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Abstract 

In the Uncoordinated Unique Identifiers Problem (UUIDP) there are n independent 

instances of an algorithm A that generates IDs from a universe { 1 , . . . , m } , and there is an 

adversary that requests IDs from these instances. The goal is to design A such that it minimizes 

the probability that the same ID is ever generated twice across all instances, that is, minimizes 

the collision probability . Crucially, no communication between the instances of A is possible. 

Solutions to the UUIDP are often used as mechanisms for surrogate key generation in distributed 

databases and key-value stores. In spite of its practical relevance, we know of no prior theoretical 

work on the UUIDP. 

In this paper we initiate the systematic study of the UUIDP. We analyze both existing 

and novel algorithms for this problem, and evaluate their collision probability using worst-case 

analysis and competitive analysis, against oblivious and adaptive adversaries. In particular, 

we present an algorithm that is optimal in the worst case against oblivious adversaries, an 

algorithm that is at most a logarithmic factor away from optimal in the worst case against 

adaptive adversaries, and an algorithm that is optimal in the competitive sense against both 

oblivious and adaptive adversaries. 

1 Introduction 

Unique identifiers (IDs) for data are essential to efficient data processing, storage, and retrieval. 

When natural keys for data do not exist or are impractical, surrogate keys are assigned and used 

as primary keys. In a distributed context, database systems including Cassandra, Microsoft’s 

Transact-SQL, MongoDB, MySQL, Postgres and RocksDB [10, 7, 14, 13, 8, 25, 22] generate 

unique surrogate keys without coordination between nodes or use of a central authority. 

In the case of RocksDB, IDs are assigned to data files (also known as SSTs ) and data blocks 

within each file, for caching purposes. Although RocksDB is a single-instance key-value store, its 

users (e.g., Microsoft Bing’s web data platform [28], MyRocks [31] and ZippyDB [30]) typically 

run multiple instances of it and distribute these instances across multiple nodes. Because data are 

moved between instances (e.g., to balance the load across the nodes), RocksDB’s IDs have to be 

collision-free over all instances, even though these instances are unaware of one another. 

There are several benefits to generating IDs without coordination. First, coordination mech- 

anisms are complex, and thus have significant engineering and operational costs. Second, imple- 

mentations of coordination are often based on features such as MAC addresses (which are subject 

to spoofing) and clocks (which can become skewed), rendering them notoriously brittle. Finally, 

coordination in RocksDB is undesirable from a software design point of view, as it would force 

RocksDB instances to take responsibility for network awareness and communication.
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Generating unique IDs without coordination may seem like fighting a losing battle, since com- 

munication is necessary to guarantee ID uniqueness. What we can aim for, however, is to generate 

IDs randomly, such that the probability that the same ID is ever generated by different instances 

is near zero. 

Formally, in the Uncoordinated Unique Identifiers Problem (UUIDP) an ID-generation 

algorithm A plays a game against an adversary. The game proceeds in steps, and at each step 

the adversary requests an ID from one of n independent instances of A . When an instance of A 

receives a request, it must output a value from the space [ m ] := { 1 , . . . , m } of IDs. Importantly, the 

instances cannot communicate with each other, and they do not know n or the number of IDs that 

have been requested from other instances. The algorithm loses the game if the adversary causes a 

collision , that is, if some ID is generated twice. The algorithm wins if by the time the game ends 

(for instance, after a fixed number of steps has been reached) a collision has not occurred. The 

goal is to design A such that the probability that A wins, called the collision probability , is as 

small as possible. 

Beyond database systems, uncoordinated generation of unique IDs is used in settings such as 

identification of network connections [9], identification of disk partitions [1], and object identifi- 

cation in video games [12]. Such is the ubiquity of this problem that there exists a standardized 

solution to it [27, 15], known as globally unique identifiers (GUIDs), and most programming lan- 

guages have library implementations of GUIDs [4, 2, 6, 11, 5, 3]. 

GUIDs are generated using some combination of a randomly generated integer and identifying 

metadata (e.g., creation timestamp or MAC address), with the particular combination depending 

on the GUID variant. This, however, presumes reliable metadata, which is often times impossible 

to ensure in practice—an adversary may tamper with the metadata to cause a collision. For this 

reason, we do not model metadata in the UUIDP. The the random part of GUIDs is modeled as the 

following simple algorithm for the UUIDP, that we call Random : every time an ID is requested, 

sample an integer from [ m ] without replacement. 

When a total of d IDs are requested, the collision probability of Random is O ( d2 /m ). In 

practice, this means that Random should only be used when far less than 

√

 

m IDs are needed. 

Concretely, GUIDs are 128-bit IDs, so they cannot safely handle more than 

√

 

m = 264 IDs. Unfor- 

tunately, with consolidation of cloud computing services and some companies already operating at 

exabyte scales (i.e., more than 260 bytes), we are not so far from a world where we will have enough 

data objects in a single pool to observe collisions in Random with 128-bit IDs. Thus, Random is 

quickly becoming inadequate for large-scale deployments, unless longer IDs are used. 

To guarantee collision-freedom of uncoordinated 128-bit IDs in the long-term future, RocksDB 

recently started using a different algorithm [23, 24], that we call Cluster .1 This algorithm picks a 

random integer x ∈ [ m ], and generates IDs sequentially, starting at x . Although, experimental data 

showed that the collision probability of Cluster is significantly lower than that of Random [24], 

it is not known exactly how much better Cluster is, or whether there exists an algorithm that is 

even better than Cluster . 

To the best of our knowledge, no other algorithms for the UUIDP are known. In spite of the 

widespread use of uncoordinated ID-generation algorithms, there has been no theoretical work on 

this problem. The overly simple setup of the UUIDP may give the false impression that not much 

can be said about it. In this paper we show that there is more than meets the eye.

 

1Notably, MongoDB also uses a variant of Cluster to identify records [10]. 
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1.1 Our results 

We study the UUIDP in four different settings: using worst-case analysis or competitive analysis; 

and against an adversary that is oblivious or adaptive. 

In the worst-case analysis of an algorithm A , we are interested in minimizing the maximum 

collision probability of A , over all adversaries that request at most d IDs in total. (Notice that 

we must bound the number of requests to make the worst case analysis interesting; otherwise the 

adversary can drive the collision probability up to 1.) In the competitive analysis of A , we are 

interested, roughly speaking, in minimizing the ratio between the collision probability of A and the 

best possible collision probability. We define these notions more formally in Section 2. 

An oblivious adversary chooses how many IDs it will request to each one of the n instances 

before the game begins. The more powerful adaptive adversary decides from which instance to 

request an ID on a step-by-step basis, based on the IDs that were produced previously. 

We prove the following results, which we will formally state in Section 3: 

• There is an algorithm, namely Cluster , that has worst-case collision probability O ( nd/m ) 

against oblivious adversaries that request at most d IDs. 

• The worst-case collision probability of every algorithm against oblivious adversaries is Ω( nd/m ). 

• There is an algorithm that has worst-case collision probability O (( nd/m ) log(1+ d/n )) against 

adaptive adversaries. 

• There is an algorithm that has competitive ratio O (log m ) against adaptive adversaries. 

• The competitive ratio of every algorithm against oblivious adversaries is Ω(log m ). 

Naturally, lower bounds against oblivious adversaries also hold against adaptive adversaries, and 

upper bounds against adaptive adversaries also hold against oblivious adversaries. 

Our theorems imply that Cluster is an effective uncoordinated ID-generation mechanism at 

scales that are orders of magnitude beyond Random ’s capacity. The O ( nd/m ) collision probability 

of Cluster allows it to handle, for example, collections of d � 264 objects, using IDs of 128 bits 

or even less. The matching collision probability lower bound establishes that no other algorithm 

can do significantly better. 

In the adaptive setting, Cluster is far from optimal (and so is Random ). Our new algorithms 

for the adaptive case are either optimal or almost optimal, and may be of interest to database 

researchers and practitioners working on systems with stringent security requirements. 

1.2 Related work 

A well-studied problem that deals with ID assignments is the renaming problem [18, 17]. In the re- 

naming problem, there is a distributed system with n processors that communicate asynchronously, 

and can fail. Each processor starts out with a name (i.e., an ID) from an unbounded space. The 

goal is to design a distributed algorithm that maps the names into a namespace that is as small as 

possible, such that no processor is assigned the same name, and using as little communication as 

possible. 

The renaming problem departs from the UUIDP in two crucial ways: communication is allowed, 

and machines only need to produce a single unique name. In the UUIDP, the case where exactly 1 

ID is requested to each instance is equivalent to a birthday problem [34, 32]. 
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The existing work on generating unique identifiers in an uncoordinated setting focuses on prac- 

tical aspects of this problem, like compressing GUIDs [29], designing identifiers with security guar- 

antees [33], and designing identifiers for IoT platforms [16] and mobile environments [26]. To the 

best of our knowledge, there is no theoretical work on a problem with similar characteristics to the 

UUIDP. 

1.3 Organization 

In Section 2 we present the mathematical model of the UUIDP, as well as some preliminary defi- 

nitions that we use in the rest of the paper. In Section 3 we give a full overview of our results and 

their motivation, including all the algorithms and main theorems. That section presents a complete 

picture of our work, only leaving out the proofs. The remainder of the paper contains the proofs. 

2 Model and Definitions 

We fix the size m ∈ N of the universe [ m ] := { 1 , . . . , m } of IDs. An ID-generation algorithm A 

generates the IDs from [ m ] in some randomized order. Equivalently, we can view A as a distribution 

on the set of permutations of [ m ]. 

Consider a setting with n instances of A that use independent randomness and that do not 

communicate. A vector D = ( d1 

, . . . , dn) ∈ [ m ]n, called the demand profile , indicates that di 

IDs 

are requested from the i th instance. These requests are made one by one, such that the instance 

does not know in advance how many IDs it will have to produce. We say a collision occurs 

when the sets of IDs produced by the n instances are not pairwise disjoint. The probability that a 

collision occurs is denoted by pA( D ). 

