Definition 3.1 to obtain

𝑓Δ (𝐺) ← max𝑥 ∈PΔ (𝐺) 𝑥 (𝐸).
2: Return 𝑓Δ (𝐺).

Lemma 3.3 summarizes the properties of our family of Lip-

schitz extensions that allow us to use the Generalized Expo-

nential Mechanism with this family.
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Definition 3.2 (Monotone in Δ, Lipschitz Underesti-
mates). Let ℎ : G → R. The functions {ℎΔ}Δ∈[1,Δmax ] are a
family of monotone in Δ, Lipschitz underestimates for ℎ if:

(1) (Underestimation)ℎΔ (𝐺) ≤ ℎ(𝐺) for allΔ ∈ [1,Δmax]
and all 𝐺 .

(2) (Monotonicity) ℎΔ1
(𝐺) ≤ ℎΔ2

(𝐺) for all Δ1 < Δ2

and all 𝐺 .
(3) (Lipschitzness) ℎΔ is Δ-Lipschitz for all Δ ∈ [1,Δmax].

Lemma 3.3 (Properties of the Lipschitz extension). The
Lipschitz extensions {𝑓Δ}Δ∈[1,𝑛] in Definition 3.1 are a family
of monotone in Δ, Lipschitz underestimates for 𝑓sf . Moreover, for
all Δ ∈ [1, 𝑛] and all 𝐺 , the following hold.

(1) If 𝐺 has a spanning Δ-forest, then 𝑓Δ (𝐺) = 𝑓sf (𝐺).
(2) 𝑓Δ is computable in polynomial time.

Remark 3.4. The Lipschitz constant Δ for 𝑓Δ is tight. To see
this, consider the graph 𝐺 with Δ isolated vertices and the node-
neighboring graph 𝐺 ′ obtained from 𝐺 by adding one vertex
with edges to all vertices of𝐺 . Then 𝑓Δ (𝐺) = 0 and 𝑓Δ (𝐺 ′) = Δ.

Proof of Lemma 3.3. We first show that 𝑓Δ (𝐺) ≤ 𝑓sf (𝐺)
for all Δ and 𝐺 . Let 𝑆1, . . . , 𝑆𝑘 ⊆ 𝑉 (𝐺) be the vertex sets of

the connected components of 𝐺 . For all 𝑥 ∈ PΔ (𝐺) and for

all 𝑖 ∈ [𝑘], we have 𝑥 (𝐸 [𝑆𝑖 ]) ≤ |𝑆𝑖 | − 1. Therefore, 𝑥 (𝐸) ≤∑
𝑖∈[𝑘 ] |𝑆𝑖 | − 𝑓cc (𝐺) = 𝑛 − 𝑓cc (𝐺) = 𝑓sf (𝐺).
Monotonicity in Δ follows from the fact that every vector

𝑥 ∈ PΔ (𝐺) also satisfies 𝑥 ∈ PΔ′ (𝐺) for Δ′ ≥ Δ.
Next, we show that 𝑓Δ is Δ-Lipschitz. Let 𝐺 be obtained

from 𝐺 ′ = (𝑉 ′, 𝐸 ′) by removing a node 𝑣 and all its adjacent

edges. Then 𝑓Δ (𝐺) ≤ 𝑓Δ (𝐺 ′), since for each 𝑥 ∈ PΔ (𝐺), there
is a vector 𝑥 ′ ∈ PΔ (𝐺 ′) with 𝑥 (𝐸) = 𝑥 ′(𝐸 ′). Namely, 𝑥 ′ has
the same entries as 𝑥 in 𝐸 and has value 0 in the entries 𝐸 ′ \ 𝐸.

Let 𝑥 ′ ∈ PΔ (𝐺 ′) be such that 𝑥 (𝐸 ′) = 𝑓Δ (𝐺 ′). Consider the
vector 𝑥 obtained from 𝑥 ′ by omitting all the entries pertaining

to edges in 𝛿 (𝑣). Then 𝑥 ′(𝐸 ′) − 𝑥 (𝐸) ≤ Δ, since 𝑥 ′(𝛿 (𝑣)) ≤ Δ.
Also, 𝑥 ∈ PΔ (𝐺), and thus 𝑥 (𝐸) ≤ 𝑓Δ (𝐺). We get

|𝑓Δ (𝐺 ′) − 𝑓Δ (𝐺) | = 𝑓Δ (𝐺 ′) − 𝑓Δ (𝐺)
= 𝑥 ′(𝐸 ′) − 𝑥 (𝐸) + 𝑥 (𝐸) − 𝑓Δ (𝐺) ≤ Δ + 0 = Δ.

This concludes the proof that 𝑓Δ is Δ-Lipschitz.
To prove Item 1, let 𝐹 be the edges of a spanning Δ-forest of

𝐺 , i.e., |𝛿 (𝑣)∩𝐹 | ≤ Δ for all vertices 𝑣 of𝐺 . Let 𝑥𝐹 be the vector

whose values are 1 for all 𝑒 ∈ 𝐹 and 0 otherwise. Then 𝑥𝐹 ∈
PΔ (𝐺) and 𝑥𝐹 (𝐸) = 𝑓sf (𝐺). Thus 𝑓Δ (𝐺) ≥ 𝑥𝐹 (𝐸) = 𝑓sf (𝐺).
By the underestimation property, we obtain 𝑓Δ (𝐺) = 𝑓sf (𝐺).

Finally, we prove Item 2. To compute 𝑓Δ (𝐺), we need to

solve a linear program. Padberg and Wolsey [PW83] show the

existence of a polynomial-time separation oracle for condition

(5) of the linear program that involves an exponential number

of constraints. Conditions (4) and (6) can be clearly checked

in polynomial-time. Thus, there exists a polynomial time al-

gorithm for solving the linear program in Definition 3.1 and

computing 𝑓Δ (𝐺). □

3.1 From Extensions to the Main Algorithm
To formulate and analyze our main algorithm (and prove The-

orem 1.3), we measure the “quality” of each extension 𝑓Δ as

an approximation for 𝑓sf (𝐺) by its expected error when out-

putting 𝑓Δ (𝐺) privately via the Laplace mechanism, as in Algo-

rithm 1. We would like to select Δ̂ ∈ [1, 𝑛], so that 𝑓Δ̂ from our

family of Lipschitz extensions minimizes the expected error.

The Generalized Exponential Mechanism selects an approxi-

mation to the true minimizer Δ̂ in a private way. Consider any

function ℎ : G → R and a family {ℎΔ}Δ∈[1,Δmax ] of mono-

tone in Δ, Lipschitz underestimates for ℎ. The quality of each

function ℎΔ is measured by its approximation error, defined as

𝑒𝑟𝑟ℎ (Δ,𝐺) := |ℎΔ (𝐺) − ℎ(𝐺) | + Δ/𝜀. (7)

Note that 𝑒𝑟𝑟ℎ (Δ,𝐺) is an upper bound for the expected er-

ror E[|ℎΔ (𝐺) + Lap(Δ/𝜀) − ℎ(𝐺) |] by the triangle inequality

and the fact that E[|Lap(𝑏) |] = 𝑏. The Generalized Exponen-

tial Mechanism outputs Δ̂ ∈ [1,Δmax] that approximately

minimizes the quantity 𝑒𝑟𝑟ℎ (Δ,𝐺).

