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Abstract

We present a new approach for independently computing compact sketches that can be used to approximate

the inner product between pairs of high-dimensional vectors. Based on the Weighted MinHash algorithm, our

approach admits strong accuracy guarantees that improve on the guarantees of popular linear sketching approaches

for inner product estimation, such as CountSketch and Johnson-Lindenstrauss projection. Speci�cally, while our

method exactly matches linear sketching for dense vectors, it yields signi�cantly lower error for sparse vectors with

limited overlap between non-zero entries. Such vectors arise in many applications involving sparse data, as well

as in increasingly popular dataset search applications, where inner products are used to estimate data covariance,

conditional means, and other quantities involving columns in unjoined tables. We complement our theoretical results

by showing that our approach empirically outperforms existing linear sketches and unweighted hashing-based

sketches for sparse vectors.

1 Introduction
The inner product of two vectors a and b, 〈a, b〉 =

∑𝑛
𝑘=1

a[𝑘]b[𝑘], is a ubiquitous operation. Among many other

applications, inner products can be used to compute document similarities [Salton et al., 1975], to evaluate learned

classi�cation models, and to estimate join sizes [Alon et al., 1999b, Achlioptas, 2003, Rusu and Dobra, 2008]. However,

in modern applications involving very high-dimensional vectors, computing exact inner products can be intractable.

The computational cost is𝑂 (𝑛) and computing 〈a, b〉 requires loading𝑂 (𝑛) numbers from memory, or communicating

𝑂 (𝑛) numbers if a and b are stored on di�erent machines.

A common approach for resolving this issue is to pre-compute a small space compression (a sketch) of each vector,

which we will denote by S(a) and S(b), respectively. An estimation function F is then used to approximate the inner

product as F (S(a),S(b)) ≈ 〈a, b〉. The beauty of sketching is that it simultaneously reduces storage, communication,

and runtime complexity. Moreover, once computed, sketches can be reused again and again to estimate inner products

with other vectors. For example, given another vector c we can estimate 〈a, c〉 ≈ F (S(a),S(c)).
Sketching methods for approximating inner products are already widely used throughout computer science. In

machine learning, they can be used to accelerate the training of large-scale linear models like support vector machines

or logistic regression [Arriaga and Vempala, 2006, Li et al., 2011]. In relational databases, inner product sketches are

used in query optimizers to choose optimal query plans without having to execute expensive queries that involve

large joins [Cormode et al., 2011]. More recently, inner product sketches have found applications in dataset search

∗
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Method Error for sketches of size 𝑂 (1/𝜖2) Assumptions

Johnson-Lindenstrauss Projection [Arriaga

and Vempala, 2006], AMS [Alon et al.,

1999b], CountSketch [Charikar et al., 2002]

𝜖 · ‖a‖‖b‖ None

MinHash (MH) Sampling [Beyer et al., 2007] 𝜖 ·max (‖aI ‖‖b‖, ‖a‖‖bI ‖) a, b are binary, i.e.

with {0, 1} entries.
Our Method: Weighted MinHash
(WMH) Sampling

𝜖 ·max (‖aI ‖‖b‖, ‖a‖‖bI ‖) None

Table 1: Comparison of high-probability additive error guarantees for estimating 〈a, b〉 using various sketching

methods. We let I = {𝑖 : a[𝑖] ≠ 0 and b[𝑖] ≠ 0} denote the intersection of a’s and b’s supports. aI and bI are a and
b restricted to indices in I. Since max (‖aI ‖‖b‖, ‖a‖‖bI ‖) ≤ ‖a‖‖b‖, the bound for our Weighted MinHash (WMH)

method always beats the linear sketching methods. Our bound matches that of unweighted MinHash, but without

the strong limiting assumption that a and b are binary; it holds for all vectors.

and discovery, where they are used to discover joinable tables [Fernandez et al., 2019] and to estimate other column

statistics, such as correlation [Santos et al., 2021], without explicitly performing a join operation between two tables.

We discuss these applications and others in Section 1.2.

Whatwas PreviouslyKnown? In all of the applications above, a primary concern is optimizing the trade-o� between

the sketch size (which governs storage, communication, and runtime e�ciency) and how accurately F (S(a),S(b))
approximates 〈a, b〉. A large sketch size will in general lead to better approximation, but the question is by exactly how

much. Currently, the only methods with strong theoretical guarantees on this tradeo� for general vectors (i.e., vectors

without any assumed value distribution or magnitude) are based on linear sketching algorithms. Such algorithms

include the famous “tug-of-war” sketch, a.k.a. the AMS sketch [Alon et al., 1999b, Alon et al., 1999a], the CountSketch

algorithm [Charikar et al., 2002], and methods based on Johnson-Lindenstrauss (JL) random projection [Achlioptas,

2003, Dasgupta and Gupta, 2003].

All of these approaches have a similar form. We choose a random matrix Π ∈ R𝑚×𝑛
(Π might have i.i.d. random

entries or more complex structure) and sets S(a) = Πa and S(b) = Πb. Each sketch is a length𝑚 vector and is

considered a linear sketch since S is a linear function. To estimate the inner product, the typical approach is to simply

return the sketch inner product 〈S(a),S(b)〉.1
A textbook theoretical accuracy guarantee for inner product estimation based on linear sketching is:

Fact 1 (Linear Sketching for Inner Products [Arriaga and Vempala, 2006]). Let 𝜖, 𝛿 ∈ (0, 1) be accuracy and failure
probability parameters respectively and let𝑚 = 𝑂 (log(1/𝛿)/𝜖2). Let Π ∈ R𝑚×𝑛

be a random matrix with each entry set

independently to +
√︁
1/𝑚 or −

√︁
1/𝑚 with equal probability. For length 𝑛 vectors a, b ∈ R𝑛 , let S(a) = Πa and S(b) = Πb.

With probability at least 1 − 𝛿 ,

|〈S(a),S(b)〉 − 〈a, b〉| ≤ 𝜖 ‖a‖‖b‖

where ‖x‖ denotes the standard Euclidean norm.

In addition to dense randommatrices, analogous results to Fact 1 can be proven for sparse JL matrices, CountSketch

matrices, and other linear sketches [Cormode et al., 2011]. The fact provides a powerful accuracy guarantee that

improves with the sketch size𝑚 and depends naturally on the norms of a and b. To the best of our knowledge, linear

sketching methods were previously the only known algorithms to obtain such a strong theoretical guarantee.

1.1 Our Contributions
In this paper we introduce a novel method for inner product sketching based on the Weighted MinHash sketch

[Gollapudi and Panigrahy, 2006, Manasse et al., 2010, Io�e, 2010], which is a variant of the classic MinHash method

[Broder, 1997, Broder et al., 1998]. We prove that our method obtains a re�ned guarantee than Fact 1. In particular, it

1
Other estimators involving e.g., the median of multiple approximate inner products, are also used [Larsen et al., 2021]. However, theoretical

guarantees are similar, typically di�ering in the dependence on the failure probability 𝛿
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matches the result for linear sketches in the worst case when a and b are dense
2
, but always obtains a better bound

when a and b are sparse vectors with limited overlap between non-zero entries. As discussed further in Section 1.2,

such pairs of vectors are the norm in many applications of inner product sketching to database problems and modern

dataset search applications.

Theorem 2 (Main Result). Let 𝜖, 𝛿 ∈ (0, 1) be accuracy and failure probability parameters and let𝑚 = 𝑂 (log(1/𝛿)/𝜖2).
There is an algorithm S that produces size-𝑚 sketches (Algorithm 3), along with an estimation procedure F (Algorithm 5),

such that for any a, b ∈ R𝑛 , with probability at least 1 − 𝛿 ,

|F (S(a),S(b)) − 〈a, b〉| ≤ 𝜖 max (‖aI ‖‖b‖, ‖a‖‖bI ‖)

Above, I = {𝑖 : a[𝑖] ≠ 0 and b[𝑖] ≠ 0} is the intersection of a’s and b’s supports. aI and bI denote a and b restricted to

indices in I.

We always have ‖aI ‖ ≤ ‖a‖ and ‖bI ‖ ≤ ‖b‖, so we can bound max (‖aI ‖‖b‖, ‖a‖‖bI ‖) ≤ ‖a‖‖b‖. That is,
the guarantee of Theorem 2 matches that of Fact 1 in the worse-case, but can be signi�cantly better. For example,

consider a and b that have roughly the same number of non-zero entries, but only a 𝛾 < 1 fraction of those entries

are non-zero in both a and b. In this case, it is reasonable to expect that ‖aI ‖2 ≈ 𝛾 ‖a‖2 and ‖bI ‖2 ≈ 𝛾 ‖b‖2 since aI
and bI contain just a 𝛾 fraction of entries from the original vectors. Our course, the actually improvement is data

dependent; for example, we might have that ‖aI ‖2 is signi�cantly smaller than 𝛾 ‖a‖2, or that it is not much smaller

than ‖a‖2.
Nevertheless, considering the “typical case” when a 𝛾 fraction of non-zeros overlap, we might expect the bound

from Theorem 2 to be better than Fact 1 by a factor of

√
𝛾 . So, to obtain the same error as a linear sketch, our method

could set𝑚 smaller by a factor of 𝛾 . In many applications, 𝛾 is very small. E.g., in Section 5 we consider a document

similarity problem where 𝛾 ≤ .05 for 95% of vector pairs sketched. This could equate to roughly a 20𝑥 improvement

in sketch size required to achieve a speci�ed level of error.

Thanks to their strong theoretical guarantees, linear sketching algorithms have become the go-to approach for

generic inner product estimation [Cormode et al., 2011]. Our results show for the �rst time that an alternative method

can provide stronger bounds. We hope that this paper will serve as a starting point for further investigation into

hashing-based algorithms for inner product sketching.

1.2 Motivating Application: Dataset Search
Before presenting the technical details of our results and discussing related work, we detail one application that

could bene�t from our proposed sketches, and helps illustrate the importance of obtaining bounds for inner product

estimation that are sensitive to the number of overlapping non-zero entries in a and b. Speci�cally, we consider the
problem of dataset search which has received increasing attention in recent years [Lehmberg et al., 2015, Zhu et al.,

2019, Yang et al., 2019, Zhu et al., 2016, Fernandez et al., 2019, Santos et al., 2021, Santos et al., 2022].

Suppose that a data scientist wants to understand the reasons for �uctuations in taxi ridership in New York City

in 2022. The analyst only has a table containing two columns: a date column and the number of taxi rides taken on

that day. In order to carry out the analysis, she needs to �nd other tables, either in her organization’s data lake or in

public repositories like NYC Open Data (which contain thousands of datasets [City of New York, 2022]), that would

bring in other relevant variables when joined with the original table. For example, the analyst might hope to �nd

weather data, which can impact taxi ridership. Moreover, she would like to �nd relevant factors that she might not

think of on her own, in an automatic way.

To solve this problem, we would like methods to automatically discover tables that are both 1) joinable with the

target table (i.e., also contain columns with dates from 2022) and 2) meaningfully related with the analyst’s data. For

example, a table containing precipitation data should be returned if taxi ridership is signi�cantly higher or lower on

days with high precipitation. To �nd such tables, brute force search is not infeasible – we typically cannot a�ord to

join the analyst’s table with all tables in the search set to look for good candidates. Instead, we need to e�ciently

estimate statistics between disparate tables without materializing their join [Santos et al., 2021].