When n ≥ 2, we have pA( D ) > 0 for any A and D . (This follows from the fact that already for 

D = (1 , 1) we have pA( D ) > 0; see Corollary 17.) In other words, collisions cannot be avoided with 

certainty for n ≥ 2. Of course, if n = 1 we have pA( D ) = 0; we call these trivial demand profiles. 

In our analysis we restrict our attention to natural sets of demand profiles where the number 

n of instances, the total number d := ‖ D ‖1 

= 

∑n 

i =1 

di 

of requests or the maximum number h of 

requests per instance are restricted, such as 

• D1( n, d ) := { D ∈ [ m ]n |‖ D ‖1 

= d } , 

• D1( d ) := 

⋃ 

i ≥ 2 

D ( i, d ), 

• D 

≤
∞( n, h ) := 

⋃ 

2 ≤ i ≤ n[ h ]i, and 

• D 

≤
∞( h ) := 

⋃ 

i ≥ 2[ h ]i. 

D1( n, d ) and D1( d ) contain demand profiles with L1-norm equal to d , whereas D 

≤
∞( n, h ) and D 

≤
∞( h ) 

contain demand profiles with L∞-norm at most h . We will also use D 

<
∞( h ) when the L∞-norm is 

strictly less than h . 

Worst-case vs. competitive analysis. How should we evaluate the performance of an ID 

generation algorithm A on a set D of demand profiles? The simplest option is to consider the 

worst-case collision probability, namely 

max 

D ∈D 

pA( D ) . 
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A natural alternative compares for each D ∈ D the actual collision probability pA( D ) to the best 

possible collision probability for D , namely to 

p∗( D ) := min 

A′ 

pA′( D ) .2 

,3 

When D is a non-trivial demand profile, we have p∗( D ) > 0. The competitive ratio of A for any 

non-trivial D is defined as 

pA( D )

 

p∗( D ) 

. 

The competitive ratio of A for a set D of non-trivial demand profiles is then defined as the maximum 

competitive ratio taken over all D ∈ D . 

Oblivious vs. adaptive adversaries. When D is fixed ahead of time, we say that it is produced 

by an oblivious adversary . The collision probability in this case is pA( D ). 

We also consider the case where the demand profile D is produced by an adaptive adversary 

Z on the fly. In this case, the total number n of instances of A that are probed is not known in 

advance. Initially, D = () is empty. When D = ( d1 

, . . . , di), the adversary has three options: 

• set D ← ( d1 

, . . . , di 

, 1), effectively activating a previously dormant instance of A from which 

an ID was never requested; 

• set D ← ( d1 

, . . . , dj 

+ 1 , . . . , di) for some j ∈ [ i ], effectively requesting another ID from the 

j th instance of A ; 

• stop the game, making D the final demand profile. 

Crucially, at each step the adaptive adversary learns the ID that is produced and his future decisions 

may depend on this knowledge. The collision probability for this game is denoted by pA( Z ). Note 

that the oblivious setting can be thought of as a special case where Z ignores the IDs produced by 

the instances of A . 

Importantly, the adversary knows the algorithm A it will be playing against. Thus, once A is 

fixed, the adversary can tailor its strategy to defeat A . 

When evaluating the performance of A on a set of demand profiles D in the adaptive setting, 

we consider the set Adv( D ) of adversaries that always stop the game eventually, and do so with 

a final demand profile contained in D . We can again choose between a worst-case analysis that 

ponders 

max 

Z ∈ Adv( D ) 

pA( Z ) , 

and a competitive analysis that considers the competitive ratio of A for any Z that produces 

non-trivial demand profiles, defined as 

pA( Z )

 

E 

D ∼ Z
[ p∗( D )] 

, 

and evaluates the maximum competitive ratio over Z ∈ Adv( D ). Here we write, in a slight abuse of 

notation, D ∼ Z for the final demand profile D arising randomly from the interaction of Z and A . 

In Table 1 we summarize the four settings { worst-case, competitive } × { oblivious, adaptive } 

considered in this paper.

 

2The minimum is well-defined because it is taken over a compact space of distributions over permutations, and 

A′ 7→ pA′( D ) is continuous. 

3Our competitive analysis does not compare against an offline setting where the i th instance of A knows in advance 

how many requests di 

it will receive. This would make A overly powerful, as it could sometimes avoid collisions with 
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worst-case competitive

 

oblivious max 

D ∈D 

pA( D ) max 

D ∈D 

pA( D )

 

p∗( D ) 

adaptive max 

Z ∈ Adv( D ) 

pA( Z ) max 

Z ∈ Adv( D ) 

pA( Z )

 

ED ∼ Z [ p∗( D )]

 

Table 1: Four settings for evaluating the performance of an ID generation algorithm A on a set D 

of demand profiles. 

O -notation In this paper, we use a non-asymptotic version of O -, Ω- and Θ-notation. Specif- 

ically, we say that f ( x1 

, x2 

, . . . ) = O ( g ( x1 

, x2 

, . . . )) if there exists a constant c > 0 such that 

f ( x1 

, x2 

, . . . ) = c · g ( x1 

, x2 

, . . . ) for all x1, x2, . . . . In other words, O simply hides constant factors. 

Ω and Θ are defined similarly. 

3 Overview 

In this section we present the roadmap of the rest of the paper, including all the algorithms we 

analyze, as well as the main theorems. 

3.1 Basic Results on Random and Cluster 

The starting point of this work is an analysis and comparison of the collision probability of Random 

and Cluster for arbitrary demand profiles. These two algorithms are defined below. In each case 

we illustrate how the algorithm might behave. A sequence of m squares represents the ID space 

[ m ] and a number i in a square indicates that the corresponding ID is the i th ID that is returned.

 

Algorithm Random

 

Return the IDs from [ m ] in a uniformly random order.

 

Example ( m = 20, 8 requests)

 

6

 

2

 

3

 

4

 

5

 

8

 

1

 

7

 

Algorithm Cluster

 

Pick x ∈ [ m ] uniformly at random and return IDs in 

the order x, x + 1 , x + 2 , . . . , all modulo m .

 

Example ( m = 20, 8 requests)

 

1

 

2

 

3

 

4

 

5

 

6

 

7

 

8

 

certainty (e.g., when the di’s are all different). 
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The following theorem gives a tight asymptotic estimate of the collision probability of Cluster . 

Theorem 1. Suppose n ≥ 2 . Let D ∈ [ m ]n. Then, 

pCluster( D ) = Θ 

( 

min 

( 

1 , 

n ‖ D ‖1

 

m 

)) 

. 

The min(1 , · ) safeguard in the probability is a recurring pattern in our bounds. If it kicks in we 

have pA( D ) = Θ(1), which amounts to total failure of A on D . When we know that we are dealing 

with small collision probabilities, then the min(1 , · ) can be stripped away. 

Instead of analyzing Random directly, we study a more general algorithm that we call Bins ( k ), 

which includes Random as a special case for k = 1, and which also plays a central role in several 

lower and upper bounds down the road.

 

Algorithm Bins ( k )

 

Partition [ m ] into b m/k c bins of k IDs and m mod k 

leftover IDs. Pick a random permutation of the bins. 

Iterate over the shuffled bins, returning all IDs of 

a bin in increasing order before moving on to the 

next bin. Finally, return the leftover IDs in increasing 

order.

 

Example ( m = 20, k = 3, 8 requests)

 

4

 

5

 

6

 

7

 

8

 

1

 

2

 

3

 

Theorem 2. Suppose n ≥ 2 . Let D ∈ [ m ]n and k ∈ [ m ] . Then, 

pBins ( k )( D ) = Θ 

( 

min 

( 

1 , 

‖ D ‖2 

1 

− ‖ D ‖2 

2

 

k m 

+ 

n ‖ D ‖1

 

m 

+ 

n2 k

 

m 

)) 

. 

A calculation shows that, when k = 1, the first term in the sum dominates pBins ( k )( D ). This yields 

the collision probability of Random . 

Corollary 3. Suppose n ≥ 2 . Let D ∈ [ m ]n. Then, 

pRandom( D ) = Θ 

( 

min 

( 

1 , 

‖ D ‖2 

1 

− ‖ D ‖2 

2

 

m 

)) 

. 

Theorem 2 also implies that pBins ( k )( D ) = Ω(min(1 , 

n ‖ D ‖1

 

m 

)). Combining this with Theorem 1, we 

conclude that Cluster is asymptotically no worse than Bins ( k ) and, consequently, Random . 

Corollary 4. Suppose n ≥ 2 . Let D ∈ [ m ]n and k ∈ [ m ] . Then, 

pCluster( D ) = O ( pBins ( k )( D )) and, in particular, 

pCluster( D ) = O ( pRandom( D )) . 
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3.2 Worst-Case Analysis Against Oblivious Adversaries 

To do a worst-case analysis, we need to restrict the total number d of requests. This is because 

any adversary that requests m + 1 or more IDs forces collision probability 1. We therefore only 

consider demand profiles from D1( n, d ). Theorem 1 and Theorem 2 imply the following worst-case 

collision probabilities. 

Corollary 5. Suppose n ≥ 2 . Let d ≥ n . Then, 

max 

D ∈D1( n,d ) 

pCluster( D ) = Θ(min(1 , nd/m )) and 

max 

D ∈D1( n,d ) 

pRandom( D ) = Θ(min(1 , d2 /m )) . 

Does Cluster have optimal worst-case collision probability? We answer this question pos- 

itively, proving a matching lower bound. Further, we show that all but a vanishing fraction of 

demand profiles from D1( n, d ) force this worst-case collision probability, implying that Cluster is 

optimal on almost all demand profiles. 