Theorem 3.5 (GEM [RS16b]). Fix 𝜀 > 0 and 𝛽 ∈ (0, 1).
Let {ℎΔ}Δ∈[1,Δmax ] be a family of monotone in Δ, Lipschitz
underestimates for ℎ : G → R. Then there exists an 𝜀-node-
private algorithm (Algorithm 4) obtained from the Generalized
Exponential Mechanism, that outputs a value Δ̂ such that for
all Δ ∈ [1,Δmax] and all 𝐺 , with probability at least 1 − 𝛽 , it
holds

𝑒𝑟𝑟ℎ (Δ̂,𝐺) ≤ 𝑒𝑟𝑟ℎ (Δ,𝐺) ·𝑂
(
ln

ln(Δmax)
𝛽

)
.

Furthermore, the algorithm runs in polynomial time if all ℎΔ
are polynomial time computable.

We now we use Theorem 3.5 together with Lemma 3.3 to

complete the proof of Theorem 1.3.

Proof of Theorem 1.3. Let A be Algorithm 1 run with

failure probability 𝛽 = 1
ln ln𝑛 . We first show that A is 𝜀-node-

private. Step 1 of algorithm A is (𝜀/2)-node-private by Theo-

rem 3.5. Step 3 is also (𝜀/2)-node-private by Theorem 2.2. By

composition (Lemma 2.4), algorithm A is 𝜀-node-private.

We now bound the error of A. With probability at least

1 − 𝛽/2, we have

|A(𝐺) − 𝑓sf (𝐺) | = |𝑓Δ̂ (𝐺) + 𝑍 − 𝑓sf (𝐺) |
≤ |𝑓Δ̂ (𝐺) − 𝑓sf (𝐺) | + |𝑍 |

≤ |𝑓Δ̂ (𝐺) − 𝑓sf (𝐺) | +
2Δ̂

𝜀
ln

( 2
𝛽

)
.

The last inequality follows from Lemma 2.3. By the definition

in (7), we have |A(𝐺)− 𝑓sf (𝐺) | ≤ 𝑒𝑟𝑟 𝑓sf (Δ̂,𝐺) ·2 ln(2/𝛽) with
probability at least 1 − 𝛽/2.

Let Δ∗ be the smallest value in [1, 𝑛] such that𝐺 has a span-

ning Δ∗-forest. By Item 1 of Lemma 3.3, |𝑓Δ∗ (𝐺) − 𝑓sf (𝐺) | = 0.

Therefore, 𝑒𝑟𝑟 𝑓sf (Δ∗,𝐺) =
Δ∗
𝜀 . By Lemma 3.3, the functions

{𝑓Δ}Δ∈[1,𝑛] are a family of monotone in Δ, Lipschitz under-
estimates for 𝑓sf . Applying Theorem 3.5 with Δmax = 𝑛, we

have that with probability at least 1 − 𝛽 ,

|A(𝐺) − 𝑓sf (𝐺) | ≤
Δ∗

𝜀
·𝑂

(
ln

( ln𝑛
𝛽

)
· ln 1

𝛽

)
.

Since 𝛽 = 1
ln ln𝑛 , we obtain the desired result. Since the Lip-

schitz extensions are computable in polynomial time (Item
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Figure 1: Before and after the local repair at vertex 𝑣1.
Black solid edges are in the spanning forest. Dotted red
edges are in the graph𝐺 , but not in the spanning forest.

2 of Lemma 3.3), algorithm A runs in polynomial time. This

concludes the proof. □

4 DOWN-SENSITIVITY OF THE SIZE OF
THE SPANNING FOREST

In this section, we prove Lemma 1.6 which establishes a con-

nection between the down-sensitivity of 𝑓sf and the existence

of a bounded-degree spanning forest, and Lemma 1.9 which

connects down-sensitivity to the anchor sets of our exten-

sion. Lemma 1.6 follows from two combinatorial results on

spanning forests: Lemmas 1.7 and 1.8. We start by proving

Lemma 1.8, which connects induced stars to the existence of

bounded-degree spanning forests and is the key step in the

proof of Lemma 1.6. The proofs of Lemmas 1.6 and 1.7 are

deferred to Section 4.1. We prove Lemma 1.9 in Section 4.2

We first give an overview of the main ideas of the proof

of Lemma 1.8. The proof is by induction on the number of

vertices in𝐺 . Suppose𝐺 has no induced Δ-stars, i.e., 𝑠 (𝐺) < Δ.
Let 𝑣0 be a vertex in𝐺 , which is not a cut vertex. (A vertex is a

cut vertex if its removal from the graph increases the number of

connected components.) Let𝐺 ′ be the subgraph of𝐺 induced

by all vertices other than 𝑣0. Then 𝑠 (𝐺 ′) ≤ 𝑠 (𝐺) < Δ. By the

inductive hypothesis, 𝐺 ′ has a spanning forest 𝐹 of degree

at most Δ. Let 𝑣1 be one of the neighbors of 𝑣0 in 𝐺 and add

the edge (𝑣0, 𝑣1) to 𝐹 . Now 𝐹 is a spanning forest of 𝐺 , since

𝑣0 is not a cut vertex. However, the degree of 𝑣1 in 𝐹 could

now be Δ + 1. We modify 𝐹 to obtain a spanning forest of𝐺 of

degree at most Δ by performing a sequence of “local repairs”.

If 𝑣1 has degree Δ + 1 in 𝐹 , then 𝑣1 has two neighbors 𝑎 and 𝑏

in 𝐹 , such that 𝑎 and 𝑏 are adjacent in 𝐺 (this is true since 𝐺

has no induced Δ-stars). A local repair at 𝑣1 replaces the edge

(𝑣1, 𝑎) in 𝐹 with the edge (𝑎, 𝑏). See Fig. 1. We show that this

operation does not introduce a cycle, and 𝐹 is still a spanning

forest of 𝐺 . The degree of 𝑣1 in 𝐹 is now Δ, as desired, but
the degree of 𝑎 could have increased from Δ to Δ + 1, thus
calling for another local repair at 𝑎. At first glance, the local

repair only pushes the problem around, rather than fixing it.

However, with some care, we can show that the sequence of

vertices 𝑣0, 𝑣1, . . . where we perform the local repair forms

a path in a spanning forest of 𝐺 . Thus, the sequence of local

repairs will eventually conclude, yielding a spanning forest of

𝐺 of degree at most Δ.

Proof of Lemma 1.8. Let 𝐺 be a graph on 𝑛 vertices. The

proof is by induction on 𝑛. If 𝑛 = 1, then 𝐺 has no induced

Δ-stars for all Δ > 0. Graph 𝐺 also has a spanning Δ-forest
for all Δ > 0. Thus the lemma holds. By the same reasoning,

the lemma holds if 𝐸 (𝐺) = ∅. Suppose 𝐸 [𝐺] ≠ ∅ and that the

lemma holds for every graph with 𝑛 − 1 vertices. Then there

exists some vertex 𝑣0 ∈ 𝑉 (𝐺) which is not isolated and not

a cut vertex. E.g., consider a spanning forest of 𝐺 and let 𝑣0
be one of the leaves of the spanning forest. Let 𝐺 ′ = 𝐺 \ {𝑣0}.
Then 𝑠 (𝐺 ′) ≤ 𝑠 (𝐺) < Δ. By the inductive hypothesis, there

exists a spanning forest 𝐹 of 𝐺 ′ of degree at most Δ.
Let vertex 𝑣1 be a neighbor of 𝑣0 in 𝐺 (recall that vertex 𝑣0

is not isolated). Let 𝐹0 be the subgraph of 𝐺 consisting of 𝐹

and the edge (𝑣0, 𝑣1). Since 𝑣0 is not a cut vertex, then 𝐹0 is a

spanning forest of𝐺 . If all vertices in 𝐹0 have degree at most Δ,
then we have found the desired spanning forest. Otherwise, we

perform a sequence of local repairs, as outlined in Algorithm 3.