Sketching has become the most popular approach for performing this sort of estimation between unjoined data

tables [Zhu et al., 2016, Fernandez et al., 2019, Yang et al., 2019, Santos et al., 2021, Santos et al., 2022]. Speci�cally, a

2
For dense vectors, Fact 1 is actually optimal up to constants: recent work implies that no sketch of size𝑚 = 𝑜 (log(1/𝛿)/𝜖2) can achieve error

𝜖 ‖a‖ ‖b‖ with probability 1 − 𝛿 for all inputs [Larsen and Nelson, 2017, Alon and Klartag, 2017]. Our result also matches this lower bound.
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T𝐴
𝐾𝐴 𝑉𝐴
1 6.0

3 2.0

4 6.0

5 1.0

6 4.0

7 2.0

8 2.0

9 8.0

11 3.0

T𝐵
𝐾𝐵 𝑉𝐵
2 1.0

4 5.0

5 1.0

8 2.0

10 4.0

11 2.5

12 6.0

15 6.0

16 3.7

T𝐴⊲⊳𝐵
𝐾𝐴⊲⊳𝐵 𝑉𝐴⊲⊳ 𝑉𝐵⊲⊳

4 6.0 5.0

5 1.0 1.0

8 2.0 2.0

11 3.0 2.5

SIZE(𝑉𝐴⊲⊳) = 4

SUM(𝑉𝐴⊲⊳) = 12.0

SUM(𝑉𝐵⊲⊳) = 10.5

MEAN(𝑉𝐴⊲⊳) = 12.0/4 = 3.0

Figure 2: The table T𝐴⊲⊳𝐵 is the output of a one-to-one join between the tables T𝐴 with T𝐵 . We are interested in

approximating post-join statistics (e.g., join size, sums, means, and covariances) of the table T𝐴⊲⊳𝐵 using only inner

products.

small-space sketch is precomputed for all data tables in the search set. When the analyst issues a query to �nd relevant

data, a sketch of her table is compared against these preexisting sketches using a fraction of the computational

resources in comparison to explicitly materializing table joins [Santos et al., 2021].

Inner product sketching for dataset search. Interestingly, in the framework discussed above, many problems of

interest can be formulated precisely as inner product sketching problems. To see why this is the case, consider the

example tables T𝐴 and T𝐵 shown in Figure 2: each contains a column of keys, 𝐾𝐴 and 𝐾𝐵 , and a column of values, 𝑉𝐴
and 𝑉𝐵 . A join operation between the tables on their keys generates the output table T𝐴⊲⊳𝐵 .3

We list in Figure 2 a number of statistics that we might hope to estimate in T𝐴⊲⊳𝐵 when searching for relevant

datasets. We claim that all of these statistics can be estimated using inner products between vector representations of

the tables, which we denote x1[𝐾𝐴 ], x𝐾𝐴 and x1[𝐾𝐵 ], x𝐾𝐵 respectively and show in Figure 3.

First, it is easy to see that the size of T𝐴⊲⊳𝐵 is equal to the intersection between the keys in 𝐾𝐴 and 𝐾𝐵 , i.e.,

|𝐾𝐴 ∩ 𝐾𝐵 | = 4. This is in turn equal to the inner product between x1[𝐾𝐴 ] and x1[𝐾𝐵 ] . Similarly, the SUM aggregate

of the values in 𝑉𝐴 after join (i.e., SUM(𝑉𝐴⊲⊳)) is equal to the inner product SUM(𝑉𝐴⊲⊳) = 〈x𝑉𝐴 , x1[𝐾𝐵 ]〉. To estimate a

post-join mean (i.e., MEAN(𝑉𝐴⊲⊳)), we can combine the join-size estimate with the SUM estimate:

MEAN(𝑉𝐴⊲⊳) =
〈x𝑉𝐴 , x1[𝐾𝐵 ]〉

〈x1[𝐾𝐴 ], x1[𝐾𝐵 ]〉
.

Finally, computing a post-join inner product, 〈x𝑉𝐴 , x𝑉𝐵 〉 could be useful. In the application above, for tables containing

precipitation data and taxi ridership, a high inner-product might signify that high precipitation days align with high

ridership days.

Comparison of di�erent methods. Given the above reductions, both linear sketching methods like JL projection

and CountSketch, and ourWeightedMinHashmethod, can be directly applied to the dataset search problem. We simply

need to precompute S(x1[𝐾𝐵 ]) and S(x𝑉𝐵 ) for all tables T𝐵 in our search set. Sketching other vector transformations

like S((x𝑉𝐵 )2) opens up the possibility of also estimating other quantities like post-join variance.

In search applications, we note that the vector length 𝑛 can be very large. However, computing sketches does not

require fully materializing the vectors x1[𝐾𝐴 ] and x1[𝐾𝐵 ] : all sketching methods discussed in this paper only need to

process the vectors’ non-zero entries. Furthermore, it is not necessary to know the 𝑛 beforehand: we can simply set 𝑛

to be large enough to cover the whole domain of the keys being sketched (e.g., 𝑛 = 2
32
or 𝑛 = 2

64).
To compare methods, Fact 1 and Theorem 2 suggest that any asymptotic di�erences in performance between

our WMH method and linear sketching will depend on the overlap in non-zero entries between the vectors being

sketched. In dataset search, this exactly corresponds to the Jaccard similarity of the key sets 𝐾𝐴 and 𝐾𝐵 . Our method

will perform better when the Jaccard similarity is small. For example, in Figure 2, only 4 out of 14 unique keys are

shared in both tables, so the similarity is ≈ .29. In the scenario discussed above, we could imagine a much smaller

ratio: for example, our data analyst might only have a table containing taxi data from 2022, but compare it to a

weather data table with dates from 1960 through the present day. The Jaccard similarity would be 1/63 ≈ .016. In

Section 5 we consider a dataset search use case involving data from the World Bank [World Bank, 2022] where 42%

percent of table pairs had Jaccard similarity < .1, and 35% have Jaccard similarity < .05.

3
Note that, in the example described in Figure 2, we assume a one-to-one join. Dataset search problems can involve many-to-many joins

as well, although a typical approach is to use a data aggregation function to reduce to the one-to-one setting [Santos et al., 2021, Santos et al.,

2022, Kanter and Veeramachaneni, 2015].
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index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

x𝑉𝐴 6.0 0 2.0 6.0 1.0 4.0 2.0 2.0 8.0 0 3.0 0 0 0 0 0

x1[𝐾𝐴 ]
1 0 1 1 1 1 1 1 1 0 1 0 0 0 0 0

x𝑉𝐵 0 1.0 0 5.0 1.0 0 0 2.0 0 4.0 2.5 6.0 0 0 6.0 3.7

x1[𝐾𝐵 ] 0 1 0 1 1 0 0 1 0 1 1 1 0 0 1 1

Figure 3: Vector representation of tables T𝐴 with T𝐵 from Figure 2. The vector x1[𝐾𝐴 ] (resp. x1[𝐾𝐵 ] ) is the vector
representation for the join key 𝐾𝐴 (resp. 𝐾𝐵) and x𝑉𝐴 (resp. x𝑉𝐵 ) is the vector representation for the column 𝑉𝐴 (resp.

𝑉𝐵). Bold numbers are entries included in the join result from T𝐴⊲⊳𝐵 .

1.3 Paper Roadmap
In Section 2 we review related prior work. In Section 3 we outline an analysis of the standard unweighted MinHash

method for inner product estimation. This analysis serves as a technical warm-up for our main result (Theorem 2)

on Weighted MinHash, which is presented in Section 4. Finally, in Section 5 we support Theorem 2 with a detailed

empirical evaluation of our method.

2 Related Work
Inner Product Estimation for Binary Vectors. Beyond linear sketching methods for estimating the inner product

between general real-valued vectors a and b, there has been a lot of prior work on the special case of binary vectors

with {0, 1} entries. For such vectors, approximating the inner product amounts to approximating the size of the

intersection of two sets. Concretely, any a, b ∈ {0, 1}𝑛 can be associated with sets A and B that contain integers

from {1, . . . , 𝑛}. We de�ne A to contain all 𝑖 for which a[𝑖] = 1, and similarly B to contain all 𝑖 for which b[𝑖] = 1.

Note that 〈a, b〉 = |A ∩ B|.
Applying Fact 1, we know that a linear sketch of size 𝑚 = 𝑂 (1/𝜖2) can estimate 〈a, b〉 up to additive error

𝜖 ‖a‖‖b‖ = 𝜖
√︁
|A||B|. However, a better bound can be obtained using non-linear sketching methods based on the

classic MinHash sketch [Broder, 1997, Broder et al., 1998, Manber, 1994, Heintze, 1996], the 𝑘-minimum value (KMV)

sketch [Beyer et al., 2007], or related techniques [Li and König, 2010, Li et al., 2012]. With 𝑚 = 𝑂 (1/𝜖2) space,
such methods are achieve error 𝜖

√︁
max( |A|, |B|) · |A ∩ B|, which is always smaller than 𝜖

√︁
|A||B| [Beyer et al.,

2007, Pagh et al., 2014]. For binary vectors, this bound was proven optimal in [Pagh et al., 2014].

Our work was motivated by this pre-existing result for binary vectors. In fact, our Theorem 2, is a strict

generalization of the bound to all real-valued vectors. When a and b are binary, we have that ‖aI ‖2 = ‖bI ‖2 = |A∩B|.
So it is not hard to see that 𝜖

√︁
max( |A|, |B|) · |A ∩ B| = 𝜖 · max (‖aI ‖‖b‖, ‖a‖‖bI ‖), which is exactly our bound

from Theorem 2. We summarize how all prior inner product sketching methods compare to our result in Table 1.

Beyond Binary Vectors. There has been less work on obtaining better results for estimating inner products of

vectors with non-binary entries. One recent paper [Larsen et al., 2021] proves re�ned bounds for the CountSketch

method that depend on the ℓ1 norm of a and b (instead of the Euclidean norm). These bounds can be tighter than

Fact 1 for some vectors, especially when the sketch size𝑚 is large. However, the results are not directly comparable

to ours.

We take a di�erent approach, moving beyond linear sketching entirely. Our main result is based on a class of

sketches that we collectively refer to as “Weighted MinHash” methods [Chi and Zhu, 2017, Shrivastava, 2016]. These

methods include weighted versions of coordinated random sampling [Cohen and Kaplan, 2007, Cohen and Kaplan,

2013], as well as the “Consistent Weighted Sampling” algorithm [Manasse et al., 2010, Gollapudi and Panigrahy,

2006] and its descendants, which are essentially equivalent, but computationally cheaper to apply [Io�e, 2010, Wu

et al., 2019, Haeupler et al., 2014]. As shown in Section 4, Weighted MinHash sketches allows us to handle vectors

whose entries have highly varying magnitude (in contrast to binary vectors, where all non-zero entries have the same

magnitude of 1).