Theorem 6. For all but an exp( − Θ( n )) -fraction of D ∈ D1( n, d ) 

p∗( D ) = Ω 

( 

min 

( 

1 , 

nd

 

m 

)) 

. 

3.3 Worst-Case Analysis Against Adaptive Adversaries 

Interestingly, when facing adaptive adversaries, the collision probability of Cluster worsens by at 

least a factor of n . 

Lemma 7. Suppose n ≥ 2 . Let d ≥ 2 n . There exists an adaptive adversary Z ∈ Adv( D1( n, d )) 

such that 

pCluster( Z ) = Ω 

( 

min 

( 

1 , 

n2 d

 

m 

)) 

. 

Roughly speaking, this adversary exploits the fact that once the initial ID from each instance is 

known, the two instances with the two closest IDs can be forced to collide if they are at distance 

less than d . 

Notice that Random seems to be robust to adaptivity: because every ID produced is a fresh 

random number, an adaptive adversary can extract little information about future IDs from past 

IDs. Of course, the collision probability of Random in the adaptive case is as bad as in the 

oblivious case. 

Is there an algorithm for the adaptive setting that matches the collision probability lower bound 

Ω(min(1 , nd/m )) from Theorem 6? We give an essentially positive answer, by showing that there 

exists an algorithm, that we call Cluster∗, that is only a small logarithmic factor away from that 

lower bound. 
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Algorithm Cluster∗

 

Let run( x, r ) be the sequence ( x, x +1 , . . . , x +( r − 1)) 

modulo m . Repeat the following for r = 1 , 2 , 4 , 8 , . . . : 

Draw x ∈ [ m ] uniformly at random, such that 

run( x, r ) does not collide with previously chosen runs. 

For the next r requests return the IDs from run( x, r ).

 

Example ( m = 20, 8 requests)

 

4

 

5

 

6

 

7

 

1

 

2

 

3

 

8

 

Intuitively, Cluster∗ is resilient against adaptive adversaries because an adversary cannot 

predict too many future IDs from an instance. More specifically, the adversary can only predict 

a long run of IDs from an instance if it has already requested roughly the same number of IDs 

from it. Still, Cluster∗ behaves similarly to Cluster because the exponential growth of the runs 

implies that the number of runs per instance is small, and that most IDs produced by an instance 

belong to its largest run. 

Theorem 8. Suppose n ≥ 2 . Let d ≥ n and D := D1( d ) ∩ D 

≤
∞( n, m/ (2 log m )) . Then, 

max 

Z ∈ Adv( D ) 

pCluster∗( Z ) = O 

( 

min 

( 

1 , 

nd

 

m 

log 

( 

1 + 

d

 

n 

))) 

. 

Due to fragmentation of the ID space, Cluster∗ may not be able to generate all m IDs according 

to its rules. This is why we restrict our analysis to demand profiles with at most m/ (2 log m ) 

requests per instance. An instance then allocates at most log m runs of sizes at most m/ (2 log m ), 

which always fit even for worst-case fragmentation. 

3.4 Competitive Analysis Against Oblivious Adversaries 

The shortcoming of Cluster is that when the requests are skewed towards a small group of 

instances, the collision probability is far from optimal. For instance, let D = ( d − 1 , 1) ∈ D1(2 , d ) 

be a maximally skewed demand profile with n = 2. Consider the following algorithm: the first 

ID is randomly sampled from [ m − ( d − 2)], and all other IDs are deterministically taken from 

{ m − d +3 , . . . , m } . Then, the collision probability on D is 1 / ( m − ( d − 2)), which is the probability 

that first IDs of the two instances collide. This is up to a factor Θ( d ) smaller than pCluster( D ) = 

d/m . 

Therefore, although Cluster is optimal in the worst case, there are algorithms that perform 

far better on some special cases, i.e., Cluster ’s competitive ratio is far from optimal. To overcome 

this limitation, we design yet another algorithm, which we call Bins∗. 
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Algorithm Bins∗

 

Partition the ID space into O (log m ) chunks and par- 

tition the i th chunk into bins of 2i − 1 IDs each. Pick 

a uniformly random bin of size 1, then of size 2, then 

of size 4, and so on, always returning all IDs of a bin 

in increasing order before moving on to a bin of twice 

the size.

 

Example ( m = 32, 8 requests)

 

1

 

2

 

3

 

4

 

5

 

6

 

7

 

8

 

Bins∗ combines the exponential allocations from Cluster∗ with the spatial partitioning of 

Bins ( k ) for k ∈ { 1 , 2 , 4 , . . . } . Intuitively, the goal of Bins∗ is that instances with similar loads 

allocate most of their IDs from the same region of the universe [ m ]. In particular, low-demand 

instances can only collide with few IDs of high-demand instances. 

Theorem 9. The competitive ratio of Bins∗ for D 

<
∞( m/ log m ) is O (log m ) . 

Furthermore, we establish optimality by proving a matching lower bound that even applies to 

D = [
√

 

m ]2 (and hence to any D 

′ with D ⊆ D 

′). 

Theorem 10. Every algorithm has competitive ratio Ω(log m ) for D = [
√

 

m ]2. 

3.5 Competitive Analysis Against Adaptive Adversaries 

Finally, we consider the competitive ratio against adaptive adversaries. We prove the following 

general reduction from oblivious to adaptive adversaries. 

Theorem 11. Let A be either Bins∗ or Bins ( k ) for some k ∈ [ m ] , and let D be some set of demand 

profiles. If A has competitive ratio c for D , then A has competitive ratio at most 4 c for Adv( D ) . 

This implies that the O (log m ) upper bound on the competitive ratio of Bins∗ from Theorem 9 

also holds in the adaptive case. 

Corollary 12. Bins∗ is has competitive ratio O (log m ) for Adv( D 

<
∞( m/ log m )) . 

4 Collision Probability On Fixed Demand Profiles 

In this section we study the collision probability of Bins ( k ) and Cluster , on arbitrary demand 

profiles. We begin with a technical lemma. 

Lemma 13. Let E1 

, . . . , E` 

be pairwise independent events. Then, 

Pr 

[ ⋃̀ 

i =1 

Ei 

] 

= Θ 

( 

min 

( 

1 , 

∑̀ 

i =1 

Pr [ Ei] 

)) 

. 
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Proof. The upper bound follows from the union bound. We now prove the lower bound. We 

consider three cases: 

• Case 1: 

∑` 

i =1 Pr [ Ei] ≤ 2 / 3. By a Bonferroni inequality, 

Pr 

[ ⋃ 

i 

Ei 

] 

≥ 

∑ 

i 

Pr [ Ei] − 

∑ 

i 

∑ 

j <i 

Pr [ Ei 

∩ Ej ] 

= 

∑ 

i 

Pr [ Ei] − 

∑ 

i 

∑ 

j <i 

Pr [ Ei] Pr [ Ej ] (as the events are pairwise independent) 

= 

∑ 

i 

( 

Pr [ Ei] 

( 

1 − 

∑ 

j <i 

Pr [ Ej ] 

)) 

≥ 

( 

1 − 

∑ 

j 

Pr [ Ej ] 

) ∑ 

i 

Pr [ Ei] 

≥ 

1

 

3 

∑ 

i 

Pr [ Ei] = Ω 

( 

min 

( 

1 , 

∑ 

i 

Pr [ Ei] 

)) 

. 

• Case 2: Pr [ Ej ] ≥ 1 / 3 for some j . Then, Pr [
⋃ 

i 

Ei] ≥ Pr [ Ej ] = Ω(1) = Ω(min(1 , 

∑ 

i Pr [ Ei])). 

• Case 3: otherwise. Then, there exists a j such that 

∑j 

i =1 Pr [ Ei] ≤ 2 / 3 and 

∑j +1 

i =1 

Pr [ Ei] > 2 / 3. 

Because Pr [ Ej +1] < 1 / 3, we have 

1 / 3 < 

j∑ 

i =1 

Pr [ Ei] ≤ 2 / 3 . 

Thus, applying the first case to the first j events we get 

Pr 

[ ⋃̀ 

i =1 

Ei 

] 

≥ Pr 

[ 

j⋃ 

i =1 

Ei 

] 

= Ω(1) = Ω 

( 

min 

( 

1 , 

∑ 

i 

Pr [ Ei] 

)) 

.

 

Roughly speaking, Lemma 13 says that the union bound almost gives the right answer when 

the events involved are pairwise independent. The only exception is when the union bound in 

meaningless, i.e., the sum of the probabilities is greater than 1, then the probability of the union 

is close to 1. 

We will extensively use the following well-known asymptotic approximations of the exponential 

function, 

1 − ε ≤ e− ε ≤ 1 − ε/ 2 for ε ∈ [0 , 1] . (1) 

We start by establishing the collision probability of Cluster . 

Originally 

stated 

on page 7 

Theorem 1. Suppose n ≥ 2 . Let D ∈ [ m ]n. Then, 

pCluster( D ) = Θ 

( 

min 

( 

1 , 

n ‖ D ‖1

 

m 

)) 

. 

Proof. Let D = ( d1 

, . . . , dn). For i, j ∈ [ n ] with i 6 = j , let Cij 

be the event that there is a collision 

between the IDs produced by the instances i and j . For every choice of the starting point of instance 

j , there are exactly di+ dj 

− 1 choices for the starting point of instance i that cause a collision (this 

uses di 

, dj 

> 0). Thus, Pr[ Cij ] = ( di 

+ dj 

− 1) /m . 
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The sum of the collision probabilities is ∑ 

i<j 

Pr [ Cij ] = 

∑ 

i<j 

di 

+ dj 

− 1

 

m 

= 

1

 

m 

( 

( n − 1) ‖ D ‖1 

− 

(
n 

2 

)) 

= Θ 

( 

n ‖ D ‖1

 

m 

) 

. 