The output of Algorithm 3 is a sequence {(𝑣𝑖 , 𝐹𝑖 )} of vertices
and subgraphs of 𝐺 . The subgraph 𝐹𝑖 is obtained after a local

repair at vertex 𝑣𝑖 (recall Fig. 1). In Claim 4.1, we show that

all subgraphs 𝐹𝑖 are spanning forests of 𝐺 . Additionally, the

vertices 𝑣0, 𝑣1, . . . are distinct and thus the sequence {(𝑣𝑖 , 𝐹𝑖 )}
is finite (it must end once all vertices of𝐺 are output). By the

description of Algorithm 3, the final 𝐹𝑖 it outputs is a spanning

forest of𝐺 of degree at most Δ, as desired. Applying Claim 4.1

thus concludes the proof. □

Algorithm 3 Repair a (Δ+1)-forest to get a spanning Δ-forest
Input: Graph 𝐺 , a vertex 𝑣0, and a forest 𝐹0, defined above

1: 𝑖 ← 1

2: while max degree in 𝐹𝑖−1 is greater than Δ do
3: Let 𝑣𝑖 be a vertex with degree at least Δ + 1 in 𝐹𝑖−1.
4: Let 𝑁 be Δ neighbors of 𝑣𝑖 in 𝐹𝑖−1, with 𝑣𝑖−1 ∉ 𝑁 .

5: Let 𝑎𝑖 , 𝑏𝑖 ∈ 𝑁 such that (𝑎𝑖 , 𝑏𝑖 ) ∈ 𝐸 (𝐺). ⊲ Since

𝑠 (𝐺) < Δ, such 𝑎𝑖 , 𝑏𝑖 exist.

6: Let 𝐹𝑖 = (𝐹𝑖−1 \ {(𝑣𝑖 , 𝑏𝑖 )}) ∪ {(𝑎𝑖 , 𝑏𝑖 )}.
7: Output (𝑣𝑖 , 𝐹𝑖 ).
8: 𝑖 ← 𝑖 + 1

Claim 4.1. For all 𝑖 ≥ 0 and pairs (𝑣𝑖 , 𝐹𝑖 ) output by Algo-
rithm 3, the following hold:

(a) 𝐹𝑖 is a spanning forest of 𝐺 .
(b) All vertices in 𝐹𝑖 have degree at most Δ + 1, and at most

one of them has degree Δ + 1.
(c) (𝑣𝑖 , 𝑣𝑖+1) is an edge in both 𝐹𝑖 and 𝐹𝑖+1, assuming 𝐹𝑖 is

not the final subgraph output by Algorithm 3.
(d) Vertices 𝑣0, . . . , 𝑣𝑖 are distinct, and they form a path in 𝐹𝑖 .

Proof. We prove Item (a) by induction on 𝑖 . The claim is

true for 𝑖 = 0, since adding (𝑣0, 𝑣1) to 𝐹 does not introduce a

cycle, and the number of connected components of𝐺 and𝐺 ′ is
the same since 𝑣0 is not a cut vertex. Suppose the claim holds

for 𝐹𝑖−1. We show that it also holds for 𝐹𝑖 . First note that 𝐹𝑖−1
and 𝐹𝑖 have the same number of edges. Therefore, it suffices

to show that 𝐹𝑖 has no cycles. Suppose 𝐹𝑖 has a cycle. Then

this cycle must include the edge (𝑎𝑖 , 𝑏𝑖 ), whereas all other
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edges of the cycle are in 𝐹𝑖−1. Suppose the vertex 𝑣𝑖 is not

included in the cycle. Then, by replacing the edge (𝑎𝑖 , 𝑏𝑖 ) with
the edges (𝑣𝑖 , 𝑎𝑖 ) and (𝑣𝑖 , 𝑏𝑖 ), we would obtain a cycle in 𝐹𝑖−1,
a contradiction. Now suppose 𝑣𝑖 is included in the cycle. By

replacing the edges (𝑣𝑖 , 𝑎𝑖 ) and (𝑎𝑖 , 𝑏𝑖 ) with the edge (𝑣𝑖 , 𝑏𝑖 ),
we would again obtain a cycle in 𝐹𝑖−1, a contradiction. Thus,
𝐹𝑖 is a spanning forest, which concludes the proof of Item (a).

We also prove Item (b) by induction. The claim is true for

𝐹0, since all vertices in 𝐹0 have the same degree as in 𝐹 , except

for 𝑣1, whose degree increases by 1 between 𝐹 and 𝐹0. Since

deg𝐹 (𝑣1) ≤ Δ, then deg𝐹0 (𝑣1) ≤ Δ + 1. Additionally, 𝑣0 has

degree exactly 1, which is at most Δ.
Suppose the claim is true for 𝐹0, . . . , 𝐹𝑖−1. If all vertices in

𝐹𝑖−1 have degree at most Δ, this concludes the proof. Other-
wise, there exists a unique vertex 𝑣𝑖 with deg𝐹𝑖−1 (𝑣𝑖 ) = Δ + 1.
Let 𝑎𝑖 , 𝑏𝑖 be the neighbors of 𝑣𝑖 defined in Step 5. Note that the

only vertices whose degrees change between 𝐹𝑖 and 𝐹𝑖−1 are 𝑎𝑖
and 𝑣𝑖 . The degree of 𝑣𝑖 decreases by 1, and thus deg𝐹𝑖 (𝑣𝑖 ) = Δ.
The degree of 𝑎𝑖 increases by 1. By the inductive hypothesis,

deg𝐹𝑖−1 (𝑎𝑖 ) ≤ Δ, and thus deg𝐹𝑖 (𝑎𝑖 ) ≤ Δ + 1. All other ver-
tices in 𝐹𝑖 have the same degree as in 𝐹𝑖−1, thus their degree
is at most Δ. This concludes the proof of Item (b).

We prove Item (c). Fix iteration 𝑖 and suppose 𝐹𝑖 is not the

final subgraph output by Algorithm 3. By Item (b), vertex 𝑣𝑖
has degree Δ+1, whereas all other vertices in 𝐹𝑖−1 have degree
at most Δ. Let 𝑎𝑖 , 𝑏𝑖 be the neighbors of 𝑣𝑖 defined in Step 5. By

the proof of Item (b), all vertices in 𝐹𝑖 , except 𝑎𝑖 , have degree

at most Δ. Since 𝐹𝑖 is not the final forest, it must hold that

deg𝐹𝑖 (𝑎𝑖 ) = Δ + 1. Therefore, 𝑣𝑖+1 = 𝑎𝑖 . Since (𝑣𝑖 , 𝑎𝑖 ) is an
edge in 𝐹𝑖 , we obtain that (𝑣𝑖 , 𝑣𝑖+1) is an edge in 𝐹𝑖 . Note that

in iteration 𝑖 + 1, we pick neighbors 𝑎𝑖+1 and 𝑏𝑖+1 of 𝑣𝑖+1 such

that 𝑎𝑖+1 ≠ 𝑣𝑖 and 𝑏𝑖+1 ≠ 𝑣𝑖 . Therefore, the edge (𝑣𝑖 , 𝑣𝑖+1)
remains unchanged in 𝐹𝑖+1. This concludes the proof of Item
(c).