Weighted MinHash sketches have been used in a number of applications, including for approximating weighted

Jaccard similarity [Wu et al., 2019], for near-duplicate detection with weighted features [Manasse et al., 2010], for

approximating the distance between two vectors [Io�e, 2010], and for sketching image histograms [Shrivastava,

2016]. In many of these applications, the weighted sketches empirically outperform unweighted sketches. Weighted

MinHash sketches have also been used to compute general “sum aggregate” queries, for which the inner product is a

5



Algorithm 1 Unweighted MinHash Sketch

Input: Length 𝑛 vector a, sample number𝑚, random seed 𝑠 .

Output: Sketch 𝐻a = {𝐻ℎ𝑎𝑠ℎa , 𝐻 𝑣𝑎𝑙
a }, where 𝐻ℎ𝑎𝑠ℎa and 𝐻 𝑣𝑎𝑙

a have length𝑚 and contain values in [0, 1] and from a,
respectively

1: Initialize random number generator with seed 𝑠 .

2: for i = 1, . . . , m do
3: Select uniformly random hash func. ℎ𝑖 : {1, ..., 𝑛} → [0, 1].
4: Compute 𝑗∗ = argmin𝑗 ∈{1,...,𝑛}, a[ 𝑗 ]≠0 ℎ

𝑖 ( 𝑗).
5: Set 𝐻ℎ𝑎𝑠ℎa [𝑖] = ℎ𝑖 ( 𝑗∗) and 𝐻 𝑣𝑎𝑙

a [𝑖] = a[ 𝑗∗]
6: end for
7: return {𝐻ℎ𝑎𝑠ℎa , 𝐻 𝑣𝑎𝑙

a }

special case [Cohen and Kaplan, 2013]. However, we are not aware of strong worst-case error guarantees for the

above applications, let alone for the problem of general inner product estimation. Consistent Weighted Sampling

has also been used to approximate inner products in [Li, 2017], albeit using a di�erent estimator than in our work.

However, non-asymptotic worst-case guarantees are not provided.

Locality Sensitive Hashing. Finally, our problem of estimating inner products from sketches is closely related to

cosine similarity and maximum inner product search (MIPS), where the goal is to retrieve vectors from a database

with the highest cosine similarity (respectively, inner product) with a given query vector. One approach for solving

these problems is locality sensitive hashing [Gionis et al., 1999], and there are methods based on both MinHash and

random projections, like SimHash [Charikar, 2002]. It has been observed that MinHash often outperforms SimHash

for binary data, which parallels what was previously known for binary inner product estimation [Shrivastava and Li,

2014].

3 Warmup: Unweighted MinHash

Notation. We use bold letters to denote vectors, and for a vector a, a[𝑘] denotes the 𝑘 th entry (indexing starts

with 1). For two length 𝑛 vectors, a, b, 〈a, b〉 = ∑𝑛
𝑘=1

a[𝑘]b[𝑘] denotes the inner product. ‖a‖ =
√︁
〈a, a〉 denotes the

Euclidean norm and ‖a‖∞ = max𝑘∈{1,...,𝑛} |a[𝑘] | denotes the in�nity norm. ‖a‖1 =
∑𝑛
𝑘=1

|a[𝑘] | denotes the ℓ1 norm.

As is standard in the literature [Beyer et al., 2007], we assume access to uniformly random hash functions that map to

the real line. I.e., we assume that we can construct a random function ℎ such that for any input 𝑗 ∈ {1, . . . , 𝑛}, ℎ( 𝑗) is
distributed uniformly and independently on the interval [0, 1]. In practice, ℎ can be replaced with a low-randomness

function that map to a su�cient large discrete set {1/𝑈 , 2/𝑈 . . . , 1}. Typically𝑈 is chosen to equal 𝑛𝑐 for constant 𝑐

(e.g. 𝑐 = 3) [Cormode et al., 2011]. We let Pr[𝐸] denote the probability that a random event 𝐸 occurs, and 1[𝐸] is the
indicator random variable that evaluates to 1 if 𝐸 occurs and to 0 otherwise. E[𝑋 ] and Var[𝑋 ] denote the expectation
and variance of a random variable 𝑋 .

An unweighted method. Before introducing our Weighted MinHash sketching method, we review the unweighted

MinHash algorithm and prove a inner product estimation bound that can be obtained from this method. The bound

closely follows prior work on binary vectors [Beyer et al., 2007, Pagh et al., 2014] and only holds under strong

assumptions on the sketched vectors a and b – speci�cally that their entries are uniformly bounded in magnitude.

Nevertheless, it serves as a warmup for our main result, which is proven using a similar strategy, but eliminates the

assumption by using weighted sampling.

Given a vector a, we obtain an entry in the standard MinHash sketch (see e.g., [Broder, 1997]) by hashing the index

of every non-zero entry in a to the interval [0, 1]. We then store the smallest hash value. This process is repeated

𝑚 times with independently chosen random hash functions. For binary vectors a and b with non-zero index sets

A = {𝑘 : a[𝑘] ≠ 0} and B = {𝑘 : b[𝑘] ≠ 0}, the minimum hash value alone can be used to estimate the Jaccard

similarity |A ∩ B|/|A ∪ B| or the union size |A ∪ B| [Flajolet and Martin, 1985, Beyer et al., 2007, Kane et al., 2010].

For non-binary vectors, is it common to augment the standard MinHash sketch by also storing the value of the

index with minimum hash value. This idea is used in “coordinated sampling” or “conditional random sampling”

sketches [Cohen and Kaplan, 2013, Li et al., 2006, Cohen, 2016], and was recently used to extend MinHash and

the closely related 𝑘-minimum values (KMV) sketch to estimate vector correlations [Santos et al., 2021]. The basic

augmented MinHash sketching method is shown in Algorithm 1, which returns𝐻ℎ𝑎𝑠ℎa and𝐻 𝑣𝑎𝑙
a as vectors of minimum

hashes and their corresponding vector values, respectively.
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Algorithm 2 Unweighted MinHash Estimate

Input: Sketches 𝐻a = {𝐻ℎ𝑎𝑠ℎa , 𝐻 𝑣𝑎𝑙
a }, 𝐻b = {𝐻ℎ𝑎𝑠ℎb , 𝐻 𝑣𝑎𝑙

b } constructed using Algorithm 1 with the same inputs𝑚, 𝑠 .

Output: Estimate of 〈a, b〉.
1: Set 𝑈̃ = 𝑚∑𝑚

𝑖=1 min(𝐻ℎ𝑎𝑠ℎa [𝑖 ],𝐻ℎ𝑎𝑠ℎb [𝑖 ]) − 1

2: return 𝑈̃
𝑚

∑𝑚
𝑖=1 1

[
𝐻ℎ𝑎𝑠ℎa [𝑖] = 𝐻ℎ𝑎𝑠ℎb [𝑖]

]
· 𝐻 𝑣𝑎𝑙

a [𝑖] · 𝐻 𝑣𝑎𝑙
b [𝑖]

For any single vector a, the augmented MinHash sketch 𝐻a contains a uniform subsample (collected with

replacement) of the non-zero values in a. This is because for all 𝑖 ∈ {1, . . . ,𝑚} the minimum value of the 𝑖th hash is

equally likely to come from any of the indices with non-zero value. More importantly, sketch can be used to obtain a

uniform subsample from the intersection of a and b, i.e., from entries where both vectors are non-zero. This subsample

can in turn be used to estimate the sum 〈a, b〉 = ∑𝑛
𝑘=1

a[𝑘]b[𝑘], since a[𝑘]b[𝑘] only contributes to the sum if a[𝑘]
and b[𝑘] are both non-zero. Concretely, we have the following well-known fact:

Fact 3. Consider vectors a and b sketched using Algorithm 1 to produce sketches 𝐻a and 𝐻b. De�ne the sets A = {𝑖 :
a[𝑖] ≠ 0} and B = {𝑖 : b[𝑖] ≠ 0}. Then for all 𝑖 ∈ {1, . . . ,𝑚} we have:

1. 𝐻ℎ𝑎𝑠ℎa [𝑖] = 𝐻ℎ𝑎𝑠ℎb [𝑖] with probability
|A∩B |
|A∪B | .

2. If 𝐻ℎ𝑎𝑠ℎa [𝑖] = 𝐻ℎ𝑎𝑠ℎb [𝑖], then 𝐻 𝑣𝑎𝑙
a [𝑖] = a[ 𝑗] and 𝐻 𝑣𝑎𝑙

b [𝑖] = b[ 𝑗] for 𝑗 chosen uniformly at random from A ∩ B.

Fact 3 indicates that, to obtain a uniform subsample from the intersection of a and b, we can simply take all entries

in 𝐻 𝑣𝑎𝑙
a and 𝐻 𝑣𝑎𝑙

b where the corresponding entries in 𝐻ℎ𝑎𝑠ℎa and 𝐻ℎ𝑎𝑠ℎb are equal – and, as per (1), they will be equal

with good probability.

With Fact 3 in place, we describe an inner product estimator based on MinHash (Algorithm 2). This estimator will

serve as a template for our weighted MinHash estimator in the next section.

Consider the summation in line 2 of Algorithm 2. Using linearity of expectation and Fact 3, we can compute the

expectation:

E

[
𝑚∑︁
𝑖=1

1

[
𝐻ℎ𝑎𝑠ℎa [𝑖] = 𝐻ℎ𝑎𝑠ℎb [𝑖]

]
· 𝐻 𝑣𝑎𝑙

a [𝑖] · 𝐻 𝑣𝑎𝑙
b [𝑖]

]
=𝑚 · E

[
1

[
𝐻ℎ𝑎𝑠ℎa [1] = 𝐻ℎ𝑎𝑠ℎb [1]

]
· 𝐻 𝑣𝑎𝑙

a [1] · 𝐻 𝑣𝑎𝑙
b [1]

]
=𝑚 ·

∑︁
𝑗 ∈A∩B

1

|A ∪ B| a[ 𝑗]b[ 𝑗] =
𝑚

|A ∪ B| · 〈a, b〉.

It follows from the above that, if we multiplied the summation

∑𝑚
𝑖=1 1

[
𝐻ℎ𝑎𝑠ℎa [𝑖] = 𝐻ℎ𝑎𝑠ℎb [𝑖]

]
· 𝐻 𝑣𝑎𝑙

a [𝑖] · 𝐻 𝑣𝑎𝑙
b [𝑖]

by
|A∪B |
𝑚

, then we would have an unbiased estimate for 〈a, b〉, as desired. The only catch is that we do not know

|A ∪ B|. This union size cannot be computed exactly from our sketches 𝐻a and 𝐻b. However, it can be estimated

using the same information contained in our MinHash sketches. In particular, since ℎ𝑖 hashes uniformly to [0, 1],
𝑚∑𝑚

𝑖=1 min(𝐻ℎ𝑎𝑠ℎa [𝑖 ],𝐻ℎ𝑎𝑠ℎb [𝑖 ]) −1 provides a good estimate for |A∪B|. This is actually a standard variant of the well-known
Flajolet-Martin distinct elements estimator [Flajolet and Martin, 1985, Beyer et al., 2007]. In Line 1 of Algorithm 2, we

set 𝑈̃ equal to this estimator and we multiply by
𝑈̃
𝑚

in Line 2 as a surrogate for
|A∪B |
𝑚

. This gives our �nal estimator

for 〈a, b〉.
Overall, we are able to prove the following concentration bound for the estimator for computing the inner product

between any pair of bounded vectors. For binary vectors, the constant 𝑐 below equals 1 and we exactly recover the

bounds from prior work [Pagh et al., 2014].