We claim that the collision events Cij 

are pairwise independent. Let i < j and p < q be 

any two pairs of instances, such that i 6 = p or j 6 = q (otherwise, they are the same pair). If 

|{ i, j , p, q }| = 4 then Cij 

and Cpq 

are obviously independent. Suppose |{ i, j , p, q }| = 3; without loss 

of generality, assume i = p and j 6 = q . Then, conditioned on Cij , the probability of Ciq 

remains 

unchanged, because conditioning on Cij 

neither affects the distribution of the IDs of instance i , nor 

the independence of instances i and q . 

This means that the hypotheses of Lemma 13 are met for the event 

⋃ 

i<j 

Cij 

that a collision 

occurs during the game. Hence, 

pCluster( D ) = Θ 

( 

min 

( 

1 , 

∑ 

i<j 

Pr [ Cij ] 

)) 

= Θ 

( 

min 

( 

1 , 

n ‖ D ‖1

 

m 

)) 

.

 

For the analysis of Bins ( k ) we need the following auxiliary lemma. 

Lemma 14. Let U be a universe of u elements. Let S1 

be a set of s1 

samples from U , drawn 

without replacement. At every step of the sampling process, each of the remaining elements has 

equal probability of being sampled. Analogously, let S2 

be a set of s2 

samples from U , drawn without 

replacement, independent of S1. Then, 

Pr [ S1 

∩ S2 

6 = ∅ ] = Θ 

( 

min 

( 

1 , 

s1 

s2

 

u 

)) 

. 

Proof. Assume without loss of generality that 1 ≤ s1 

≤ s2 

and that S2 

is sampled first, after which 

the set S1 

= { x1 

, . . . , xs1 

} is sampled element by element. If s2 

> u/ 4 then Pr[ S1 

∩ S2 

6 = ∅ ] ≥ 

Pr[ x1 

∈ S2] ≥ 1 / 4 and min(1 , 

s1 

s2

 

u 

) ≥ min(1 , s1 

/ 4) = Θ(1) leaving nothing to show. From now on 

assume s1 

≤ s2 

≤ u/ 4. By the chain rule, we have 

Pr[ S1 

∩ S2 

= ∅ ] = Pr [ x1 

/ ∈ S2 

, . . . , xs1 

/ ∈ S2] 

= 

s1∏ 

i =1 

Pr [ xi 

/ ∈ S2 

| x1 

/ ∈ S2 

, . . . , xi − 1 

/ ∈ S2] 

= 

s1∏ 

i =1 

( 

1 − 

s2

 

u − i + 1 

) 

. 

We can upper-bound this by 

s1∏ 

i =1 

( 

1 − 

s2

 

u − i + 1 

) 

≤ 

( 

1 − 

s2

 

u 

)s1 

Eq. (1) 

≤ 

( 

e− s2 

/u 

)s1 

= e− s1 

s2 

/u , 

and lower bound it similarly by 

s1∏ 

i =1 

( 

1 − 

s2

 

u − i + 1 

) 

≥ 

( 

1 − 

s2

 

u/ 2 

)s1 

Eq. (1) 

≥ 

( 

e− 4 s2 

/u 

)s1 

= e− 4 s1 

s2 

/u . 

If s1 

s2 

/u ≥ 1 / 100 we obtain, by combining both bounds, 

Pr[ S1 

∩ S2 

6 = ∅ ] = 1 − e− Θ( s1 

s2 

/u ) = Θ(1) = Θ 

( 

min 

( 

1 , 

s1 

s2

 

u 

)) 

, 
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as desired. Similarly, if s1 

s2 

/u < 1 / 100, we obtain 

Pr[ S1 

∩ S2 

6 = ∅ ] = 1 − e− Θ( s1 

s2 

/u ) 

Eq. (1)
= Θ( s1 

s2 

/u ) = Θ 

( 

min 

( 

1 , 

s1 

s2

 

u 

)) 

.

 

Originally 

stated 

on page 7 

Theorem 2. Suppose n ≥ 2 . Let D ∈ [ m ]n and k ∈ [ m ] . Then, 

pBins ( k )( D ) = Θ 

( 

min 

( 

1 , 

‖ D ‖2 

1 

− ‖ D ‖2 

2

 

k m 

+ 

n ‖ D ‖1

 

m 

+ 

n2 k

 

m 

)) 

. 

Proof. Let D = ( d1 

, . . . , dn). If any di 

exceeds b m/k c · k then the theorem correctly predicts a 

collision probability of Θ(1). Thus, we may assume that no instance runs out of bins. For every 

i ∈ [ n ], let Bi 

be the set of d di 

/k e bins chosen by the i th instance. Notice that ( Bi)i 

is an 

independent family, because in our model instances behave independently. Let Cij 

be the event 

that instances i and j collide, which happens if and only if there is a bin selected by both instances. 

By Lemma 14, 

Pr [ Cij ] = Pr [ Bi 

∩ Bj 

6 = ∅ ] = Θ 

( 

min 

( 

1 , 

d di 

/k ed dj 

/k e

 

b m/k c 

)) 

. 

The collision events Cij 

are pairwise independent, by a similar argument as in the proof of 

Theorem 1. Thus, by Lemma 13, 

pBins ( k )( D ) = Θ 

( 

min 

( 

1 , 

∑ 

i<j 

Pr [ Cij ] 

)) 

= Θ 

( 

min 

( 

1 , 

∑ 

i<j 

min 

( 

1 , 

d di 

/k ed dj 

/k e

 

b m/k c 

))) 

= Θ 

( 

min 

( 

1 , 

∑ 

i<j 

d di 

/k ed dj 

/k e

 

b m/k c 

)) 

. (2) 

Now we wish to compute the inner summation. Notice that 

d di 

/k ed dj 

/k e

 

b m/k c 

= Θ 

(
(1 + di 

/k )(1 + dj 

/k )

 

m/k 

) 

= Θ 

( 

k + ( di 

+ dj) + di 

dj 

/k

 

m 

) 

. 

Straightforward calculations show that ∑ 

i<j 

( di 

+ dj) = Θ( n ‖ D ‖1) and 

∑ 

i<j 

di 

dj 

= Θ( ‖ D ‖2 

1 

− ‖ D ‖2 

2) . 

Thus, ∑ 

i<j 

d di 

/k ed dj 

/k e

 

b m/k c 

= Θ 

( 

n2 k + n ‖ D ‖1 

+ ( ‖ D ‖2 

1 

− ‖ D ‖2 

2) /k

 

m 

) 

. 

Plugging this equality into Equation (2) completes the proof.

 

5 Worst-Case Lower Bound Against Oblivious Adversaries 

The goal of this section is to prove Theorem 6. The proof is in two steps: The first one is to 

establish a lower bound on the collision probability for the case of uniform demand profiles, that 

is, demand profiles of the form ( h, h, . . . , h ) for some h ∈ N . Then, we extend this lower bound 

to most demand profiles, using the fact that most demand profiles “contain” a uniform demand 

profile with almost the same total number of requests. 
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5.1 Uniform Demand Profiles 

We will use the following technical lemma. 

Lemma 15. Assume n ≥ 2 balls are thrown independently into ` ≥ n bins where the bins are 

chosen with probabilities p1 

, . . . , p`. The probability that all balls land in distinct bins is maximized 

if and only if p1 

= . . . = p` 

= 1 /` . 

Proof. For ` = n = 2 the success probability 2 p1(1 − p1) is maximized only for p1 

= p2 

= 1 / 2. 

Now consider ` ≥ 3 and assume, for the sake of contradiction, that the maximum is achieved for 

a non-uniform distribution in which, say, p1 

6 = p2. We may imagine that the throwing of balls 

happens in two stages. In the first stage, the balls are thrown into ` − 1 bins with probabilities 

p1 

+ p2 

, p3 

, . . . , p`. In the second stage, the balls from the first bin are reclaimed and thrown into 

two new sub-bins with probabilities p1 

/ ( p1 

+ p2) and p2 

/ ( p1 

+ p2). 

Now note that if we vary p1 

and p2 

while keeping p1 

+ p2 

fixed, the distribution of the balls in 

the first stage of the experiment is unaffected. And when we equalize the probabilities p1 

and p2 

of the sub-bins, the success probability in the second stage is improved, by the argument for the 

case ` = 2. (Of course, when the number of balls that land in the first bin in the first phase is not 

equal to 2, the distribution in the sub-bins does not matter.) Thus, p1 

= p2 

yields higher success 

probability, which is a contradiction.

 

Lemma 16. For all D = ( h, . . . , h ) ∈ Nn, 

p∗( D ) = pBins ( h )( D ) . 

Proof. In the scenario at hand every instance of an ID generation algorithm A has to produce 

exactly h IDs, allowing us to think of A in simpler terms, namely as a distribution µA 

on 

([ m ] 

h 

)
, 

i.e., a distribution on sets of h IDs. Conversely, any such distribution characterizes an algorithm. 

Assume A is optimal for D , i.e., pA( D ) = p∗( D ) and that A minimizes the support size | supp( µA) | 

among the optimal algorithms, where 

supp( µ ) := 

{ 

X ∈ 

(
[ m ] 

h 

) 

| µ ( X ) > 0 

} 

. 

Our plan is to show that A behaves like Bins ( h ), up to relabeling of IDs. 

We call a sequence X1 

, . . . , Xn 

∈ 

([ m ] 

h 

) 

of sets of IDs an outcome . When using A on demand 

profile D the n instances of A produce this outcome with probability µA( X1) . . . µA( Xn). Let 

disj( X1 

, . . . , Xn) = 

{ 

1 if X1 

, . . . , Xn 

are pairwise disjoint 

0 otherwise . 

. 