We prove Item (d) by induction. It clearly holds for 𝑖 = 0.
Suppose it is true for iteration 𝑖 . We prove it for iteration 𝑖 + 1.
By Item (c), the edge (𝑣𝑖 , 𝑣𝑖+1) is in 𝐹𝑖 . Note that 𝑣𝑖+1 ≠ 𝑣𝑖−1,
since 𝑣𝑖+1 = 𝑎𝑖 , and we specifically choose 𝑎𝑖 ≠ 𝑣𝑖−1. Suppose
𝑣𝑖+1 = 𝑣 𝑗 for some 𝑗 < 𝑖 − 1. By the inductive hypothesis, the

path from 𝑣 𝑗 to 𝑣𝑖 is in 𝐹𝑖 . Together with the edge (𝑣𝑖 , 𝑣 𝑗 ), it
forms a cycle in 𝐹𝑖 , a contradiction. Therefore, 𝑣𝑖+1 is distinct

from all vertices 𝑣0, . . . , 𝑣𝑖 . We now show that the vertices

𝑣0, . . . , 𝑣𝑖+1 form a path in 𝐹𝑖+1. By a similar argument as for

𝑣𝑖+1 = 𝑎𝑖 , we can show that 𝑏𝑖 is distinct from all vertices

𝑣0, . . . , 𝑣𝑖 . Therefore, all edges on the path from 𝑣0 to 𝑣𝑖 are

also in the forest 𝐹𝑖+1. Since (𝑣𝑖 , 𝑣𝑖+1) is an edge in 𝐹𝑖+1, we
obtain that the vertices 𝑣0, . . . , 𝑣𝑖+1 form a path in 𝐹𝑖+1. □

4.1 Completing the Proof of Lemma1.6
In this section, we complete the proof of Lemma 1.6. To that

end, we first prove Lemma 1.7 which characterizes the down-

sensitivity of 𝑓sf via the size of induced stars of the graph.

Lemma 1.6 follows easily from Lemmas 1.7 and 1.8.

Proof of Lemma 1.7. We first show that 𝐷𝑆𝑓sf (𝐺) ≥ 𝑠 (𝐺).
Let 𝐻 ′ be a maximum induced star of 𝐺 , i.e., 𝐻 ′ is an induced

𝑠 (𝐺)-star, and let 𝑣 be its central vertex. Let 𝐻 = 𝐻 ′ \ {𝑣}, i.e.,
𝐻 consists of 𝑠 (𝐺) isolated vertices. It follows that 𝑓sf (𝐻 ) = 0

and 𝑓sf (𝐻 ′) = 𝑠 (𝐺). Since 𝐻 ⪯ 𝐻 ′ ⪯ 𝐺 and 𝐻,𝐻 ′ are node-
neighboring, then 𝐷 𝑓sf (𝐺) ≥ 𝑓sf (𝐻 ′) − 𝑓sf (𝐻 ) = 𝑠 (𝐺).

We now show that 𝐷𝑆𝑓sf (𝐺) ≤ 𝑠 (𝐺). Let 𝐻 ≺ 𝐻 ′ be two
node-neighboring induced subgraphs of𝐺 that differ at node

𝑣 and satisfy 𝐷𝑆𝑓sf (𝐺) = 𝑓sf (𝐻 ′) − 𝑓sf (𝐻 ). If deg𝐻 ′ (𝑣) = 0

then 𝑓sf (𝐻 ′) = 𝑓sf (𝐻 ), and the lemma holds. Now assume

deg𝐻 ′ (𝑣) ≥ 1. Then 𝑓sf (𝐻 ′) ≥ 𝑓sf (𝐻 ), and in particular,

𝑓sf (𝐻 ′) − 𝑓sf (𝐻 ) = |𝑉 (𝐻 ′) | − 𝑓cc (𝐻 ′) − |𝑉 (𝐻 ) | + 𝑓cc (𝐻 ) =
𝑓cc (𝐻 ) − 𝑓cc (𝐻 ′) + 1. Let 𝑆𝑣 be the vertices of the connected
component of 𝐻 ′ containing 𝑣 , and let 𝑆1, . . . , 𝑆𝑘 ⊆ 𝑆𝑣 be the

sets of vertices of the connected components of the subgraph

induced by 𝑆𝑣 − {𝑣}. Note that 𝑘 ≥ 1, since deg𝐻 ′ (𝑣) ≥ 1.
Then 𝑓cc (𝐻 ) − 𝑓cc (𝐻 ′) = 𝑘−1, and thus𝐷𝑆𝑓sf (𝐺) = 𝑓sf (𝐻 ′) −
𝑓sf (𝐻 ) = 𝑘 . It remains to prove that 𝑘 ≤ 𝑠 (𝐺). For each 𝑖 ∈ [𝑘],
select some vertex 𝑣𝑖 ∈ 𝑆𝑖 that is adjacent to 𝑣 in the graph

𝐻 ′. Then the set of vertices {𝑣𝑖 | 𝑖 ∈ [𝑘]} is an independent set

in 𝐺 because the vertices 𝑣𝑖 are in different connected compo-

nents of 𝐻 . As a result, the vertices {𝑣𝑖 | 𝑖 ∈ [𝑘]} ∪ {𝑣} induce
a star centered at 𝑣 in graph 𝐺 . Therefore, 𝑘 ≤ 𝑠 (𝐺), which
concludes the proof. □

Proof of Lemma 1.6. We show the following equivalent

statement: If 𝐷𝑆𝑓sf (𝐺) ≤ Δ − 1, then 𝐺 has a spanning Δ-
forest. Consider𝐺 such that 𝐷𝑆𝑓sf (𝐺) ≤ Δ − 1. By Lemma 1.7,

𝑠 (𝐺) = 𝐷𝑆𝑓sf (𝐺) ≤ Δ − 1. Thus, 𝐺 has no induced Δ-stars,
and by Lemma 1.8 we obtain that 𝐺 has a spanning Δ-forest,
as desired. □

4.2 Anchor Sets of our Extensions
In this section, we prove Lemma 1.9, which connects down-

sensitivity to the anchor sets of our extensions.

Proof of Lemma 1.9. Fix Δ > 0 and a graph 𝐺 such that

𝐷𝑆𝑓sf (𝐺) ≤ Δ − 1. By Lemma 1.6, 𝐺 has a spanning Δ-forest.
Item 1 of Lemma 3.3 gives that 𝑓Δ (𝐺) = 𝑓sf (𝐺). Therefore, if
𝐺 ∈ 𝑆∗Δ−1, then 𝐺 has a Δ-forest, and as a result 𝐺 ∈ 𝑆Δ. Thus
𝑆∗Δ−1 ⊆ 𝑆Δ. □

5 OPTIMALITY OF OUR LIPSCHITZ
EXTENSIONS

In this section, we prove Theorem 1.11, which says that our

Lipschitz extension for 𝑓sf , the size of the spanning forest,

is close to optimal for this function. Our proof relies on the

following combinatorial fact proved by Win [Win89] about

graphs with no spanning Δ-forest. For a graph 𝐺 and vertex

set 𝑋 ⊆ 𝑉 (𝐺), we denote by𝐺 \𝑋 the graph obtained from𝐺

by removing all vertices in 𝑋 and their adjacent edges.