Theorem 4 (Intermediate Result: Inner Product Sketching with Unweighted MinHash). Let 𝜖, 𝛿 ∈ (0, 1) be accuracy
and failure probability parameters and let𝑚 = 𝑂 (log(1/𝛿)/𝜖2). There is an algorithm S that produces size-𝑚 sketches

(Algorithm 1), along with an estimation procedure F , such that for any a, b ∈ R𝑛 with entries bounded in [−𝑐, 𝑐], with
probability at least 1 − 𝛿 ,

|F (S(a),S(b)) − 〈a, b〉| ≤ 𝜖 · 𝑐2 ·
√︁
max( |A|, |B|) · |A ∩ B|

for A = {𝑖 : a[𝑖] ≠ 0} and B = {𝑖 : b[𝑖] ≠ 0}.
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Algorithm 3 Weighted MinHash Sketch

Input: Length 𝑛 vector a, sample number𝑚, random seed 𝑠 , integer discretization parameter 𝐿.

Output: Sketch𝑊a = {𝑊 ℎ𝑎𝑠ℎ
a ,𝑊 𝑣𝑎𝑙

a , ‖a‖}, where𝑊 ℎ𝑎𝑠ℎ
a is a length𝑚 vector of values in [0, 1],𝑊 𝑣𝑎𝑙

a is a length𝑚

vector containing a subset of entries from a, and ‖a‖ is a scalar, the Euclidean norm of a.
1: Initialize random number generator with seed 𝑠 .

2: Set ã = Round(a/‖a‖, L) using Algorithm 4.

3: For each 𝑖 ∈ {1, . . . , 𝑛}, let ā(𝑖) be a length 𝐿 vector whose �rst ã[𝑖]2 · 𝐿 entries are set to ã[𝑖]. Set the remaining

entries to 0.

4: Let ā = [ā(1) , . . . , ā(𝑛) ] be a length 𝑛 · 𝐿 vector obtained by concatenating the vectors de�ned above.

5: for i = 1, . . . , m do
6: Select uniform random hash func. ℎ𝑖 : {1, ..., 𝑛𝐿} → [0, 1].
7: Compute 𝑗∗ = argmin𝑗 ∈{1,...,𝑛 ·𝐿}, ā[ 𝑗 ]≠0 ℎ

𝑖 ( 𝑗).
8: Set𝑊 ℎ𝑎𝑠ℎ

a [𝑖] = ℎ𝑖 ( 𝑗∗) and𝑊 𝑣𝑎𝑙
a [𝑖] = ā[ 𝑗∗].

9: end for
10: return {𝑊 ℎ𝑎𝑠ℎ

a ,𝑊 𝑣𝑎𝑙
a , ‖a‖}.

The full proof of Theorem 4 is included in Appendix A.1. It requires two technical ingredients. First, we must

bound the variance of an “ideal” estimator that uses the exact value of |A ∪ B|. This can be done by using the fact

that a and b have entries bounded in [−𝑐, 𝑐]. Second, we can bound the error introduced by replacing |A ∪ B| with
an estimate for the union, as discussed above. To do so, we rely on the following standard result, which shows that

MinHash sketches for a and b can be used to compute a (1±𝜖) relative error approximation to the true union |A ∪B|
when𝑚 = 𝑂 (1/𝜖2):

Lemma 1 (Union Size Estimator [Blum et al., 2020]). Let A and B be non-empty subsets of {1, . . . , 𝑛} and let

ℎ1, . . . , ℎ𝑚 : {1, . . . , 𝑛} → [0, 1] be independent, uniform random hash functions. For any 𝜖, 𝛿 ∈ (0, 1), if𝑚 = 𝑂

(
1

𝛿𝜖2

)
,

then with prob. at least 1 − 𝛿 , the estimator 𝑈̃ = 𝑚∑𝑚
𝑖=1 min𝑗∈A∪B ℎ𝑖 ( 𝑗) − 1 satis�es:

(1 − 𝜖) |A ∪ B| ≤ 𝑈̃ ≤ (1 + 𝜖) |A ∪ B|.

Note that, while it is written in a slightly di�erent way, the 𝑈̃ in Lemma 1 is exactly equivalent to the 𝑈̃ in

Algorithm 2 (when A and B contain the non-zero indices of a and b). To see why this is the case, note that

𝐻ℎ𝑎𝑠ℎa [𝑖] = min𝑗 ∈A ℎ𝑖 ( 𝑗) and 𝐻ℎ𝑎𝑠ℎb [𝑖] = min𝑗 ∈B ℎ𝑖 ( 𝑗). So min

(
𝐻ℎ𝑎𝑠ℎa [𝑖], 𝐻ℎ𝑎𝑠ℎb [𝑖]

)
= min𝑗 ∈A∪B ℎ𝑖 ( 𝑗).

4 Main Result: Weighted MinHash
The main technical challenge in our work is extending the results of the previous section (Theorem 4) to vectors

whose entries have highly varying magnitude. It is not hard to see that the simple MinHash method fails for such

vectors. For example, consider the extreme case when a and b both contain a very large values at some index 𝑖 , so

large that the term a[𝑖]b[𝑖] dominates the inner product 〈a, b〉 = ∑𝑛
𝑘=1

a[𝑘]b[𝑘]. To correctly approximate the inner

product, we need to include a[𝑖] and b[𝑖] in our sketches for a and b, respectively. A MinHash sketch will only do so

with low probability, since it uniformly samples entries from the intersection of the vectors. Thus, it will obtain a

poor estimate for 〈a, b〉.
To address the issue with heavy entries, we modify the approach of Section 3 to incorporate non-uniform sampling

weights using a Weighted MinHash sketch [Manasse et al., 2010]. This allows us to sample high magnitude entries in

the vectors with higher probability. Speci�cally, our goal is to sample the 𝑖th entry of a with probability proportional

to the squared magnitude, a[𝑖]2. The Weighted MinHash sketch achieves non-uniform sampling in a simple way:

we construct an extended vector ā which has the same entries as a, but entries are repeated multiple times, with the

exact number of repetitions proportional to their magnitude. We then apply the standard MinHash sketch to ā. This
approach is detailed in Algorithm 3.

Rounding & Normalization. While Weighted MinHash allows us to sample entries with non-uniform probability,

another challenge arises: since sketches for a and b are computed independently, we no longer sample with the same

probability from both vectors. For b, Weighted MinHash samples indices with probability proportional to b[𝑖]2 instead
of a[𝑖]2. This mismatch can actually reduce the probability that we select entries from a and b with the same index.
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Algorithm 4 Vector Rounding for Weighted MinHash

Input: Length 𝑛 unit vector z, integer discretization parameter 𝐿.

Output: Length 𝑛 unit vector z̃ with z̃[𝑖]2 an integer multiple of 1/𝐿 for all 𝑖 .

1: For all 𝑖 ∈ {1, . . . , 𝑛}, z̃[𝑖] = sign(z[𝑖]) ·
√︃

bz[𝑖 ]2 ·𝐿c
𝐿

.

2: Let 𝑖∗ = argmax𝑖∈1,...,𝑛 |z[𝑖] |.
3: Fix 𝛿 = 1 − ‖z̃‖2, then set z̃[𝑖∗] = sign(z[𝑖∗]) ·

√︁
z̃[𝑖∗]2 + 𝛿 .

4: return z̃.

Algorithm 5 Weighted MinHash Estimate

Input: Sketches𝑊a = {𝑊 ℎ𝑎𝑠ℎ
a ,𝑊 𝑣𝑎𝑙

a , ‖a‖} and𝑊b = {𝑊 ℎ𝑎𝑠ℎ
b ,𝑊 𝑣𝑎𝑙

b , ‖b‖} constructed using Algorithm 3 with the same

inputs𝑚, 𝑠 , and 𝐿.

Output: Estimate of 〈a, b〉.

1: For 𝑖 ∈ {1, . . . ,𝑚}, set 𝑞𝑖 = min

(
𝑊 𝑣𝑎𝑙

a [𝑖]2,𝑊 𝑣𝑎𝑙
b [𝑖]2

)
.

2: Set 𝑀̃ = 1

𝐿
·
(

𝑚∑𝑚
𝑖=1 min(𝑊 ℎ𝑎𝑠ℎ

a [𝑖 ],𝑊 ℎ𝑎𝑠ℎ
b [𝑖 ]) − 1

)
.

3: Set 𝐼 = 𝑀̃
𝑚

∑𝑚
𝑖=1 1

[
𝑊 ℎ𝑎𝑠ℎ

a [𝑖] =𝑊 ℎ𝑎𝑠ℎ
b [𝑖]

]
· 𝑊

𝑣𝑎𝑙
a [𝑖 ] ·𝑊 𝑣𝑎𝑙

b [𝑖 ]
𝑞𝑖

.

4: return ‖a‖‖b‖ · 𝐼

We are able to balance this issue with a normalization strategy. In particular, line 2 in Algorithm 3 performs a

simple but important preprocessing step that scales and rounds a to a unit vector ã whose squared entries are all

integer multiples of 1/𝐿 for some large integer 𝐿 (to be chosen later). The rounding handles a minor issue: since we

control the frequency with which each entry a[𝑖] is sampled by repetition, we need the squared value of all entries to

be integer multiples of the same �xed constant in order to sample precisely with probability proportional to a[𝑖]2. As
will be proven, 𝐿 can be chosen so that the discretization has little impact on the accuracy of our �nal inner product

estimate, and the parameter also has no impact on the size of the sketch returned by Algorithm 1.
4

The scaling is what deals with the bigger issue discussed above, which is the mismatch in sampling probabilities

between a and b. Surprisingly, we can show that the impact of this mismatch can be controlled when ‖a‖ = ‖b‖. So
while it is possible to come up with examples where the algorithm fails if we directly sketch a and b, we can obtain a

worst-case bound by sketching a/‖a‖ and b/‖b‖, approximating 〈a/‖a‖, b/‖b‖〉, and then post-multiplying the result

by ‖a‖‖b‖ to get our �nal estimator.

Deriving the Inner Product Estimator. We next motivate Algorithm 2, which is the algorithm used to estimate

〈a, b〉 from our sketches. Note that Weighted MinHash Sketch (Algorithm 3) in fact returns an Unweighted MinHash

Sketch (Algorithm 1) for the expanded vectors ā, b̄. So, we can apply Fact 3 to obtain the following:

Fact 5. Consider vectors a and b sketched using Algorithm 3 to produce𝑊a and𝑊b. De�ne A and B as in Fact 3. For all

𝑖 ∈ {1, . . . ,𝑚} we have:

1. 𝑊 ℎ𝑎𝑠ℎ
a [𝑖] =𝑊 ℎ𝑎𝑠ℎ

b [𝑖] with probability equal to the weighted Jaccard similarity, 𝐽 =

∑𝑛
𝑗=1 min(ã[ 𝑗 ]2, ˜b[𝐽 ]2)∑𝑛
𝑗=1 max(ã[ 𝑗 ]2, ˜b[ 𝑗 ]2)

.