The probability that no collision occurs is q ( µA) where q : R([ m ] 

h 

) → R is the function 

q ( µ ) := 

∑ 

X1 

,...,Xn 

∈([ m ] 

h 

) 

µ ( X1) . . . µ ( Xn) · disj( X1 

, . . . , Xn) . (3) 

Claim 1. q ( µ ) is an affine function4 on any two entries of µ corresponding to intersecting sets. 

More specifically, if P , Q ∈ 

([ m ] 

h 

)
, with P ∩ Q 6 = ∅ , and we fix every entry of µ except µ ( P ) and 

µ ( Q ) , the resulting 2 -dimensional function is affine.

 

4A function f : Rn → R is affine if f ( x1 

, . . . , xn) = a1 

x1 

+ · · · + an 

xn 

+ b for some constants a1 

, . . . , an 

, b ∈ R . 
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Proof. This is because q ( µ ) is structurally a polynomial with a variable for every entry µ ( X ) of the 

input µ , and the disj( · )-predicate filters out all monomials that contain µ ( X ) µ ( Y ) with X ∩ Y 6 = ∅ 

(including, in particular, µ ( X )2).

 

Claim 2. If P , Q ∈ supp( µA) , P 6 = Q , then P ∩ Q = ∅ . 

Proof. To reach a contradiction, assume P ∩ Q 6 = ∅ . Then, Claim 1 implies that q ( µ ) is affine on 

P and Q . 

Consider a continuum ( µt)t ∈ [0 , 1] 

of variants of µA 

where the probability mass on { P , Q } linearly 

shifts from Q to P , namely 

µt( X ) := 

   

( µA( P ) + µA( Q )) · t if X = P 

( µA( P ) + µA( Q )) · (1 − t ) if X = Q 

µA( X ) otherwise. 

. 

Since µt 

only linearly varies the entries corresponding to P and Q , and q is affine on those entries, the 

map t 7→ q ( µt) is affine. Note that µA 

= µt 

for some t ∈ (0 , 1). Thus, we either have q ( µ0) ≥ q ( µA) 

or q ( µ1) ≥ q ( µA). Assume without loss of generality the former. Then µ0 

is no worse than µA 

in 

terms of success probability and has smaller support than µA, contradicting the choice of A .

 

Hence, supp( µA) is some collection of pairwise disjoint sets from 

([ m ] 

h 

)
. The sets in supp( µA) 

correspond to the disjoint bins used by Bins ( h ) up to relabeling of IDs. There are just two missing 

details. First, that µA 

must assign the same probability to each bin, by Lemma 15.5 Second, that 

supp( µA) is a maximal set of disjoint sets; otherwise, we can view A as a variant of Bins ( h ) that 

assigns probability 0 to some bins, which is again sub-optimal by Lemma 15. Overall we obtain 

p∗( D ) = pA( D ) = pBins ( h )( D ) , 

as desired.

 

Because Bins ( h ) is optimal on demand profiles ( h, . . . , h ) ∈ Nn, it plays a central role in some 

of our analyses. In particular, the collision probability on uniform demand profiles, namely 

pBins ( h ) 

(
( h, . . . , h )

) 

= Θ 

( 

min 

( 

1 , 

n2 h

 

m 

)) 

, (4) 

will come in handy. This probability follows directly from Theorem 2. Lemma 16 and Equation (4) 

imply the following. 

Corollary 17. Let D = ( h, . . . , h ) ∈ Nn. Then 

p∗( D ) = Ω 

( 

min 

( 

1 , 

n2 h

 

m 

)) 

. 

5.2 Proof of Theorem 6 

The intuition is that most demand profiles are sufficiently similar to the uniform demand profile 

( 

d

 

n 

, . . . , 

d

 

n), which we have analyzed in the preceding subsection. Let us call D ∈ D1( n, d ) ε -good if 

at least εn entries of D exceed εd/n . Call D ε -bad otherwise. Let Bε 

be the set of ε -bad demand 

profiles in D1( n, d ).

 

5An exception is the case nh > m . Then collisions are guaranteed and any algorithm is optimal. 
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Lemma 18. There is a constant ε ∈ (0 , 

1

 

2 ] such that 

| Bε 

| / |D1( n, d ) | = exp( − Θ( n )) . 

Proof. In this proof we use standard bounds on binomial coefficients, namely ( n

 

k 

)k 

≤ 

(
n 

k 

) 

≤ 

( n e

 

k 

)k 

. 

We will also use the following basic combinatorial fact: Let f ( a, b ) be the number of ways to throw 

a indistinguishable balls into b ≤ a numbered bins, such that every bin contains at least one ball. 

Then, 

f ( a, b ) = 

(
a − 1 

b − 1 

) 

. 

The total number of demand profiles in D1( n, d ) is equal to f ( d, n ), hence 

|D1( n, d ) | = 

( 

d − 1 

n − 1 

) 

≥ 

( d − 1

 

n − 1 

)n − 1 

≥ 

( d

 

n 

)n − 1 

. 

Each D ∈ Bε 

has at most εn entries exceeding εd/n . To upper bound |Bε 

| we first select εn out of 

n indices for “large” entries that (potentially) exceed εd/n . We then specify the remaining n − εn 

“small” entries explicitly, each between 1 and εd/n . Finally, we specify how the remaining demand, 

which is at most d , is partitioned among the εn large entries. We get 

|Bε 

| ≤ 

( 

n 

εn 

)( εd

 

n 

)n − εn 

f ( d, εn ) 

≤ 2n 

( εd

 

n 

)n − 1 

( n

 

εd 

)εn − 1 

( d e

 

εn − 1 

)εn − 1 

≤ 2n 

( εd

 

n 

)n − 1 

(2e

 

ε2 

)εn − 1 

. 

For the fraction of ε -bad demand profiles we obtain, assuming ε > 0 is small enough 

|Bε 

|

 

|D1( n, d ) | 

≤ 2n εn − 1 

(2e

 

ε2 

)εn − 1 

= exp( − Θ( n )) .

 

We are now ready to present the proof of the main theorem of this section. 

Originally 

stated 

on page 8 

Theorem 6. For all but an exp( − Θ( n )) -fraction of D ∈ D1( n, d ) 

p∗( D ) = Ω 

( 

min 

( 

1 , 

nd

 

m 

)) 

. 

Proof. By Lemma 18 it suffices to show that the lower bound on p∗( D ) holds for the ε -good demand 

profiles, for a suitable constant ε . For any ε -good D ∈ D1( n, d ), we can construct a new demand 

profile D 

′ = ( 

εd

 

n 

, . . . , 

εd

 

n 

) with n′ := εn entries, by decreasing some entries and removing some other 

entries from D . Then, 

p∗( D ) ≥ p∗( D 

′) 

Lem. 16
= pBins ( εd/n )( D 

′) 

Eq. 4
= Ω 

( 

min 

( 

1 , 

εn′ d

 

m 

)) 

= Ω 

( 

min 

( 

1 , 

nd

 

m 

)) 

.
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6 Worst-Case Upper Bound Against Adaptive Adversaries 

In this section we set out to analyze the worst-case collision probability against adaptive adversaries. 

Our first result shows that Cluster is vulnerable to adaptive adversaries, which can worsen the 

collision probability (compared to oblivious adversaries) by at least a factor of n . 

Originally 

stated 

on page 8 

Lemma 7. Suppose n ≥ 2 . Let d ≥ 2 n . There exists an adaptive adversary Z ∈ Adv( D1( n, d )) 

such that 

pCluster( Z ) = Ω 

( 

min 

( 

1 , 

n2 d

 

m 

)) 

. 

Proof. Consider an adversary Z that behaves as follows: 

1. Request an ID from each of the n instances. 

2. Pick the two closest IDs; say they were produced by instances i and j . Without loss of 

generality, assume instance i produced the smaller ID of the two. 

3. Request d − n IDs from instance i . 

Note that Z ∈ Adv( D1( n, d )). For each i ∈ [ n ], let xi 

be the first ID produced by instance i . 

Observe that Z causes a collision if and only if xi 

and xj 

are at distance at most d − n − 1 modulo 

m , for some i 6 = j . Let Ei 

be the event that xi 

is at distance at least d − n − 1 from each of 

x1 

, . . . , xi − 1. Then, 

1 − pCluster( Z ) = Pr [ E1 

, . . . , En] 

= 

n∏ 

i =1 

Pr [ Ei 

| E1 

, . . . , Ei − 1] 

≤ 

n∏ 

i =1 

( 

1 − 

( i − 1)( d − n )

 

m 

) 

Eq. (1) 

≤ 

n∏ 

i =1 

exp 

( 

− 

( i − 1)( d − n )

 

m 

) 

= exp 

( 

− 

n ( n − 1)( d − n )

 

2 m 

) 

d ≥ 2 n 

≤ exp 

( 

− 

n ( n − 1) d

 

4 m 

) 

. 

If 4 m < n ( n − 1) d , then 1 − pCluster( Z ) ≤ e− 1. Thus, pCluster( Z ) ≥ Ω(1) = Ω(min(1 , n2 d/m )), as 

desired. Otherwise, 4 m ≥ n ( n − 1) d , so we can apply Equation (1), to get 

1 − pCluster( Z ) ≤ 1 − 

n ( n − 1) d

 

8 m 

. 

Thus, pCluster( Z ) = Ω( n2 d/m ) = Ω(min(1 , n2 d/m )), concluding the proof.

 

6.1 A Nearly Optimal Algorithm 

In the rest of this section we show that Cluster∗ is optimal in the worst case against adaptive 

adversaries, up to a logarithmic factor. 

Originally 

stated 

on page 917



 

Theorem 8. Suppose n ≥ 2 . Let d ≥ n and D := D1( d ) ∩ D 

≤
∞( n, m/ (2 log m )) . Then, 

max 

Z ∈ Adv( D ) 

pCluster∗( Z ) = O 

( 

min 

( 

1 , 

nd

 

m 

log 

( 

1 + 

d

 

n 

))) 

. 