Lemma 5.1 (Lemma 1, Theorem 1 in [Win89]). Let Δ ≥ 2. If
a graph𝐺 has no spanning Δ-forest, then there exists an induced
subgraph 𝑆 ≺ 𝐺 and a vertex set 𝑋 ⊂ 𝑉 (𝑆), such that:

(1) 𝑆 has a spanning Δ-tree.
(2) 𝐺 has no edges between vertices in𝐺 \𝑉 (𝑆) and vertices

in 𝑆 \ 𝑋 .
(3) 𝑓cc (𝑆 \ 𝑋 ) ≥ |𝑋 | (Δ − 2) + 2.

The key ingredient in our proof of Theorem 1.11 is the

following lemma which, intuitively, explains the error of our

Lipschitz extension 𝑓Δ by attributing the error on a graph 𝐺
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to one of its induced subgraphs. Recall from Lemma 3.3 that

𝑓Δ (𝐺) ≤ 𝑓sf (𝐺) for all graphs 𝐺 and that 𝑓Δ can err only on

graphs with no spanning Δ-forest. Lemma 5.2 shows that every

such graph 𝐺 has an induced subgraph 𝐻 such that 𝑓Δ (𝐺) is
nearly as large as possible for any Δ-Lipschitz lower bound
on 𝑓sf (𝐺) because 𝑓Δ (𝐺) cannot deviate too far from 𝑓sf (𝐻 ).

Lemma 5.2. Let Δ ≥ 1. If a graph𝐺 has no spanning Δ-forest,
then there exists a proper induced subgraph 𝐻 ≺ 𝐺 such that

𝑓Δ (𝐺) ≥ 𝑓sf (𝐻 ) + (Δ − 1)𝑑 (𝐺,𝐻 ) + 1. (8)

Proof. Let 𝐺 = (𝑉 , 𝐸) be a graph with no spanning Δ-
forest.

To see that (8) holds for Δ = 1, let 𝐻 be a subgraph consist-

ing of a single vertex of𝐺 . Then 𝑓sf (𝐻 ) = 0, and the right-hand
size of (8) evaluates to 1. Since 𝐺 has no spanning Δ-forest,
𝐺 has at least one edge. Thus, 𝑓Δ (𝐺) ≥ 1, and (8) holds for

Δ = 1.
Now fix some Δ ≥ 2. The proof is by induction on |𝑉 | + |𝐸 |,

the total number of vertices and edges of 𝐺 . Since 𝐺 has no

spanning Δ-forest, it must have a vertex of degree at least Δ+1.
The smallest such graph (in terms of |𝑉 | + |𝐸 |) is a (Δ + 1)-star.

For the base case, let𝐺 be a (Δ + 1)-star. Denote its central
vertex by 𝑣 . Let 𝐻 = 𝐺 \ {𝑣}. Then 𝑓Δ (𝐺) = Δ, 𝑓sf (𝐻 ) = 0, and
(Δ − 1)𝑑 (𝐺,𝐻 ) + 1 = Δ, since 𝑑 (𝐺,𝐻 ) = 1. Thus, the claim
holds for 𝐺 (and is tight).

For the inductive step, consider a graph 𝐺 that contains a

(Δ + 1)-star as a proper subgraph. See Fig. 2 for an illustration

of the subgraphs of 𝐺 considered in the rest of the proof.

Suppose (8) holds for all proper subgraphs of 𝐺 . Let 𝑆 ⪯ 𝐺

and 𝑋 ⊂ 𝑉 (𝑆) be the subgraph and the vertex set given by

Lemma 5.1. Then

𝑓Δ (𝐺) ≥ 𝑓Δ (𝑆) + 𝑓Δ (𝐺 \𝑉 (𝑆)) = 𝑓sf (𝑆) + 𝑓Δ (𝐺 \𝑉 (𝑆)), (9)

where the equality holds by Item 1 of Lemma 3.3, since 𝑆 has

a spanning Δ-tree. We apply Item 1 of Lemma 5.1 and (1):

𝑓sf (𝑆) − 𝑓sf (𝑆 \ 𝑋 )
= |𝑉 (𝑆) | − 1 − |𝑉 (𝑆 \ 𝑋 ) | + 𝑓cc (𝑆 \ 𝑋 )
≥ |𝑋 | − 1 + |𝑋 | (Δ − 2) + 2 = |𝑋 | (Δ − 1) + 1, (10)

where the inequality holds by Item 3 of Lemma 5.1. Combining

(9) and the lower bound on 𝑓sf (𝑆) implied by (10) yields

𝑓Δ (𝐺) ≥ 𝑓sf (𝑆 \ 𝑋 ) + |𝑋 | (Δ − 1) + 1 + 𝑓Δ (𝐺 \𝑉 (𝑆)) . (11)

First, consider the case when 𝐺 \𝑉 (𝑆) has a spanning Δ-
forest. By Item 1 of Lemma 3.3, 𝑓Δ (𝐺 \𝑉 (𝑆)) = 𝑓sf (𝐺 \𝑉 (𝑆)).
Let 𝐻 = 𝐺 \ 𝑋 . By Lemma 5.1, there are no edges between

𝐺\𝑉 (𝑆) and 𝑆\𝑋 . Thus, 𝑓sf (𝑆\𝑋 )+𝑓sf (𝐺\𝑉 (𝑆)) = 𝑓sf (𝐺\𝑋 ) =
𝑓sf (𝐻 ). Also, |𝑋 | = 𝑑 (𝐺,𝐻 ). Substituting these two equalities

into (11), we obtain that (8) holds in this case.

Finally, we consider the case when𝐺 \𝑉 (𝑆) has no spanning
Δ-forest. Let𝐺1 = 𝐺 \𝑉 (𝑆). By Item 3 of Lemma 5.1,𝑉 (𝑆) ≠ ∅,
so 𝐺1 is a proper subgraph of 𝐺 . By the inductive hypothesis,

there exists an induced subgraph 𝐻1 ≺ 𝐺1 such that

𝑓Δ (𝐺 \𝑉 (𝑆)) = 𝑓Δ (𝐺1) ≥ 𝑓sf (𝐻1) + 𝑑 (𝐺1, 𝐻1) (Δ − 1) + 1.

Figure 2: The subgraphs in Lemma5.2. Graph 𝐺 [𝑋 ] is
the subgraph of 𝐺 induced by 𝑋 . There are no edges be-
tween 𝑆 \ 𝑋 and 𝐺1 = 𝐺 \ 𝑉 (𝑆). Graph 𝐻1 is an induced
subgraph of𝐺1. Finally, 𝐻 = 𝐺 \𝑋 and 𝐻 ′ = 𝐻1 ∪ (𝑆 \𝑋 ).

Plugging this bound on 𝑓Δ (𝐺 \𝑉 (𝑆)) into (11), we get

𝑓Δ (𝐺) ≥𝑓sf (𝑆 \ 𝑋 ) + 𝑓sf (𝐻1)
+ (|𝑋 | + 𝑑 (𝐺1, 𝐻1)) (Δ − 1) + 2.