2. If𝑊 ℎ𝑎𝑠ℎ
a [𝑖] =𝑊 ℎ𝑎𝑠ℎ

b [𝑖], then we have that𝑊 𝑣𝑎𝑙
a = ã[ 𝑗] and𝑊 𝑣𝑎𝑙

b = b̃[ 𝑗] for 𝑗 chosen fromA∩B with probability

equal to min(ã[ 𝑗]2, ˜b[ 𝑗]2)/∑𝑛
𝑖=1 max(ã[ 𝑗]2, ˜b[ 𝑗]2).

A proof of Fact 5 is given in Appendix A.2. With the statement in place, we present our procedure for estimating

〈a, b〉 based the sketches computed by Algorithm 3. This procedure, shown in Algorithm 5, is reminiscent of our

estimator for unweighted sketches from the previous section. The only di�erence is that, since we are sampling with

non-uniform probabilities, we need to inversely weight samples in our sum to keep everything correct in expectation.

In particular, consider the sum in line 3 of the algorithm.

By Fact 5 and linearity of expectation, we have that:

4
Note that our rounding method (Algorithm 4) is non-standard: It rounds all entries of the input vector down to smaller magnitude values,

except for the largest magnitude entry in the vector, which gets rounded up. This scheme allows us to achieve small relative error when rounding

and to avoid additive error depending on 1/𝐿.
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E

[
𝑚∑︁
𝑖=1

1

[
𝑊 ℎ𝑎𝑠ℎ

a [𝑖] =𝑊 ℎ𝑎𝑠ℎ
b [𝑖]

]
·
𝑊 𝑣𝑎𝑙

a [𝑖] ·𝑊 𝑣𝑎𝑙
b [𝑖]

𝑞𝑖

]
𝑚 · E

[
1

[
𝑊 ℎ𝑎𝑠ℎ

a [𝑖] =𝑊 ℎ𝑎𝑠ℎ
b [𝑖]

] ]
·
𝑊 𝑣𝑎𝑙

a [𝑖] ·𝑊 𝑣𝑎𝑙
b [𝑖]

𝑞𝑖

=𝑚 ·
∑︁

𝑗 ∈A∩B

𝑞 𝑗∑𝑛
𝑖=1 max(ã[𝑖]2, ˜b[𝑖]2)

ã[ 𝑗] ˜b[ 𝑗]
𝑞 𝑗

=
𝑚∑𝑛

𝑖=1 max(ã[𝑖]2, ˜b[𝑖]2)
· 〈ã, ˜b〉.

So, we have obtained an estimator that in expectation is equal to 〈ã, ˜b〉, multiplied by 𝑚 over a term 𝑀 =∑𝑛
𝑖=1 max(ã[ 𝑗]2, ˜b[ 𝑗]2). This term𝑀 is referred to as the weighted union size between the vectors. We can multiply

by
𝑀
𝑚

to obtain an unbiased estimator for 〈ã, ˜b〉. Since ã and ˜b were obtained by scaling a and b inversely by their

Euclidean norms (ignoring the e�ect of rounding for now), our �nal estimator in Line 4 of Algorithm 5 multiplies by

‖a‖‖b‖. The values of ‖a‖ and ‖b‖ are stored explicitly in the sketches for a and b, respectively (as just one extra

number per sketch).

The formal analysis of Algorithm 5, which yields Theorem 2, is included in Appendix A.2. It contains three

parts. First, when analyzing the unweighted estimator, we do not know 𝑀 exactly, so must estimate it. We can

take advantage of the fact that 𝑀 is exactly equal to the unweighted union size | ¯A ∪ ¯B| between the non-zero

index sets
¯A and

¯B of the expanded vectors ā and ¯b constructed in Algorithm 3. We can apply Lemma 1 directly

to obtain an estimator, which is denoted as 𝑀̃ in Algorithm 5. Second, we need to analyze the variance of the sum∑𝑚
𝑖=1 1

[
𝑊 ℎ𝑎𝑠ℎ

a [𝑖] =𝑊 ℎ𝑎𝑠ℎ
b [𝑖]

]
· 𝑊

𝑣𝑎𝑙
a [𝑖 ] ·𝑊 𝑣𝑎𝑙

b [𝑖 ]
𝑞𝑖

. This analysis uses the fact that ã and ˜b are unit vectors. Third, we

need to rigorously analyze the impact of the rounding procedure performed in Line 2 of Algorithm 3 to establish that

a good estimate for 〈ã, ˜b〉 actually yields a good estimate for 〈a/‖a‖, b/‖b‖〉 = 1

‖a‖ ‖b‖ 〈a, b〉.
We conclude by noting that our �nal analysis of Algorithm 5 requires setting 𝐿 to be on the order of 𝑛6/𝜖2 when

sketching using Algorithm 3. This may sound large, but note that the parameter has no impact on the size of the

sketches returned by Algorithm 3, or on the runtime of our estimation procedure Algorithm 5. 𝐿 does impact the

runtime of Algorithm 3, but as discussed in Section 5, prior work can be used to implement the Weighted MinHash

sketching method so that it has a logarithmic dependence on 𝐿 – i.e., on 𝑂 (log(𝑛/𝜖)).

5 Experiments
To support the results presented in Section 4, we performed an experimental evaluation using synthetic data and

real-world datasets.

Baselines. We compare our Weighted MinHash approach against 4 baseline methods, 2 linear and 2 sampling-based,

with the goal of evaluating the trade-o� between sketch size and accuracy in estimating inner products. Those

methods are:

Johnson-Lindenstrauss Projection (JL): equivalent to the AMS sketch [Alon et al., 1999b, Achlioptas, 2003]. Uses

a random matrix 𝚷 with scaled ±1 entries (Fact 1).

CountSketch (CS): classic linear sketch introduced in [Charikar et al., 2002], and corresponds to multiplication with

a 𝚷 that has sparse random entries. We follow the implementation in [Larsen et al., 2021], using 5 repetitions of the

sketch and taking the median to improve performance.

MinHash Sampling (MH): method described in Algorithm 1; we use a single sketch without any median estimate.

𝑘-Minimum Values Sampling (KMV): sampling-based sketch closely related to MinHash, but it draws samples

from the vector being sketched without replacement. It can also be used to estimate union size. We follow the

implementations from [Beyer et al., 2007] and [Santos et al., 2021].

Weighted MinHash Sampling (WMH): our method described in Algorithm 3; we use a single sketch without any

median estimate.
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Storage Size. For linear sketches, we store the output of the matrix multiplication 𝚷a as 64-bit doubles. We also

store𝑊 𝑣𝑎𝑙
a and 𝐻 𝑣𝑎𝑙

a as 64-bit doubles. Since sampling-based sketches need to store hash values (which in our case are

32-bit ints), a sampling-based sketch with𝑚 samples takes 1.5𝑥 as much space as a JL sketch with𝑚 rows. In our

experiments, we plot storage size which denotes the total number of bits in the sketch divided by 64, i.e., the total

number of 64-bit doubles (or equivalent) used in the sketch. Standard quantization tricks could likely be used to

reduce the size of numbers in all sketches (linear and sampling), but we leave the development of such methods to

future work. As a starting point, we note that there has already been interesting work on quantized JL projections

[Jacques, 2015, Li et al., 2016], and the SimHash method for estimating cosine similarity can be viewed as a “1-bit”

quantization of a JL sketch [Charikar, 2002].

Estimation Error. For all plots, we report the absolute di�erence between 〈a, b〉 and the estimate, divided by ‖a‖‖b‖.
This is the term appearing on the right-hand side of the accuracy guarantee for linear sketches Fact 1, so this scaling

roughly ensures that errors are between 0 and 1, making it easier to compare across di�erent datasets. We always

report average error over 10 independent trials.

Choice of 𝐿. Note that the choice of 𝐿 in Algorithm 3 does not impact the size of our �nal sketch, so in general, it

should be set as large as possible. Our bounds from Lemma 3 that suggest 𝐿 should be set ≥ 𝑛6 are likely loose (we did
not attempt to optimize polynomial factors), but we did �nd that it is necessary to at least ensure that 𝐿 > 𝑛. Ideally it

should be larger by a multiplicative factor 100 or 1000. The reason for this is that, if a is dense and is normalized

to have unit norm, as in Algorithm 1, most of its entries could have squared value < 1/𝑛 (as the average value of a

squared entry in a unit norm vector is always 1/𝑛). If we set 𝐿 < 1/𝑛, then any entries with value < 1/𝑛 would get

rounded to 0, which could negatively impact the accuracy of an inner product estimate.

E�cient Weighted Hashing. When 𝐿 is large, a naive implementation of Algorithm 3 would be prohibitively slow.

The “extended” vector ā has length 𝑛 · 𝐿 and we must apply a hash function to every non-zero entry in that vector.

Let A = {𝑖 : a[𝑖] ≠ 0} as before, so |A| is equal to the number of non-zero values in a. If each hash computation is

considered unit cost, this amounts to a runtime of 𝑂 ( |A|𝑚 · 𝐿), which is too large, since 𝐿 is chosen larger than 𝑛.

Fortunately, it is possible to improve this cost to𝑂 ( |A|𝑚 · log𝐿) = 𝑂 ( |A|𝑚 · log𝑛) using techniques for speeding
up weighted MinHash sketches. Such techniques have been heavily studied in recent years [Io�e, 2010, Wu et al.,

2019, Haeupler et al., 2014, Shrivastava, 2016]. The savings are signi�cant, reducing the computation cost of sketching

to nearly-linear in the size of the input for each of our𝑚 samples. Among faster methods, we speci�cally employ the

simple “active index” technique, which was �rst introduced in [Gollapudi and Panigrahy, 2006]. The rough idea is

that, when hashing non-zero entries in a particular length 𝐿 block of ā, there is no need to hash all non-zero indices

in that block. We can skip over large sections of indices by observing that if 𝑧 is the minimum hash value generated

so far, the next index where a lower hash value will be seen is a distributed as a geometric random variable with

parameter 𝑧. We can sample from the geometric distribution e�ciently (e.g. using a built-in Python routine) and skip

ahead to that index. It is possible to prove that the expected cost of this approach is just 𝑂 (log𝐿) per block. See the
exposition in [Manasse et al., 2010] for further details.

Since initially releasing this paper, we became aware of even faster implementations of weighted MinHash that

reduce the runtime to𝑂 ( |A|+𝑚 log𝑚), which is nearly linear in the number of non-zeros in the vector being sketched

[Ertl, 2018, Christiani, 2020]. Such methods should be able to be adapted for use in our inner product sketching

application, although we leave further exploration to future work.

Choice of Hash Function. In practice we cannot obtain a truly uniform random hash function from {1, . . . , 𝑛} to
the reals, so we must use an approximation. In our experiments, we employ a standard 2-wise independent hash

function (linear function with random coe�cients) that maps from {1, . . . , 𝑛} to {1, . . . , 𝑝} for a 31-bit prime 𝑝 [Carter

and Wegman, 1979].
5
We then use as our hash value ℎ(𝑖)/𝑝 , which is a number between 0 and 1. Since 𝑝 is chosen to

have 31 bits, we can store the value of ℎ(𝑖) in our sketch using a standard 32-bit int.

5.1 Synthetic Data
We begin with an evaluation of our approach using synthetic data. We generate length 10000 vectors a and b, each
with 2000 non-zero entries. The ratio of non-zero entries that overlap, i.e., are non-zero in both a and b, is adjusted to

simulate di�erent practical settings with di�erent levels of joinability between tables (see Section 1.2). The non-zero

entries in a and b are normal random variables with values between −1 and 1, except 10% of entries are chosen

randomly as outliers and set to random values between 20 and 30.