Proof. We may assume 

m = ω ( nd log(1 + d/n )); (5) 

otherwise the upper bound holds trivially. Let Z ∈ Adv( D ). As soon as an instance selects a run 

and returns the first ID in it, we say the run has been opened . At any point during the game, we 

say an ID is active if it belongs to an opened run of some instance. Notice that the number of 

active IDs is at most 2 d at all times, because the number of IDs that are active but have not been 

requested yet is at most d . 

Since we aim for an upper bound on the collision probability, we may count any intersection 

between the open runs of two instances as a collision, regardless of which IDs from these runs have 

already been returned by the corresponding instances. 

Let Ci 

be the event that at least i runs are open and that the i th run that is opened collides 

with an already opened run. Let Ii 

∈ [ n ] be the instance that opens a run and let Ti 

:= |{ j : j < 

i, Ij 

= Ii 

}| be the number of runs previously opened by the same instance (with ( Ii 

, Ti) = ( ⊥ , −∞ ) 

if fewer than i runs are ever opened). Let λ be an upper bound on the number of runs that can be 

opened in total. 

Claim 3. We have for any ti 

∈ {−∞ , 0 , 1 , 2 , . . . } 

Pr 

[
Ci 

|

 

C1 

, . . . ,

 

Ci − 1 

, Ti 

= ti 

] 

≤ O 

( 

d + λ 2ti

 

m 

) 

. 

Proof. Since Pr[ Ci 

| Ti 

= −∞ ] = 0 we may assume ti 

≥ 0. When the i th run is opened, instance 

Ii 

has at least m − ( d + ti(2
ti − 1)) valid choices for the first ID of the run. This is because the 

first ID cannot be any of the d or less IDs within the runs Ii 

has previously opened, nor one of the 

2ti − 1 IDs directly to the left of the ti 

runs that Ii 

has previously opened. Notice that Equation (5) 

implies that m = ω ( d log d ). Combining this with the fact that ti 

≤ log d , we conclude that there 

are Ω( m ) valid choices. 

On the other hand, the number of choices that cause a collision are at most 2 d + λ (2ti − 1). 

This is because a collision occurs when the first ID is either one of the 2 d or less active IDs, or is 

one of the 2ti − 1 IDs to the left of one the λ or less runs from other instances. 

Dividing the choices causing a collision by the number of valid choices yields the stated upper 

bound.

 

Claim 3 implies 

Pr 

[
Ci 

|

 

C1 

, . . . ,

 

Ci − 1 

, Ti 

] 

≤ O 

( d

 

m 

+ 

λ 2Ti

 

m 

) 

Summing over i gives, 

λ∑ 

i =1 

Pr 

[
Ci 

|

 

C1 

, . . . ,

 

Ci − 1 

, Ti 

] 

≤ O 

( 

λ∑ 

i =1 

( d

 

m 

+ 

λ 2Ti

 

m 

)) 

= O 

( dλ

 

m 

+ 

λ

 

m 

λ∑ 

i =1 

2Ti 

) 

= O 

( dλ

 

m 

) 

, (6) 
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where the last step uses that 

∑λ 

i =1 2Ti counts the number of active IDs in the end, which is at most 

2 d . We have, 

pCluster∗( Z ) ≤ Pr 

[
C1 

∪ (

 

C1 

∩ C2) ∪ (

 

C1 

∩

 

C2 

∩ C3) ∪ . . . 

] 

= Pr [ C1] + Pr 

[

 

C1 

∩ C2 

]
+ Pr 

[

 

C1 

∩

 

C2 

∩ C3 

]
+ . . . 

≤ 

λ∑ 

i =1 

Pr 

[
Ci 

|

 

C1 

, . . . ,

 

Ci − 1 

] 

= 

λ∑ 

i =1 

E 

Ti 

[ 

Pr 

[
Ci 

|

 

C1 

, . . . ,

 

Ci − 1 

, Ti 

]] 

(by the law of total expectation) 

= E 

( Ti)i 

[ λ∑ 

i =1 

Pr 

[
Ci 

|

 

C1 

, . . . ,

 

Ci − 1 

, Ti 

]] 

(by linearity of expectation) 

≤ O 

( dλ

 

m 

) 

. (by Equation (6)) 

To conclude the proof, we must show that λ = O ( n log(1 + d/n )). Let di 

be the (random) 

number of IDs requested from instance i ∈ [ n ]. Note that di 

= 0 is permitted if only n′ < n 

instances receive at least one request. Instance i creates exactly d log(1 + di) e runs. Thus, the total 

number of runs is 

n∑ 

i =1 

d log(1 + di) e ≤ O 

( 

n∑ 

i =1 

log(1 + di) 

) 

≤ O 

( 

n log 

( 

1 + 

∑n 

i =1 

di

 

n 

)) 

(by the concavity of x 7→ log(1 + x ), and Jensen’s inequality) 

≤ O ( n log(1 + d/n )) .

 

7 Competitive Ratio Upper Bound Against Oblivious Adversaries 

In this section we take a closer look at Bins∗, proving that it has competitive ratio O (log m ) for a 

large class of demand profiles. This result will be strengthened to adaptive adversaries in Section 9. 

7.1 Missing Details in Bins∗ 

Let us start by filling in some missing details from our description of Bins∗ from Section 3. Recall 

that Bins∗ partitions the IDs space [ m ] into O (log m ) chunks, and these are in turn broken into 

bins. Specifically, the number of chunks is C := d log m − log log m e , and each one has 2C − 1 IDs. 

This works because 

C · 2C − 1 = d log m − log log m e · 2d log m − log log m e− 1 

≤ log m · 2log m − log log m = m. 

For each i ∈ [ C ], the i th chunk is further partitioned into 2C − i bins of size 2i − 1 each. 

Note that Bins∗ does not specify how to proceed after the selected bin from the last chunk 

has been exhausted. In that case at least 2C IDs have been requested. Since 2C ≥ m/ log m , the 

underlying demand profile would not be in D 

<
∞( m/ log m ), so Theorem 9 makes no claim in this 

case. 
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7.2 Bins∗ has Competitive Ratio O (log m ) for Oblivious Adversaries 

We begin by limiting the set of demand profiles we have to consider. For a (non-trivial) demand 

profile D let D 

− be the rounded demand profile arising from D by 

• first, rounding each entry in D down to the next power of 2, and 

• second, if there is a unique largest entry, we reduce it to the second largest entry; when a 

unique largest entry exists, we call its associated instance heavy . 

For instance if D = (9 , 5 , 4 , 42) then D 

− = (8 , 4 , 4 , 8). For a set D of demand profiles we define 

D 

− := { D 

− | D ∈ D } . 

Lemma 19. Let D ∈ D 

<
∞( m/ log m ) . Then 

pBins∗( D ) = pBins∗( D 

−) . 

Proof. When using Bins∗ a collision occurs if and only if two instances allocate the same bin. It 

therefore only matters which bins are allocated by the instances. An instance allocates its i th bin 

(of size 2i − 1) when the previously allocated bins of sizes 1 , 2 , . . . , 2i − 2 are all full and an additional 

ID is requested, i.e., when the 2i − 1th ID is requested. Thus, rounding down to powers of 2 does 

not change the collision probability. 

If after rounding the is a heavy instance with 2i − 1 requests for some i , while there are at most 

2j − 1 requests for each of the others instances for some j < i , then the heavy instance is the only 

one allocating a bin in each of the chunks j + 1 , . . . , i . These bins cannot cause a collision, so the 

heavy instance might as well have only 2j − 1 requests.

 

We define the rank distribution of a rounded demand profile D 

− to be a vector ( s1 

, . . . , sk) 

where si 

is the number of times 2i − 1 occurs in D 

− and where 2k − 1 is the largest entry of D 

−. 

Lemma 20. Let D 

− be a rounded demand profile with rank distribution ( s1 

, . . . , sk) . Then 

p∗( D 

−) = Ω 

( 

min 

( 

1 , 

1

 

m 

k∑ 

i =1 

(
si 

2 

) 

2i 

)) 

. 

Proof. Assume we use an optimal algorithm A for D 

−, i.e., one with pA( D 

−) = p∗( D 

−). For 

i ∈ [ k ], let Ei 

be the event that there is a collision between two instances with demand 2i − 1. We 

have Pr[ Ei] = pA( Di) where Di 

= (2i − 1 , . . . , 2i − 1) has length si 

≥ 0. Recall that Bins (2i − 1) is the 

optimal algorithm for Di, by Lemma 16. We compute 

Pr[ Ei] = pA( Di) 

≥ p∗( Di) 

= pBins (2i − 1)( Di) 

Eq.(4)
= Θ 

( 

min 

( 

1 , 

(
si 

2 

)
2i − 1

 

m 

)) 

. 

Notice that because we use 

(
si 

2 

) 

instead of s2 

i , we correctly handle the cases si 

∈ { 0 , 1 } , using the 

convention 

(
0 

2 

) 

= 

(
1 

2 

) 

= 0. Using that the events E1 

, . . . , Ek 

relate to disjoint sets of instances and 
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are hence independent, we get 

p∗( D 

−) = pA( D 

−) 

≥ Pr 

[ 

k⋃ 

i =1 

Ei 

] 

Lem. 13
= Θ 

( 

min 

( 

1 , 

k∑ 

i =1 

Pr[ Ei] 

)) 

= Θ 

( 

min 

( 

1 , 

1

 

m 

k∑ 

i =1 

(
si 

2 

) 

2i 

)) 

.

 

We will use the following simple inequalities involving binomial coefficients. 