Let 𝐻 ′ = (𝑆 \ 𝑋 ) ∪ 𝐻1. By Item 2 of Lemma 5.1, there are no

edges between 𝐺1 and 𝑆 \ 𝑋 . Hence, 𝑓sf (𝑆 \ 𝑋 ) + 𝑓sf (𝐻1) =
𝑓sf (𝐻 ′). Also note that |𝑋 | +𝑑 (𝐺1, 𝐻1) = 𝑑 (𝐺,𝐻 ′). We obtain

𝑓Δ (𝐺) ≥ 𝑓sf (𝐻 ′) + (Δ − 1)𝑑 (𝐺,𝐻 ′) + 2.

Thus, (8) holds in this case, too, concluding the proof. □

We now prove Theorem 1.11 using Lemma 5.2. Except for

Lemma 5.2, which is at the core of our argument, the rest of the

proof builds on an argument of Cummings and Durfee [CD20].

Proof of Theorem 1.11. Let 𝐺 = (𝑉 , 𝐸) be a graph on

which our Lipschitz extension errs, i.e., Err𝐺 (𝑓Δ, 𝑓sf ) > 0.
The proof proceeds by induction on |𝑉 | + |𝐸 |, the total num-

ber of vertices and edges of 𝐺 . By Item 1 of Lemma 3.3, since

Err𝐺 (𝑓Δ, 𝑓sf ) > 0, graph𝐺 has no spanning Δ-forest. There-
fore, we can consider the same base case as in the proof of

Lemma 5.2.

For the base case, let𝐺 be a (Δ + 1)-star. Let 𝑣 be its central
vertex. For this graph, the left-hand side of (3) equals 1. Let

𝑓 ∗ ∈ FΔ−1. By definition, |𝑓 ∗ (𝐺) − 𝑓 ∗ (𝐺 \ {𝑣}) | ≤ Δ − 1. In
contrast, 𝑓sf (𝐺) = Δ + 1 and 𝑓sf (𝐺 \ {𝑣}) = 0. The quantity
max{|𝑓 ∗ (𝐺)− 𝑓sf (𝐺) |, |𝑓 ∗ (𝐺\{𝑣})− 𝑓sf (𝐺\{𝑣}|} is minimized

when 𝑓 ∗ (𝐺) = Δ and 𝑓 ∗ (𝐺 \ {𝑣}) = 1 (under the Lipschitz

requirement on 𝑓 ∗). Thus, the right-hand side of (3) equals 1,

and the theorem holds when 𝐺 is a (Δ + 1)-star.
For the inductive step, consider a graph 𝐺 that contains

a (Δ + 1)-star as a proper subgraph and Err𝐺 (𝑓Δ, 𝑓sf ) > 0.
Suppose the theorem holds for all proper subgraphs of 𝐺 . We

show that it also holds for 𝐺 . Let 𝐻 ⪯ 𝐺 be the induced

subgraph of 𝐺 that maximizes the quantity |𝑓Δ (𝐻 ) − 𝑓sf (𝐻 ) |
over all induced subgraphs 𝐻 ⪯ 𝐺 . Then Err

𝐻
(𝑓Δ, 𝑓sf ) > 0.
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First, consider the case when 𝐻 ≠ 𝐺 , i.e., 𝐻 ≺ 𝐺 . Then

Err𝐺 (𝑓Δ, 𝑓sf ) = max
𝐻 ⪯𝐺

|𝑓Δ (𝐻 ) − 𝑓sf (𝐻 ) |

= max
𝐻 ⪯𝐻

|𝑓Δ (𝐻 ) − 𝑓sf (𝐻 ) | (12)

≤ 2 min
𝑓 ∗∈FΔ−1 (G)

max
𝐻 ⪯𝐻

|𝑓 ∗ (𝐻 ) − 𝑓sf (𝐻 ) | − 1 (13)

≤ 2 min
𝑓 ∗∈FΔ−1 (G)

max
𝐻 ⪯𝐺

|𝑓 ∗ (𝐻 ) − 𝑓sf (𝐻 ) | − 1, (14)

where (12) follows by our choice of 𝐻 , the inequality in (13)

holds by the inductive hypothesis, and (14) holds since all

induced subgraphs of𝐻 are also induced subgraphs of𝐺 . Thus,

the theorem holds for 𝐺 .

Finally, suppose 𝐻 = 𝐺 , i.e., Err𝐺 (𝑓Δ, 𝑓sf ) = |𝑓Δ (𝐺) −
𝑓sf (𝐺) |. Then Err𝐺 (𝑓Δ, 𝑓sf ) = 𝑓sf (𝐺) − 𝑓Δ (𝐺) by the under-

estimation property of our extension (Lemma 3.3). Moreover,

since 𝑓Δ (𝐺) ≠ 𝑓sf (𝐺), Item 1 of Lemma 3.3 implies that 𝐺

has no spanning Δ-forest. Thus, we can apply Lemma 5.2. It

gives us that 𝐺 has an induced subgraph 𝐻 ⪯ 𝐺 such that

𝑓Δ (𝐺) ≥ 𝑓sf (𝐻 ) + (Δ − 1)𝑑 (𝐺,𝐻 ) + 1. For all 𝑓 ∗ ∈ FΔ−1, we
have that |𝑓 ∗ (𝐺) − 𝑓 ∗ (𝐻 ) | ≤ (Δ − 1) · 𝑑 (𝐺,𝐻 ). Thus,

𝑓Δ (𝐺) ≥ 𝑓sf (𝐻 ) + |𝑓 ∗ (𝐺) − 𝑓 ∗ (𝐻 ) | + 1
≥ 𝑓sf (𝐻 ) + 𝑓 ∗ (𝐺) − 𝑓 ∗ (𝐻 ) + 1.

We use this inequality to get a bound on the error:

Err𝐺 (𝑓Δ, 𝑓sf ) = 𝑓sf (𝐺) − 𝑓Δ (𝐺)
≤ 𝑓sf (𝐺) − 𝑓sf (𝐻 ) − 𝑓 ∗ (𝐺) + 𝑓 ∗ (𝐻 ) − 1
≤ |𝑓sf (𝐺) − 𝑓 ∗ (𝐺) | + |𝑓 ∗ (𝐻 ) − 𝑓sf (𝐻 ) | − 1
≤ 2 · Err𝐺 (𝑓 ∗, 𝑓sf ) − 1.

Since this holds for all 𝑓 ∗ ∈ FΔ−1, we finally obtain that

Err𝐺 (𝑓Δ, 𝑓sf ) ≤ 2min𝑓 ∗∈FΔ−1 Err𝐺 (𝑓 ∗, 𝑓sf ) − 1. □

6 CONCLUSION
In this work, we presented the first node-differentially pri-

vate algorithm for releasing the number of connected compo-

nents of an undirected graph, a foundational query in graph

databases. Our algorithm provides instance-based accuracy

guarantees that are parameterized by the smallest possible

maximum degree of a spanning forest of the input graph and

relies on an efficiently computable family of Lipschitz exten-

sions. The functions in this family can be evaluated in polyno-

mial time by solving an LP with an exponentially large number

of constraints using the ellipsoid algorithm with an efficient

separation oracle. An interesting open direction is designing a

faster algorithm with the same privacy and utility guarantees.
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A DOWN-SENSITIVITY ERROR
GUARANTEES FOR APPROXIMATING
GENERAL FUNCTIONS

In this section, we prove two results related to down-sensitivity.