5
Our choice to use a 2-wise independent hash function was based on prior implementations of the weighted MinHash method [Wu et al., 2020]

that do so.
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(a) 1% overlap (b) 5% overlap

(c) 10% overlap (d) 50% overlap

Figure 4: Inner product estimation (synthetic data).

Results for varying amounts of overlap are reported in Figure 4. They closely align with our theoretical �ndings:

when the overlap is small, the bounds for Weighted MinHash are signi�cantly better than those of linear sketching

methods. Accordingly, WMH outperforms all other methods for overlap ratio ≤ 10%. Note that unweighted sampling

based sketches also outperform linear sketches for very low overlap (1%). But as the overlap increases, the advantage

brought about by Theorem 2 over Fact 1 decreases. We can see this in Figure 4(d): at 50% overlap, the performance of

linear sketching is comparable to that of Weighted MinHash.

5.2 Real-World Data
Assessing the E�ect of Overlap and Outliers. Using sketches of size 400,6 we estimate the inner product between

5000 pairs of numerical columns from 56 datasets published by the World Bank Group [World Bank, 2022]. We

normalize columns to have norm 1 so that all inner products have magnitude less than 1. We visual results using

a winning table in Figure 5, �lting vector pairs based on di�erent overlap ratios (column) and kurtosis values, a

measure of outliers (row). Each cell shows the average error di�erence (WMH estimation error minus the error of

other method) for vector pairs with the speci�ed overlap and kurtosis values.

The blue cells (negative di�erence) correspond to combinations in which WMH outperforms the other methods,

while the red cells (positive di�erence) represent combinations in which the other methods win. The darker the cells,

6
The size was chosen empirically. Our goal here is to simulate the real-world situation where a �xed parameter must be selected for a given

application.
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(a) WMH estimation error minus JL estimation error. (b) WMH estimation error minus MH estimation error.

Figure 5: Inner product estimation (World Bank data). Di�erent shades of blue highlight combinations for which

WMH outperforms the other methods.
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(b) Documents > 700 words

Figure 6: Text similarity estimation (20 Newsgroups dataset). Note that in the left plot, the lines for MH, WMH, and

KMV all lie essentially on top of one another.

the bigger the di�erence. A high kurtosis often indicates the presence of outliers, which will, based on our theoretical

results, present a di�culty for unweighted sampling methods like MH in comparison to JL or our WMH method.

This is supported by the experiments, which show that WMH has a great improvement over MH when kurtosis is

high (up to -.031 vs. at most -.020 when kurtosis is low). As predicted by Theorem 2 and shown in our synthetic

experiments, WMH also has a great edge over JL for low overlap values. For large overlaps (greater than .75), JL leads

to slightly smaller errors (from 0.003 to 0.006).

This suggests that WMH provides a good compromise for applications in which the distribution of data is unknown:

it provides much better estimates for many cases, and when it does not, its estimates are comparable to the best results

from existing sketching methods.

Document Similarity Estimation. We also evaluated the performance of WMH sketches for text similarity

estimation using the 20 newsgroups dataset [Mitchell, 1997]. We represent each document as a vector in which each

entry represents a term or a combination of 2 terms (bigrams), and is associated with a value that encodes term/bigram

importance using TF-IDF weights [Salton et al., 1975]. This setting is well-known for generating sparse vectors

of very high dimension. As a similarity measure, we use the cosine, which is equal to an inner product when the

vectors have are normalized. We sampled 700 documents and estimated the cosine similarity for over 200,000 pairs of

documents. The results in Fig. 6 show that, similar to previous experiments, in the worst case, the accuracy of WMH is

comparable to the other methods, but it can sometimes be better by a large margin. In this case, it performs better for

documents containing more than 700 words. Note that linear projection sketches have poor performance for small

sketches even when the documents are small, whereas our sampling-based methods are able to obtain signi�cantly
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better accuracy for the same storage budget. Finally, also note that the Unweighted MinHash (MH) performs poorly

for long documents whereas the weighted version still performs well.
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A Additional Proofs

A.1 Unweighted MinHash Analysis
In this section, we give a full proof of Theorem 4.

Proof of Theorem 4. Let F (𝐻a, 𝐻b) denote the estimator from Algorithm 2. Ultimately we will set F in Theorem 4 to

be F , but repeated 𝑂 (log(1/𝛿) times to obtain failure probability 1 − 𝛿 .
We focus on showing �rst that F (𝐻a, 𝐻b) achieves error 𝜖 · 𝑐2 ·

√︁
max( |A|, |B|) · |A ∩ B| with probability ≥ 2/3.

To prove this, let F ∗ (𝐻a, 𝐻b) be an alternative idealized estimator where we replace 𝑈̃ in line 1 of Algorithm 2 with

the true union size𝑈 = |A ∪ B|:

F ∗ (𝐻a, 𝐻b) =
𝑈

𝑚

𝑚∑︁
𝑖=1

1

[
𝐻ℎ𝑎𝑠ℎa [𝑖] = 𝐻ℎ𝑎𝑠ℎb [𝑖]

]
· 𝐻 𝑣𝑎𝑙

a [𝑖] · 𝐻 𝑣𝑎𝑙
b [𝑖] .

We will �rst analyze F ∗
, before showing that F obtains essentially as good of an estimate. As established in Section 3,

using the properties of Fact 3, we have that

E [F ∗ (𝐻a, 𝐻b)] = 𝑈 · 1

|A ∪ B| · 〈a, b〉 = 〈a, b〉.

So we turn to bounding the variance of the estimator. De�ne the random variable 𝑍𝑖 = 1
[
𝐻ℎ𝑎𝑠ℎa [𝑖] = 𝐻ℎ𝑎𝑠ℎb [𝑖]

]
·

𝐻 𝑣𝑎𝑙
a [𝑖] · 𝐻 𝑣𝑎𝑙

b [𝑖] and note that F ∗ (𝐻a, 𝐻b) = 𝑈
𝑚

∑𝑚
𝑖=1 𝑍𝑖 . From Fact 3 we have:

𝑍𝑖 =

{
0 with probability 1 − |A∩B |

|A∪B |
a[ 𝑗]b[ 𝑗] with probability

1

|A∪B | for all 𝑗 ∈ A ∩ B .

Since each 𝑍𝑖 is independent, we can bound:

Var [F ∗ (𝐻a, 𝐻b)] =
𝑈 2

𝑚2

𝑚∑︁
𝑖=1

Var [𝑍𝑖 ] .

Using our assumption that a[𝑘], b[𝑘] ≤ 𝑐 for all 𝑘 , we have

Var [𝑍𝑖 ] ≤ E
[
𝑍 2

𝑖

]
=

∑︁
𝑗 ∈A∩B

1

|A ∪ B| · a[ 𝑗]
2b[ 𝑗]2 ≤ 𝑐4 · |A ∩ B|

|A ∪ B| ,

for all 𝑍𝑖 . So we conclude that Var [F ∗ (𝐻a, 𝐻b)] ≤ 1

𝑚
·𝑐4 · |A∩B||A∪B|.We then plug our expectation and variance

bounds into Chebyhev’s inequality. If𝑚 = 𝑂 (1/𝜖2), we conclude that with probability ≥ 5/6,

|F ∗ (𝐻a, 𝐻b) − 〈a, b〉| ≤ 𝜖 · 𝑐2
√︁
|A ∩ B||A ∪ B|. (1)

The proof is almost complete; we just need to extend this bound to the non-idealized estimator F = 𝑈̃
𝑈
· F ∗

. We

do so by observing that 𝑈̃ is a good approximation to𝑈 . Speci�cally, by Lemma 1 applied with 𝛿 = 1/6, we have that,
when𝑚 = 𝑂 (1/𝜖2), (1 − 𝜖)𝑈 ≤ 𝑈̃ ≤ (1 + 𝜖)𝑈 , with probability ≥ 5/6. It follows that

(1 − 𝜖)F ∗ (𝐻a, 𝐻b) ≤ F (𝐻a, 𝐻b) ≤ (1 + 𝜖)F ∗ (𝐻a, 𝐻b). (2)

By a union bound, with probability at least 2/3, both (1) and (2) hold simultaneously. Finally, by triangle inequality

and the fact that 〈𝑎, 𝑏〉 ≤ 𝑐2 |A ∩ B| ≤ 𝑐2
√︁
|A ∩ B||A ∪ B| it follows that:

|F (𝐻a, 𝐻b) − 〈a, b〉| ≤ 3𝜖 · 𝑐2 ·
√︁
|A ∩ B||A ∪ B|.

Noting that |A ∩ B||A ∪ B| ≤ 2max( |A|, |B|) · |A ∩ B| and adjusting 𝜖 by a constant factor, we thus have that

when𝑚 = 𝑂 (1/𝜖2), F (𝐻a, 𝐻b) satis�es the guarantee of Theorem 4 with probability at least 2/3. To boost success
probability to 1 − 𝛿 , we can use the exact same median-trick used in the proof of Theorem 2: instead of computing

a single pair of sketches 𝐻a, 𝐻b for inputs a, b, we concatenate 𝑂 (log(1/𝛿)) sketches, each constructed using an

independent random seed. If we apply F to each pair of independent sketches and return the median estimate for

〈a, b〉, with probability at least 1 − 𝛿 , it will satisfy our desired guarantee. �
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A.2 Weighted MinHash Analysis
In this section we complete the analysis of Algorithm 5 introduced in Section 4, which yields our main result,

Theorem 2. We start with a formal proof of Fact 5, which is the weighted analog of Fact 3.

Proof of Fact 5. Let
¯A = {𝑖 : ā[𝑖] ≠ 0} and ¯B = {𝑖 : b̄[𝑖] ≠ 0}. Since ā, b̄ are each comprised of 𝑛 blocks of 𝐿 elements,

with the �rst ã[𝑖]2 · 𝐿 entries and b̃[𝑖]2 · 𝐿 entries in the 𝑖th block set to be nonzero, we have the following equalities:

| ¯A ∩ ¯B| = 𝐿 ·
𝑛∑︁
𝑗=1

min(ã[ 𝑗]2, ˜b[ 𝑗]2) (3)

| ¯A ∪ ¯B| = 𝐿 ·
𝑛∑︁
𝑗=1

max(ã[ 𝑗]2, ˜b[ 𝑗]2). (4)

Since Wℎ𝑎𝑠ℎ
a [𝑖] and Wℎ𝑎𝑠ℎ

b [𝑖] are constructed exactly as unweighted MinHash sketches of ā, b̄, by claim (1) of Fact 3,

Wℎ𝑎𝑠ℎ
a [𝑖] = Wℎ𝑎𝑠ℎ

b [𝑖] with probability
| ¯A∩ ¯B |
| ¯A∪ ¯B | = 𝐽 . This gives claim (1).