Lemma 21. For any x, y ≥ 0 

(i) 

(
x + y 

2 

) 

≤ 3
(
x 

2 

)
+ 2 x + 

3

 

2 

(
y 

2 

)
+ 

y

 

2 , 

(ii) 

(
x + y 

2 

) 

≤ 4
(
x 

2 

)
+ 

5

 

3 

(
y 

2 

)
+ O (1) . 

Proof. (ii) follows from (i) because 2 x = o (
(
x 

2 

)
) and 

y

 

2 

= o (
(
y 

2 

)
). To prove (i) we proceed by 

induction. For x = 0 or y = 0 the claim is trivial. For x, y ≥ 1 we distinguish two cases. In both 

we first apply the identity 

(
a 

2 

) 

= 

(
a − 1 

2 

)
+ 

(
a − 1 

1 

) 

and then the induction hypothesis. 

• Case 1: x ≤ 

y

 

2 . (
x + y 

2 

) 

= 

(
x +( y − 1) 

2 

)
+ 

(
x + y − 1 

1 

) 

Ind.
≤ 3

(
x 

2 

)
+ 2 x + 

3

 

2 

(
y − 1 

2 

)
+ 

y − 1

 

2 

+ x + y − 1 

≤ 3
(
x 

2 

)
+ 2 x + 

3

 

2 

(
y − 1 

2 

)
+ 

y

 

2 

+ 

y

 

2 

+ y − 

3

 

2 

≤ 3
(
x 

2 

)
+ 2 x + 

3

 

2 

(
y − 1 

2 

)
+ 

y

 

2 

+ 

3

 

2 

(
y − 1 

1 

) 

≤ 3
(
x 

2 

)
+ 2 x + 

3

 

2 

(
y 

2 

)
+ 

y

 

2 

. 

• Case 2: y ≤ 2 x . (
x + y 

2 

) 

= 

(
( x − 1)+ y 

2 

)
+ 

(
x + y − 1 

1 

) 

Ind.
≤ 3

(
x − 1 

2 

)
+ 2( x − 1) + 

3

 

2 

(
y 

2 

)
+ 

y

 

2 

+ x + y − 1 

≤ 3
(
x − 1 

2 

)
+ 2 x + 

3

 

2 

(
y 

2 

)
+ 

y

 

2 

+ x + 2 x − 3 

≤ 3
(
x − 1 

2 

)
+ 2 x + 

3

 

2 

(
y 

2 

)
+ 

y

 

2 

+ 3
(
x − 1 

1 

) 

≤ 3
(
x 

2 

)
+ 2 x + 

3

 

2 

(
y 

2 

)
+ 

y

 

2 

.

 

Lemma 22. Let D 

− be a rounded demand profile with rank distribution ( s1 

, . . . , sk) . Then 

pBins∗( D 

−) = O 

(
log m

 

m 

k∑ 

i =1 

(
si 

2 

) 

2i 

) 

. 
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Proof. A collision within chunk i can only be caused by instances that allocate a bin in chunk i . 

Let s≥ i 

:= si 

+ . . . + sk 

be the number of such instances. Any fixed one of such such instances 

collides with probability O ( log m

 

m 

2i), because there are 2C − i = Ω( 

m

 

log m2− i) bins within chunk i . By 

union bound over all pairs of instances and all chunks we obtain 

pBins∗( D 

−) ≤ 

log m

 

m 

k∑ 

i =1 

(
s≥ i 

2 

) 

2i . 

We define X := 

∑k 

i =1 

(s≥ i 

2 

)
2i and compute, with the understanding that s≥ k +1 

= 0, 

X = 

k∑ 

i =1 

(
s≥ i 

2 

) 

2i = 

k∑ 

i =1 

(
si 

+ s≥ i +1 

2 

) 

2i 

Lem. 21
≤ 

k∑ 

i =1 

( 

4 

(
si 

2 

) 

+ 

5

 

3 

(
s≥ i +1 

2 

) 

+ O (1) 

) 

· 2i 

= 4 

( k∑ 

i =1 

(
si 

2 

) 

2i 

) 

+ 

5

 

6 

( k∑ 

i =1 

(
s≥ i +1 

2 

) 

2i +1 

) 

+ O (1) · 2k +1 

≤ O 

( 

k∑ 

i =1 

(
si 

2 

) 

2i 

) 

+ 

5

 

6 

· X . 

In the last step we used that sk 

≥ 2 so that the O (1) · 2k +1 term is dominated by the last term of 

the first sum. After subtracting 

5

 

6 

X we see that X = O (
∑k 

i =1 

(
si 

2 

)
2i), which implies the claim.

 

Originally 

stated 

on page 10 

Theorem 9. The competitive ratio of Bins∗ for D 

<
∞( m/ log m ) is O (log m ) . 

Proof. Let D ∈ D 

<
∞( m/ log m ) and ( s1 

, . . . , sk) the rank distribution of D 

−. Then 

pBins∗( D ) 

Lem. 19
= pBins∗( D 

−) 

Lem. 22
= O 

( 

min 

(
1 , 

log m

 

m 

k∑ 

i =1 

(
si 

2 

) 

2i 

)) 

≤ O (log m ) min 

(
1 , 

1

 

m 

k∑ 

i =1 

(
si 

2 

) 

2i 

) 

Lem. 20
≤ O (log m ) p∗( D 

−) ≤ O (log m ) p∗( D ) .

 

8 Competitive Ratio Lower Bound Against Oblivious Adversaries 

In the following we consider the performance of an algorithm A on demand profiles of the form 

D = ( i, j ) for i, j ∈ [ m ], which will serve as “hard instances” for our lower bounds down the line. 

Denote A ( i ) the distribution of the set of the first i IDs returned by an instance of A . Moreover, 

let qc,i 

:= PrX ∼A ( i )[ c ∈ X ] for c, i ∈ [ m ]. 

Lemma 23. Let A be any algorithm and let i, j ∈ [ m ] . We have 

pA 

(
( i, j )

) 

≥ 

1

 

min( i, j ) 

∑ 

c ∈ [ m ] 

qc,i 

qc,j 

. 

22



 

Proof. We will use that a bounded random variable Z ∈ { 0 , 1 , . . . , B } satisfies Pr[ Z > 0] = Pr[ Z ≥ 

1] ≥ E [ Z ] /B . We have 

pA 

(
( i, j )

) 

= Pr 

X ∼A ( i ) 

Y ∼A ( j ) 

[ | X ∩ Y | > 0] 

≥ 

1

 

min( i, j ) 

E 

X ∼A ( i ) 

Y ∼A ( j ) 

[ | X ∩ Y | ] 

= 

1

 

min( i, j ) 

∑ 

c ∈ [ m ] 

Pr 

X ∼A ( i ) 

Y ∼A ( j ) 

[ c ∈ X ∩ Y ] 

= 

1

 

min( i, j ) 

∑ 

c ∈ [ m ] 

qc,i 

qc,j 

.

 

The following lemma determines the best achievable collision probability for demand profiles 

D = ( i, j ), up to constants. 

Lemma 24. Let 1 ≤ i ≤ j ≤ m/ 2 . Then, p∗ 

(
( i, j )

) 

= Θ( 

i

 

m) . 

Proof. Using the optimality of Bins ( i ) on D = ( i, i ) we get 

p∗ 

(
( i, j )

) 

≥ p∗ 

(
( i, i )

) Lem. 16
= pBins ( i ) 

(
( i, i )

) Eq. (4)
= Ω( 

i

 

m) . 

For the upper bound we construct an algorithm A for the fixed demand profile ( i, j ). The algorithm 

sets aside j − i hard-wired IDs. The first i requests are handled using Bins ( i ) on the rest of the 

IDs. All other requests (which are at most j − i ) are served from the hard-wired IDs. 

A collision on the demand profile ( i, j ) occurs if and only if there is a collision between the first 

i IDs of each instance, produced via Bins ( i ) on the reduced ID space with m − j + i IDs. This 

probability is pBins ( i ) 

(
( i, i )

) 

= Θ(1 / ( m − j + i )) = Θ( i/m ).

 

Let k = b1

 

2 

log( m ) c . Consider the following distribution Φ on demand profiles: 

Pr 

D ∼ Φ
[ D = (2i , 2j)] = 

1

 

W 

· 2− max( i,j ) for 0 ≤ i, j ≤ k , (7) 

where W is a normalization factor. Note that 

W := 

k∑ 

i =0 

k∑ 

j =0 

2− max( i,j ) ≤ 2 

∑ 

i ≥ 0 

∑ 

j ≥ i 

2− j = 2 

∑ 

i ≥ 0 

2− i +1 = 8 = O (1) . 

Lemma 25. For any algorithm A and Φ as above we have 

E 

D ∼ Φ
[ pA( D )] = Ω 

( log2 m

 

m 

) 

. 

23



 

Proof. We reuse the numbers qc,i 

from Lemma 23. We have 

E 

D ∼ Φ
[ pA( D )] = 

1

 

W 

k∑ 

i =0 

k∑ 

j =0 

2− max( i,j ) pA 

(
(2i , 2j)

) 

Lem. 23
≥ 

1

 

W 

k∑ 

i =0 

k∑ 

j =0 

2− max( i,j ) 

∑ 

c ∈ [ m ] 

qc, 2i 

qc, 2j

 

min(2i , 2j) 

≥ 

1

 

W 

k∑ 

i =0 

k∑ 

j =0 

2− ( i + j ) 

∑ 

c ∈ [ m ] 

qc, 2i 

qc, 2j 

= 

1

 

W 

∑ 

c ∈ [ m ] 

k∑ 

i =0 

2− i qc, 2i 

k∑ 

j =0 

2− j qc, 2j 

= 

1

 

W 

∑ 

c ∈ [ m ] 

( k∑ 

i =0 

2− i qc, 2i 

)2 

≥ 

1

 

W m 

( ∑ 

c ∈ [ m ] 

k∑ 

i =0 

2− i qc, 2i 

)2 

≥ 

1

 

W m 

( 

k∑ 

i =0 

2− i2i 

)2 

= 

1

 

W m
Ω(log2 m ) = Ω 

( log2 m

 

m 

) 

.