The first, TheoremA.2, is a result of Raskhodnikova and Smith

[RS16a] which states that for every monotone nondecreasing

function 𝑓 , there exists a node-private algorithm for approx-

imating 𝑓 whose error is bounded by the down-sensitivity

of 𝑓 . A function 𝑓 : G → R is monotone nondecreasing if

𝑓 (𝐻 ) ≤ 𝑓 (𝐻 ′) for all 𝐻 ⪯ 𝐻 ′. Then, in LemmaA.3, we show

that the largest monotone anchor set for a function 𝑓 and

Lipschitz constant Δ is characterised by the down-sensitivity

of 𝑓 .

We start by proving LemmaA.1, which is used in the proof

of TheoremA.2.

Lemma A.1 (Lipschitz extension based on down-sensi-

tivity). Let 𝑓 : G → R be a monotone nondecreasing function.
Given Δ > 0, define the family of functions

𝑓Δ (𝐺) = min
𝐻 ⪯𝐺

𝐷𝑆𝑓 (𝐻 ) ≤Δ

(
𝑓 (𝐻 ) + Δ · 𝑑 (𝐻,𝐺)

)
.

The functions 𝑓Δ (𝐺) are a family of monotone in Δ, Lipschitz
underestimates for 𝑓 . Moreover, if 𝐷𝑆𝑓 (𝐺) ≤ Δ, then 𝑓Δ (𝐺) =
𝑓 (𝐺).

Proof. To show that the functions underestimate 𝑓 , note

that 𝑓Δ (𝐺) ≤ 𝑓 (𝐺) +Δ ·𝑑 (𝐺,𝐺) = 𝑓 (𝐺). To prove monotonic-

ity in Δ, fix Δ1,Δ2 and let 𝐻 ⪯ 𝐺 such that 𝐷𝑆𝑓 (𝐻 ) ≤ Δ2.
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Consider the empty graph ∅. Then 𝑓 (𝐻 ) + Δ2 · 𝑑 (𝐻,𝐺) ≥
𝑓 (∅) + Δ1𝑑 (∅,𝐺) ≥ 𝑓Δ1

(𝐺), since ∅ ⪯ 𝐻 and 𝑓 is mono-

tone nondecreasing. Since the inequality holds for all 𝐻 with

𝐷𝑆𝑓 (𝐻 ) ≤ Δ2, we obtain that 𝑓Δ2
(𝐺) ≥ 𝑓Δ1

(𝐺).
We now show Δ-Lipschitzness. Let 𝐺,𝐺 ′ be two neigh-

boring graphs so that 𝑉 (𝐺 ′) = 𝑉 (𝐺) ∪ {𝑣}, for 𝑣 ∉ 𝑉 . We

show that 𝑓Δ (𝐺) ≤ 𝑓Δ (𝐺 ′) ≤ 𝑓Δ (𝐺) + Δ, which implies

|𝑓Δ (𝐺 ′) − 𝑓Δ (𝐺) | ≤ Δ.

We start by showing that 𝑓Δ (𝐺) ≤ 𝑓Δ (𝐺 ′). Let 𝐻 ′ ⪯ 𝐺 ′

be the induced subgraph of 𝐺 ′ such that 𝐷𝑆𝑓 (𝐻 ′) ≤ Δ and

𝑓Δ (𝐺 ′) = 𝑓 (𝐻 ′) +Δ ·𝑑 (𝐻 ′,𝐺 ′). Suppose that 𝑣 ∉ 𝑉 (𝐻 ′). Then,
𝐻 is an induced subgraph of 𝐺 and 𝑑 (𝐻 ′,𝐺) = 𝑑 (𝐻 ′,𝐺 ′) − 1.
It follows that 𝑓Δ (𝐺) ≤ 𝑓 (𝐻 ′) + Δ · 𝑑 (𝐻 ′,𝐺) = 𝑓 (𝐻 ′) + Δ ·
(𝑑 (𝐻 ′,𝐺 ′) − 1) = 𝑓Δ (𝐺 ′) − Δ. Suppose now that 𝑣 ∈ 𝑉 (𝐻 ′).
Let 𝐻 = 𝐻 ′ \ {𝑣}. Then 𝐻 is an induced subgraph of 𝐺 and

𝑑 (𝐻 ′,𝐺 ′) = 𝑑 (𝐻,𝐺). Additionally, 𝐷𝑆𝑓 (𝐻 ) ≤ 𝐷𝑆𝑓 (𝐻 ′) ≤ Δ.

Since 𝑓 is monotone nondecreasing, it follows that 𝑓Δ (𝐺) ≤
𝑓 (𝐻 ) +Δ ·𝑑 (𝐻,𝐺) ≤ 𝑓 (𝐻 ′) +Δ ·𝑑 (𝐻 ′,𝐺 ′) = 𝑓Δ (𝐺 ′). In either

case, we conclude that 𝑓Δ (𝐺) ≤ 𝑓Δ (𝐺 ′).
We now show that 𝑓Δ (𝐺 ′) ≤ 𝑓Δ (𝐺) + Δ. Let 𝐻 ⪯ 𝐺 so that

𝐷𝑆𝑓 (𝐻 ) ≤ Δ and 𝑓Δ (𝐺) = 𝑓 (𝐻 ) + Δ · 𝑑 (𝐻,𝐺). Since 𝐻 ⪯ 𝐺 ′,

then 𝑓Δ (𝐺 ′) ≤ 𝑓 (𝐻 ) +Δ ·𝑑 (𝐻,𝐺 ′) = 𝑓 (𝐻 ) +Δ · (𝑑 (𝐻,𝐺) +1) =
𝑓Δ (𝐺) + Δ. This concludes the proof of Lipschitzness.

Finally, we show that if 𝐷𝑆𝑓 (𝐺) ≤ Δ then 𝑓Δ (𝐺) = 𝑓 (𝐺).
Suppose 𝐷𝑆𝑓 (𝐺) ≤ Δ. Then 𝑓 is Δ-Lipschitz for the set of

induced subgraphs of𝐺 . Together with the fact that 𝑓 is mono-

tone nondecreasing, we obtain 𝑓 (𝐺) − 𝑓 (𝐻 ) ≤ Δ ·𝑑 (𝐻,𝐺) for
all induced subgraphs 𝐻 of 𝐺 . Therefore 𝑓Δ (𝐺) = 𝑓 (𝐺). □

We now use LemmaA.1 to prove TheoremA.2.

Theorem A.2 (Theorem 2 of [RS16a]). Let 𝑓 : G → R be
a monotone nondecreasing function. Let G (𝑛) denote the set of
all 𝑛-node graphs and suppose that max𝐺′∈G (𝑛) 𝐷𝑆𝑓 (𝐺) → ∞
and 𝑛 →∞. There exists an 𝜀-node-private algorithm A𝑓 that
given an 𝑛-node graph 𝐺 and privacy parameter 𝜀 > 0, with
probability 1 − 𝑜 (1) satisfies,

|A𝑓 (𝐺) − 𝑓 (𝐺) | ≤
𝐷𝑆𝑓 (𝐺) + 1

𝜀
·𝑂

(
ln ln max

𝐺′∈G (𝑛)
𝐷𝑆𝑓 (𝐺 ′)

)
,

Proof. Consider the family of functions defined in LemmaA.1,

which are monotone in Δ, Lipschitz underestimates of 𝑓 . Let

𝛽 = 1
ln lnmax𝐺′ 𝐷𝑆𝑓 (𝐺′) denote the failure probability. Note

that 𝛽 = 𝑜 (1). LetA𝑓 be the algorithm that runs the algorithm

of Theorem 3.5 with this family of Lipschitz extensions and pa-

rameters 𝜀/2, 𝛽/2 to select a threshold Δ̂ ∈ [1,max𝐺′ 𝐷𝑆𝑓 (𝐺 ′)].
It then outputs 𝑓Δ̂ (𝐺)+Lap(Δ̂/(2𝜀)). By composition (Lemma 2.4),

A𝑓 is 𝜀-node-private.