To prove claim (2) we note that it is equivalent to claiming that, unconditional on whether or not Wℎ𝑎𝑠ℎ
a [𝑖] =

Wℎ𝑎𝑠ℎ
b [𝑖], 𝑊 𝑣𝑎𝑙

a = ã[ 𝑗] and 𝑊 𝑣𝑎𝑙
b = b̃[ 𝑗] for some shared 𝑗 ∈ A ∩ B with probability

min(ã[ 𝑗 ]2, ˜b[ 𝑗 ]2)∑𝑛
𝑖=1 max(ã[ 𝑗 ]2, ˜b[ 𝑗 ]2)

. To

prove this statement, we use that, by Fact 3, for any ℓ ∈ ¯A ∩ ¯B,𝑊 ℎ𝑎𝑠ℎ
a [𝑖] = 𝑊 ℎ𝑎𝑠ℎ

b [𝑖] = ℎ𝑖 (ℓ), W𝑣𝑎𝑙
a [𝑖] = ā[ℓ],

and W𝑣𝑎𝑙
b [𝑖] = b̄[ℓ] with probability

1

| ¯A∪ ¯B | =
1

𝐿
∑𝑛
𝑘=1

max(ã[𝑘 ]2, ˜b[𝑘 ]2)
. Now, by construction (line 3 of Algorithm 3),

ā[ℓ] = ã[ 𝑗] and b̄[ℓ] = b̃[ 𝑗] whenever ℓ lies in the 𝑗 th length 𝐿 block of entries in ā. For a given 𝑗 , the number of

values of ℓ for which ā[ℓ] = ã[ 𝑗], b̄[ℓ] = b̃[ 𝑗] is exactly 𝐿 · min(ã[ 𝑗]2, b̃[ 𝑗]2). Thus, summing over these entries,

𝑊 ℎ𝑎𝑠ℎ
a [𝑖] =𝑊 ℎ𝑎𝑠ℎ

b [𝑖],W𝑣𝑎𝑙
a [𝑖] = ã[ 𝑗], and W𝑣𝑎𝑙

b [𝑖] = b̃[ 𝑗] with probability
min(ã[ 𝑗 ]2,b̃[ 𝑗 ]2)∑𝑛
𝑘=1

max(ã[𝑘 ]2, ˜b[𝑘 ]2)
. �

Analysis for Discrete Vectors. Next, as a step towards proving Theorem 2, we prove a restricted intermediate result,

Lemma 2, that only applies to vectors whose entries, after scaling to be unit norm, are already integer multiplies of

1/𝐿 for a �xed discretization parameter 𝐿. When this is the case, the Round procedure in Algorithm 3 is no-op: it

simply returns a/‖a‖ unmodi�ed. Making this assumption simpli�es our analysis. Later we introduce a rounding

error analysis to obtain a result for arbitrary vectors.

Lemma 2. Consider any integer discretization parameter 𝐿, accuracy parameter 𝜖 ∈ (0, 1), and a, b ∈ R𝑛 such that for

all 𝑖 ,
a[𝑖 ]2
‖a‖2 and

b[𝑖 ]2
‖b‖2 are integer multiples of 1/𝐿. When run with sample size𝑚 = 𝑂

(
1/𝜖2

)
and discretization parameter

𝐿, Algorithm 3 returns sketches𝑊a and𝑊b such that, letting F denote the estimation procedure of Algorithm 5, with

probability at least 2/3,

|F (𝑊a,𝑊b) − 〈a, b〉| ≤ 𝜖 max (‖aI ‖‖b‖, ‖a‖‖bI ‖) .

Here I = {𝑖 : a[𝑖] ≠ 0 and b[𝑖] ≠ 0} is the intersection of a’s and b’s supports and aI, bI denote a and b restricted to

indices in I.
Note that Lemma 2 is also weaker than Theorem 2 in that it only gives an accurate solution with constant

probability, 2/3, instead of 1 − 𝛿 probability for any chosen 𝛿 . This is again to simplify the analysis and later we show

how the standard “median-trick” can be used to improve the success probability to 1− 𝛿 [Cormode et al., 2011, Larsen

et al., 2021].

Proof. As stated, since a/‖a‖ and b/‖b‖ have squared entries that are integer multiples of 1/𝐿 by assumption, in line

2 of Algorithm 3, Round(a/‖a‖, 𝐿) simply sets ã = a/‖a‖. Analogously it sets b̃ = b/‖b‖. Let A = {𝑖 : a[𝑖] ≠ 0} and
B = {𝑖 : b[𝑖] ≠ 0} denote the supports of a and b respectively. We have I = A ∩ B.

Reduction to Unit Vectors. We �rst note that, to prove the theorem, it su�ces to only consider the inner product

between the unit vectors ã and b̃. Speci�cally, we will show that:����F (𝑊a,𝑊b)
‖a‖‖b‖ − 〈ã, b̃〉

���� (5)

≤ 𝜖

√√ ∑︁
𝑖∈A∩B

max(ã[𝑖]2, b̃[𝑖]2)
𝑛∑︁
𝑖=1

max(ã[𝑖]2, b̃[𝑖]2).
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Using that ‖ã‖2 + ‖b̃‖2 = 2 since ã, b̃ are unit vectors, we have:√√ ∑︁
𝑖∈A∩B

max(ã[𝑖]2, b̃[𝑖]2)
𝑛∑︁
𝑖=1

max(ã[𝑖]2, b̃[𝑖]2)

≤
√︂(

‖ãI ‖2 + ‖b̃I ‖2
) (

‖ã‖2 + ‖b̃‖2
)

=

√︂
2

(
‖ãI ‖2 + ‖b̃I ‖2

)
=

√︄
2

(
‖aI ‖2
‖a‖2 + ‖bI ‖2

‖b‖2

)
.

Thus, multiplying (5) on both sides by ‖a‖‖b‖ we have:

|F (𝑊a,𝑊b) − 〈a, b〉| ≤ 𝜖
√
2‖a‖‖b‖ ·

√︄
‖aI ‖2
‖a‖2 + ‖bI ‖2

‖b‖2

= 𝜖
√
2

√︁
‖aI ‖2‖b‖2 + ‖bI ‖2‖a‖2

≤ 2𝜖 ·max (‖aI ‖‖b‖, ‖bI ‖‖a‖) .

The last inequality follows from the fact that the sum is at most two times the max. Adjusting 𝜖 by a constant gives

the desired bound of Lemma 2. Thus, we turn our attention to proving (5).

Analysis for Unit Vectors. We start by analyzing an idealized version of the estimator computed by Algorithm 5,

where𝑀 is replaced by the exact weighted union size𝑀 =
∑𝑛
𝑖=1 max(ã[𝑖]2, ˜b[𝑖]2). Speci�cally, de�ne:

F ∗ =
𝑀

𝑚

𝑚∑︁
𝑖=1

1

[
𝑊 ℎ𝑎𝑠ℎ

a [𝑖] =𝑊 ℎ𝑎𝑠ℎ
b [𝑖]

]
·
𝑊 𝑣𝑎𝑙

a [𝑖] ·𝑊 𝑣𝑎𝑙
b [𝑖]

𝑞𝑖
, (6)

where 𝑞𝑖 = min

(
𝑊 𝑣𝑎𝑙

a [𝑖]2,𝑊 𝑣𝑎𝑙
b [𝑖]2

)
as in line 1 of Algorithm 5.

We �rst show that E[F ∗] = 〈ã, ˜b〉 and then bound F ∗
’s variance. For each 𝑖 ∈ {1, . . . ,𝑚} de�ne the random

variable 𝑍𝑖 as

𝑍𝑖 = 1

[
𝑊 ℎ𝑎𝑠ℎ

a [𝑖] =𝑊 ℎ𝑎𝑠ℎ
b [𝑖]

]
·
𝑊 𝑣𝑎𝑙

a [𝑖] ·𝑊 𝑣𝑎𝑙
b [𝑖]

𝑞𝑖
.

Recalling that 𝐽 =

∑𝑛
𝑗=1 min(ã[ 𝑗 ]2, ˜b[ 𝑗 ]2)∑𝑛
𝑗=1 max(ã[ 𝑗 ]2, ˜b[ 𝑗 ]2)

is the weighted Jaccard similarity between ã and b̃, applying Fact 5 we have:

𝑍𝑖 =


0 with probability 1 − 𝐽

ã[ 𝑗 ] ˜b[ 𝑗 ]
min(ã[ 𝑗 ]2, ˜b[ 𝑗 ]2)

with probability
min(ã[ 𝑗 ]2, ˜b[ 𝑗 ]2)∑𝑛
𝑘=1

max(ã[𝑘 ]2, ˜b[𝑘 ]2)
for all 𝑗 ∈ A ∩ B .

Thus, E[𝑍𝑖 ] = 〈ã, ˜b〉∑𝑛
𝑘=1

max(ã[𝑘 ]2, ˜b[𝑘 ]2)
=

〈ã, ˜b〉
𝑀

. Since F ∗ = 𝑀
𝑚

∑𝑚
𝑖=1 𝑍𝑖 , it follows from linearity of expectation that:

E[F ∗] = 𝑀

𝑚

𝑚∑︁
𝑖=1

E [𝑍𝑖 ] = 〈ã, b̃〉. (7)

We next bound the variance of F ∗
. For each 𝑍𝑖 we have that:

Var[𝑍𝑖 ] ≤
∑︁

𝑗 ∈A∩B

min(ã[ 𝑗]2, ˜b[ 𝑗]2)∑𝑛
𝑘=1

max(ã[𝑘]2, ˜b[𝑘]2)
· ã[ 𝑗]2 ˜b[ 𝑗]2

min(ã[ 𝑗]2, ˜b[ 𝑗]2)2

=
∑︁

𝑗 ∈A∩B

max(ã[ 𝑗]2, ˜b[ 𝑗]2)∑𝑛
𝑘=1

max(ã[𝑘]2, ˜b[𝑘]2)

=

∑
𝑗 ∈A∩B max(ã[ 𝑗]2, ˜b[ 𝑗]2)∑𝑛
𝑘=1

max(ã[𝑘]2, ˜b[𝑘]2)
=

∑
𝑗 ∈A∩B max(ã[ 𝑗]2, ˜b[ 𝑗]2)

𝑀
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Since each 𝑍𝑖 is independent, it follows that:

Var[F ∗] = 𝑀2

𝑚2

𝑚∑︁
𝑖=1

Var [𝑍𝑖 ]

≤ 1

𝑚

∑︁
𝑗 ∈A∩B

max(ã[ 𝑗]2, ˜b[ 𝑗]2) ·
𝑛∑︁
𝑗=1

max(ã[ 𝑗]2, ˜b[ 𝑗]2). (8)

Combining (7) and (8) with Chebyshev’s inequality, we can claim that when𝑚 = 𝑂 (1/𝜖2), with probability at least

5/6: ���F ∗ − 〈ã, ˜b〉
��� ≤ 𝜖√√√ ∑︁

𝑗 ∈A∩B
max(ã[ 𝑗]2, ˜b[ 𝑗]2)

𝑛∑︁
𝑗=1

max(ã[ 𝑗]2, ˜b[ 𝑗]2). (9)

We want to extend this bound from the idealized estimator F ∗
to our true estimator F , which equals

𝑀̃
𝑀

· F ∗
. To

do so, we use that 𝑀̃ is a good approximation to 𝑀 . As discussed in Section 4, this is because 𝑀̃ exactly equals
1

𝐿

times a distinct elements estimator applied to the support sets
¯A and

¯B of the extended vectors ā, b̄. From (4) and

Lemma 1, we have that for𝑚 = 𝑂 (1/𝜖2),

(1 − 𝜖)𝑀 ≤ 𝑀̃ ≤ (1 + 𝜖)𝑀,

with probability at least 5/6. It follows that:

(1 − 𝜖)F ∗ ≤ F (𝑊a,𝑊b)
‖a‖‖b‖ ≤ (1 + 𝜖)F ∗ . (10)

By a union bound, with probability at least 2/3, both (9) and (10) hold simultaneously. Finally, by Cauchy-Schwarz

inequality,

〈ã, ˜b〉 ≤

√√√ ∑︁
𝑗 ∈A∩B

max(ã[ 𝑗]2, ˜b[ 𝑗]2)
𝑛∑︁
𝑗=1

max(ã[ 𝑗]2, ˜b[ 𝑗]2).