 

Originally 

stated 

on page 10 

Theorem 10. Every algorithm has competitive ratio Ω(log m ) for D = [
√

 

m ]2. 

Proof. Let A be an algorithm with competitive ratio c for [
√

 

m ]2. Note that [
√

 

m ]2 includes the 

support of the distribution Φ from Equation (7). We have 

E 

D ∼ Φ
[ pA( D )] = 

1

 

W 

k∑ 

i =0 

k∑ 

j =0 

2− max( i,j ) pA 

(
(2i , 2j)

) 

≤ 

c

 

W 

k∑ 

i =0 

k∑ 

j =0 

2− max( i,j ) p∗ 

(
(2i , 2j)

) 

≤ 

2 c

 

W 

k∑ 

i =0 

k∑ 

j = i 

2− j p∗ 

(
(2i , 2j)

) 

Lem. 24
≤ 

2 c

 

W 

k∑ 

i =0 

k∑ 

j = i 

2− j · O 

(2i

 

m 

) 

≤ O 

( c

 

m 

k∑ 

i =0 

2i 

∑ 

j ≥ i 

2− j 

) 

= O 

( c

 

m 

k∑ 

i =0 

2i · 2− i +1 

) 

= O 

( c log m

 

m 

) 

. 

Since ED ∼ Φ[ pA( D )] = Ω( log2 m

 

m 

) by Lemma 25, we conclude that c = Ω(log m ), as claimed.

 

9 Competitive Ratio Upper Bound Against Adaptive Adversaries 

Assume we are using an ID generation algorithm A , the current demand profile is D = ( d1 

, . . . , dn) 

and no collision has occurred yet. In Lemma 7 we have seen an example where an adaptive adversary 
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of Cluster observes and exploits useful information about the state of the game namely, which 

two instances of Cluster produced initial IDs that are close to one another. In contrast, Random , 

Bins ( k ) and Bins∗ exhibit a symmetry between the bins that makes every game state with the 

same current demand profile (and no collision so far) equivalent. This means that an adaptive 

adversary cannot make any meaningful observations that could guide its choices, except for its 

ability to stop immediately when a collision occurs. This suggests that the competitive ratio for 

these algorithms does not increase (much) if adaptive adversaries are considered. In this section, 

we will prove the following formalization of this intuition: 

Originally 

stated 

on page 10 

Theorem 11. Let A be either Bins∗ or Bins ( k ) for some k ∈ [ m ] , and let D be some set of demand 

profiles. If A has competitive ratio c for D , then A has competitive ratio at most 4 c for Adv( D ) . 

The following notions will be useful. A sequence S = ( D0 

, D1 

, . . . , Dk) of demand profiles is called 

a D -demand sequence if D0 

= (), Dk 

∈ D and Di +1 

arises from Di 

either by appending a 1 or by 

incrementing one of the entries of Di. For such an S there is a simple adaptive adversary fol( S ) that 

follows the demand sequence S as long as no collision has occurred. Should a collision occur when 

the current demand profile is Di, fol( S ) transitions to a demand profile D̃i 

∈ D reachable from Di 

that minimizes p∗( D̃i), and then immediately stops the game.6 We call fol( S ) a semi-adaptive 

adversary, as its only adaptive decisions depend on whether or not a collision has occurred so far. 

In the following we take the adversarial perspective trying to maximize the competitive ratio 

of Z ∈ Adv( D ) against a fixed A . 

Proof of Theorem 11. We fix the algorithm A to be either Bins∗ or Bins ( k ) and an arbitrary 

adaptive adversary Z ∈ Adv( D ) with competitive ratio c′. We have to show c′ ≤ 4 c . 

Below we will prove the following three claims: 

Claim 4. There exists an adaptive adversary Z 

′ ∈ Adv( D ) that achieves competitive ratio c′, and 

that only learns after every step whether a collision has occurred or not. In particular, Z 

′ does not 

learn the IDs produced by the instances of A . 

Claim 5. There exists a D -demand sequence S such that the semi-adaptive adversary fol( S ) 

achieves competitive ratio at least c′. 

Claim 6. There exists a demand profile D ∈ D (i.e., an oblivious adversary) that achieves com- 

petitive ratio at least c′ / 4 . 

The last claim immediately implies what we need: since A has competitive ratio c for D , the 

competitive ratio c′ / 4 for D ∈ D from the claim satisfies c′ / 4 ≤ c .

 

We now prove the claims in order. 

Proof of Claim 4. Consider the case of A = Bins ( k ). For A = Bins∗ a similar argument works. 

Since A repeatedly selects bins of size k and then produces the IDs within the selected bins in 

increasing order, the i th ID selected by an instance of A only carries information if i ≡ 1 (mod k ), 

and this information is precisely the identity of the bin that has been selected. Let Z 

′′ be a variant 

of Z that is only told these bin identities in a correspondingly modified game. Clearly Z 

′′ has the 

same competitive ratio as Z . 

Now consider a further modification of the game where a uniformly random permutation π 

of the bins is picked beforehand and where any bin identity that would be given to Z 

′′ is first

 

6If D is downward closed, then we always have Di 

∈ D and hence D̃i 

= Di, meaning fol( S ) always stops 

immediately upon a collision. 
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permuted by π . Since Bins ( k ) is symmetric under any permutation of the bins and since bin 

permutations do not affect whether or not a collision has occurred, the random process as observed 

by Z 

′′ does not change and the competitive ratio is still unaffected. Furthermore, the only relevant 

information obtained by Z 

′′ is whether or not a collision has occured: Conditioned on a collision 

having occurred, no further information on the produced IDs makes a difference. Conditioned on no 

collision having occurred, the sequence of distinct bin identities that is given to Z 

′′ is stochastically 

independently of the behavior of the instances of A . 

We can therefore construct a version Z 

′ of Z 

′′ that only learns if a collision has occurred so far 

and produces a random sequence of distinct bin identities internally, if needed.

 

Proof of Claim 5. The adversary Z 

′ from Claim 4 may use randomization in every step. However, 

it learns no information during the game (except whether a collision has occurred) and can select 

the demand sequence S that it follows (as long as no collision has occurred) at the start of the 

game, possibly at random according to some distribution ∆. If a collision does occur, then the 

course of action that maximizes the competitive ratio is to stop as soon as possible with a final 

demand profile D ∈ D minimizing p∗( D ). In other words, we may assume that Z 

′ behaves like 

fol( S ) for S ∼ ∆. Then, 

c′ = 

pA( Z 

′)

 

E 

D ∼ Z 

′
[ p∗( D )] 

= 

E 

S ∼ ∆
[ pA(fol( S ))]

 

E 

S ∼ ∆ 

[ 

E 

D ∼ fol( S )
[ p∗( D )] 

] 

≤ max 

S 

pA(fol( S ))

 

E 

D ∼ fol( S )
[ p∗( D )] 

. 

In the last step we used that 

a

 

b 

≤ 

c

 

d 

implies 

a + c

 

b + d 

≤ 

c

 

d 

for any a, b, c, d ∈ R+ and, more generally, ∑ 

i ∈ [ n ] 

ai

 

∑ 

i ∈ [ n ] 

bi 

≤ max 

i ∈ [ n ] 

ai

 

bi 

for ai 

, bi 

∈ R+ and i ∈ [ n ]. 

The demand sequence S maximizing the quotient yields a semi-adaptive adversary fol( S ) with 

competitive ratio at least c′, as desired.

 

Proof of Claim 6. Let S = ( D0 

, . . . , Dk) be the D -demand sequence from Claim 5. Note that 

pA(fol( S )) = pA( Dk), that the probability that fol( S ) reaches the last demand profile without 

causing a collision is PrD ∼ fol( S )[ D = Dk] = 1 − pA( Dk − 1), and that pA( Di) is increasing in i . There 

are two cases: 
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• Case 1: pA( Dk) ≤ 

1

 

2 . Using that fol( S ) has competitive ratio at least c′ we get 

c′ ≤ 

pA(fol( S ))

 

E 

D ∼ fol( S )
[ p∗( D )] 

≤ 

pA( Dk)

 

Pr 

D ∼ fol( S )
[ D = Dk] · p∗( Dk) 

≤ 

pA( Dk)

 

(1 − pA( Dk − 1)) · p∗( Dk) 

≤ 

pA( Dk)

 

(1 − pA( Dk)) · p∗( Dk) 

≤ 

pA( Dk)

 

1

 

2 

· p∗( Dk) 

= 2 · 

pA( Dk)

 

p∗( Dk) 

. 

Thus, Dk 

has competitive ratio at least c′ / 2. 

• Case 2: pA( Dk) ≥ 

1

 

2 . Since pA( D0) = 0, there exists an index i such that pA( Di − 1) ≤ 

1

 

2 

and 

pA( Di) ≥ 

1

 

2 . Let J ∈ [ k ] be the random index of the step in which the first collision occurs, 

if any, and J = k otherwise. Then, 

c′ ≤ 

pA(fol( S ))

 

E 

D ∼ fol( S )
[ p∗( D )] 

≤ 

2 · pA( Di)

 

∑k 

j =1 Pr[ J = j ] · p∗( D̃j) 

≤ 

2 · pA( Di)

 

Pr[ J ≥ i ] · p∗( Di) 

≤ 

2 · pA( Di)

 

(1 − pA( Di − 1)) · p∗( Di) 

≤ 

2 · pA( Di)

 

1

 

2 

· p∗( Di) 

= 4 · 

pA( Di)

 

p∗( Di) 

. 

Thus, Di 

has competitive ratio at least c′ / 4.
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