We analyze the error ofA𝑓 . By a similar argument as in the

proof of Theorem 1.3, we have that with probability at least

1 − 𝛽/2, it holds
|A𝑓 (𝐺) − 𝑓 (𝐺) | ≤ 𝑒𝑟𝑟 𝑓sf (Δ̂,𝐺) · 2 ln(2/𝛽) .

Let Δ̃ = 𝐷𝑆𝑓 (𝐺)+1 (note that Δ̃ ≥ 1). By LemmaA.1, 𝑒𝑟𝑟 (Δ̃) =
𝐷𝑆𝑓 (𝐺)+1

𝜀 . Applying Theorem 3.5 with our choice of 𝛽 con-

cludes the proof. □

Finally, we prove LemmaA.3.

Lemma A.3. Given a function 𝑓 : G → R, a constant Δ > 0,
and a Δ-Lipschitz function 𝑓 : G → R, let 𝑆

𝑓
= {𝐺 | 𝑓 (𝐺) =

𝑓 (𝐺)}. Let 𝑆 ′
𝑓
denote the largest monotone subset of 𝑆

𝑓
Then

𝑆 ′
𝑓
⊆ {𝐺 | 𝐷𝑆𝑓 (𝐺) ≤ Δ}.

Proof. Suppose 𝐺 ∈ 𝑆 ′
𝑓
. Since 𝑆 ′

𝑓
is monotone, all induced

subgraphs of 𝐺 are also in 𝑆 ′
𝑓
. Then,

Δ ≥ max
𝐻 ⪯𝐻 ′⪯𝐺

𝐻,𝐻 ′neighbors

|𝑓 (𝐻 ) − 𝑓 (𝐻 ′) | (15)

= max
𝐻 ⪯𝐻 ′⪯𝐺

𝐻,𝐻 ′neighbors

|𝑓 (𝐻 ) − 𝑓 (𝐻 ′) | = 𝐷𝑆𝑓 (𝐺). (16)

The inequality in (15) holds since 𝑓 is Δ-Lipschitz. The first
equality in (16) holds since 𝐻,𝐻 ′ ∈ 𝑆 ′

𝑓
⊆ 𝑆

𝑓
for all induced

subgraphs of𝐺 . The second equality in (16) is the definition of

down-sensitivity. Therefore, 𝐷𝑆𝑓 (𝐺) ≤ Δ for all 𝐺 ∈ 𝑆 ′
𝑓
. □

B GEM
In this section, we state Algorithm 4 which applies the Gener-

alized Exponential Mechanism of Raskhodnikova and Smith

[RS16b] to the task of threshold selection for a family of Lips-

chitz extensions. This completes the description of Algorithm 1.

Given a (possibly infinite) family of Lipschitz extensions, Al-

gorithm 4 first obtains finitely many score functions 𝑞𝑖 , 𝑖 ∈ 𝐼
of bounded sensitivity, defined in terms of the Lipschitz exten-

sions
1
. It then uses GEM to select the optimal score function.

GEM is a generalization of, and also includes as a subroutine,

the Exponential Mechanism of McSherry and Talwar [MT07].

In the node-privacy setting, both algorithms take as input a

graph 𝐺 and score functions 𝑞𝑖 : G → R, 𝑖 ∈ 𝐼 of bounded

sensitivity. The goal of both algorithms is to output an index

𝚤̂ ∈ 𝐼 such that 𝑞𝚤̂ approximately minimizes the value on 𝐺

amongst all score functions, i.e., 𝑞𝚤̂ (𝐺) ≈ 𝑚𝑖𝑛𝑖∈𝐼𝑞𝑖 (𝐺). The
Exponential Mechanism assumes a common upper bound Δ
on the sensitivities of the score functions. GEM uses the fact

that the score functions might have different sensitivities, and

provides a better utility guarantee in the case when the optimal

score function has a much lower sensitivity than the maximum

of all sensitivities.

1
The functions 𝑞𝑖 defined in Step 4 of Algorithm 4 can actually have high sensi-

tivity, since ℎ can have high sensitivity. However, we only consider Lipschitz ex-

tensions that underestimate the true functionℎ (see Lemma 3.3 and Theorem 3.5).

In this case, minimizing 𝑞𝑖 is equivalent to minimizing ℎ (𝐺) −ℎ𝑖 (𝐺) + 𝑖
𝜀
, and

since the minimization is over 𝑖 , we can treat ℎ (𝐺) as a constant. So we can

equivalently define the functions 𝑞𝑖 as −ℎ𝑖 (𝐺) + 𝑖
𝜀
, which indeed have low

sensitivity.



Node-DP Estimation of the Number of Connected Components

Algorithm 4 Threshold Selection for Lipschitz Extensions via

GEM, adapted for node-privacy

Input: Function ℎ : G → R, access to subroutine

EvalLipschitzExtension for evaluating the family of

Lipschitz extensions {ℎΔ}Δ∈[1,Δmax ] , privacy parameter

𝜀 > 0, failure probability 𝛽 ∈ (0, 1)
1: Let 𝑘 = ⌊log2 (Δmax)⌋, 𝐼 = {20, . . . , 2𝑘 }, and 𝑡 =

2 log(𝑘/𝛽)
𝜀 .

2: for 𝑖 ∈ 𝐼 do:
3: ℎ𝑖 (𝐺) ← EvalLipschitzExtension(𝐺, 𝑖).
4: 𝑞𝑖 (𝐺) ← |ℎ𝑖 (𝐺) − ℎ(𝐺) | + 𝑖

𝜀 .

5: for 𝑖 ∈ 𝐼 do:
6: 𝑠𝑖 (𝐺) ← max𝑗 ∈𝐼

(𝑞𝑖 (𝐺) + 𝑡𝑖) − (𝑞 𝑗 (𝐺) + 𝑡 𝑗)
𝑖 + 𝑗 .

7: To obtain 𝚤̂, run the Exponential Mechanism [MT07] with

graph 𝐺 , score functions {𝑠𝑖 : 𝑖 ∈ 𝐼 }, and privacy parame-

ter 𝜀.

8: Return 𝚤̂.

In TheoremB.1, we define the Exponential Mechanism and

state its privacy guarantee. Algorithm 4 describes GEM tai-

lored to the specific task of selecting an optimal Δ from a (pos-

sibly infinite) family of Lipschitz extensions {ℎΔ}Δ∈[1,Δmax ] .
The utility, privacy, and running time guarantees of Algo-

rithm 4 are stated in Theorem 3.5.

Theorem B.1 (Exponential Mechanism [MT07]). Given
a graph 𝐺 , finitely many score functions 𝑞𝑖 : G → R, 𝑖 ∈ 𝐼 with
global sensitivity at most Δ, and a privacy parameter 𝜀 > 0, the
Exponential Mechanism A outputs an index 𝚤̂ ∈ 𝐼 drawn from

the distribution Pr[A(𝐺) = 𝑖] ∝ exp
( 𝜀 · 𝑞𝑖 (𝐺)

2Δ

)
. Algorithm

A is 𝜀-node-private.
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