Combining (9) and (10) with triangle inequality, it follows that����F (𝑊a,𝑊b)
‖a‖‖b‖ − 〈ã, ˜b〉

����
≤ 3𝜖

√√√ ∑︁
𝑗 ∈A∩B

max(ã[ 𝑗]2, ˜b[ 𝑗]2)
𝑛∑︁
𝑗=1

max(ã[ 𝑗]2, ˜b[ 𝑗]2).

Adjusting 𝜖 by a 1/3 factor proves Lemma 2. �

Rounding for Continuous Vectors. With Lemma 2 in place, we complete our proof of Theorem 2 by analyzing

the impact of the rounding step in Algorithm 5. In Lemma 3, we show that if 𝐿 is set on the order of 𝑛6/𝜖2, then we

can bound the impact of this step on the accuracy of our inner product estimate. Formally, we have:

Lemma 3 (Rounding). Consider any a, b ∈ R𝑛 and discretization parameter 𝐿. Let ã = Round(a/‖a‖, 𝐿) and

b̃ = Round(b/‖b‖, 𝐿), as in line 2 of Algorithm 3. Let a′ = ‖a‖ · ã and b′ = ‖b‖ · b̃, and let 𝐵 denote 𝐵 =

max (‖aI ‖‖b‖, ‖a‖‖bI ‖) .

1. a′, b′ satisfy the assumption of Lemma 2, that for all 𝑖 ,
a′ [𝑖 ]2
‖a′ ‖2 and

b′ [𝑖 ]2
‖b′ ‖2 are integer multiples of 1/𝐿.

2. For any discretization parameter 𝐿, sketch size𝑚, and random seed 𝑠 , Algorithm 3 yields identical outputs on a, b
and a′, b′. I.e.,𝑊a =𝑊a′ and𝑊b =𝑊b′ .

3. For 𝐿 ≥ 9𝑛6/𝜖2, |〈a, b〉 − 〈a′, b′〉| ≤ 𝜖𝐵.
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4. For 𝐿 ≥ 𝑛3, max

(
‖a′I ‖‖b

′‖, ‖a′‖‖b′I ‖
)
≤ 2𝐵.

Proof. We prove the four claims of the lemma in order. For the �rst two, we focus on a and a′. Identical claims hold

for b and b′.
Claim 1: a′ [𝑖 ]2

‖a′ ‖2 is an integer multiple of 1/𝐿 for all 𝑖 . First observe that ã = Round(a/‖a‖, 𝐿) is a unit vector. This
is ensured by line 3 of Algorithm 4. Thus, ‖a′‖ = ‖a‖ · ‖ã‖ = ‖a‖ and a′ [𝑖 ]2

‖a′ ‖2 =
a′ [𝑖 ]2
‖a‖2 = ã[𝑖]2. So to prove the claim, it

su�ces to show that ã[𝑖]2 is an integer multiple of 1/𝐿 for all 𝑖 . This is guaranteed by Algorithm 4. After line 1, we

can see that z̃[𝑖]2 is an integer multiple of 1/𝐿 for all 𝑖 . Since 𝐿 is an integer, 1 is also trivially an integer multiple of

1/𝐿. So 𝛿 = 1 − ‖z̃‖2 as set in line 2 is an integer multiple of 1/𝐿. Finally, this ensures that z̃[𝑖∗]2 = z̃[𝑖∗]2 + 𝛿 as set in

line 3 is an integer multiple of 1/𝐿, completing the claim.

Claim 2:𝑊a =𝑊a′ . As shown above, ‖a′‖ = ‖a‖. So to prove the claim, it su�ces to show that Round

(
a
‖a‖ , 𝐿

)
=

Round

(
a′
‖a′ ‖ , 𝐿

)
. This ensures that Algorithm 3 proceeds identically on inputs a and a′. By Claim (1), Round(a′/‖a′‖, 𝐿) =

a′/‖a′‖ = a′/‖a‖ = ã. And by de�nition, ã = Round(a/‖a‖, 𝐿). This completes the claim.

Claim 3: For 𝐿 ≥ 9𝑛6/𝜖2, |〈a, b〉 − 〈a′, b′〉| ≤ 𝜖𝐵. Let â = a/‖a‖ and b̂ = b/‖b‖. So ã = Round(â, 𝐿) and b̃ =

Round(b̂, 𝐿). We will show that ���〈â, b̂〉 − 〈ã, b̃〉
��� ≤ 𝜖 ·√︃‖âI ‖2 + ‖b̂I ‖2 . (11)

Multiplying each side of (11) by ‖a‖‖b‖ then gives:

|〈a, b〉 − 〈a′, b′〉| ≤ 𝜖 · ‖a‖‖b‖
√︃
‖âI ‖2 + ‖b̂I ‖2

= 𝜖 · ‖a‖‖b‖

√︄(
‖aI ‖2
‖a‖2 + ‖bI ‖2

‖b‖2

)
= 𝜖

√︁
(‖aI ‖2‖b‖2 + ‖bI ‖2‖a‖2)

≤
√
2𝜖 ·max

(
‖aI ‖2‖b‖2, ‖bI ‖2‖a‖2

)
,

which completes the claim after adjusting 𝜖 by a constant.

We proceed to prove (11). Observe that for any 𝑖 ∉ I, we have at least one of â[𝑖] or b̂[𝑖] equal to 0. In turn, at

least one of ã[𝑖] or b̃[𝑖] is also 0 since in the rounding procedure of Algorithm 4 any entry of z that is 0 is set to 0 in z̃.
So we can conclude that 〈â, b̂〉 = 〈âI, b̂I〉 and similarly, 〈ã, b̃〉 = 〈ãI, b̃I〉. This gives that:���〈â, b̂〉 − 〈ã, b̃〉

��� = ���〈âI, b̂I〉 − 〈ãI, b̃I〉
��� .

So, to prove (11), it su�ces to bound the righthand side of the above equation. We consider two cases:

Case 1: max

(
‖âI ‖, ‖b̂I ‖

)
≥ 1√

𝐿
. For 𝑖 ∈ I, if |â[𝑖] | < 1√

𝐿
and 𝐿 ≥ 𝑛, then |â[𝑖] | < 1√

𝑛
and so 𝑖 ≠ argmax𝑖∈1,...,𝑛 â[𝑖]

since â is a unit vector so has at least one entry with magnitude ≥ 1/
√
𝑛. Thus, â[𝑖] is rounded in line 1 of Algorithm 4,

and not in line 3. We have bâ[𝑖]2 · 𝐿c = 0 and so |ã[𝑖] − â[𝑖] | = |â[𝑖] | < 1√
𝐿
. Alternatively, if |â[𝑖] | ≥ 1√

𝐿
and

𝑖 ≠ argmax𝑖∈1,...,𝑛 â[𝑖] (so â[𝑖] is rounded in line 1 but not line 3 of Algorithm 4) then:

|ã[𝑖] − â[𝑖] | ≤ 1

√
𝐿
·
���√︁â[𝑖]2 · 𝐿 − √︁

â[𝑖]2 · 𝐿 − 1

���
=

1

√
𝐿
· 1√︁

â[𝑖]2 · 𝐿 +
√︁
â[𝑖]2 · 𝐿 − 1

≤ 1

√
𝐿
.

If 𝑖 = argmax𝑖∈1,...,𝑛 â[𝑖] then â[𝑖] is rounded in line 3 and so

|ã[𝑖] − â[𝑖] | ≤
���√︁â[𝑖]2 + 𝛿 − |â[𝑖] |

��� ≤ 𝛿

2|â[𝑖] | , (12)
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where we use that

√
𝑥 is concave with derivative

1

2 |â[𝑖 ] | at â[𝑖]
2
. In line 2 of Algorithm 4 we set 𝛿 = 1 − ‖ã‖2, where ã

is formed by rounding down entries of â in line 1. Each squared entry is rounded down by at most 1/𝐿, so recalling

that â is a unit vector, 𝛿 ≤ 𝑛/𝐿. Plugging into (12), and recalling that we assume â[𝑖] ≥ 1/
√
𝐿,

|ã[𝑖] − â[𝑖] | ≤ 𝑛/𝐿
2/
√
𝐿
≤ 𝑛

√
𝐿
. (13)

Overall, we can conclude that ‖ãI − âI ‖∞ ≤ 𝑛√
𝐿
. Similarly, we have ‖b̃I − b̂I ‖∞ ≤ 𝑛√

𝐿
. Thus,���〈ã, b̃〉 − 〈â, b̂〉

��� = ���〈ãI, b̃I〉 − 〈âI, b̂I〉
���

≤ 𝑛
√
𝐿

(
‖âI ‖1 + ‖b̂I ‖1

)
+ |I| · 𝑛2

𝐿
.

By Cauchy-Schwarz, we have ‖âI ‖1 ≤
√︁
|I | · ‖âI ‖ and ‖b̂I ‖1 ≤

√︁
|I | · ‖b̂I ‖. Overall, this gives:���〈ã, b̃〉 − 〈â, b̂〉

��� ≤ 𝑛
√︁
|I |

√
𝐿

(
‖âI ‖ + ‖b̂I ‖

)
+ |I| · 𝑛2

𝐿

≤ 𝑛3
√
𝐿
·
(
‖âI ‖ + ‖b̂I ‖ +max

(
‖âI ‖, ‖b̂I ‖

))
,

where in the last line we use that |I | ≤ 𝑛, along with the assumption of Case 1 that max

(
‖âI ‖, ‖b̂I ‖

)
≥ 1√

𝐿
. Setting

𝐿 ≥ 9𝑛6

𝜖2
, we have ���〈ã, b̃〉 − 〈â, b̂〉

��� ≤ 𝜖 ·max

(
‖âI ‖, ‖b̂I ‖

)
≤ 𝜖 ·

√︃
‖âI ‖2 + ‖b̂I ‖2.

This proves (11) for Case 1.

Case 2: max

(
‖âI ‖, ‖b̂I ‖

)
< 1√

𝐿
. In this case, for all 𝑖 ∈ I, |â[𝑖] | < 1√

𝐿
and | ˆb[𝑖] | < 1√

𝐿
. Thus, for 𝐿 > 𝑛,

no 𝑖 ∈ I satis�es 𝑖 = argmax𝑖∈1,...,𝑛 â[𝑖] or 𝑖 = argmax𝑖∈1,...,𝑛 b̂[𝑖]. So for all 𝑖 ∈ I, â[𝑖] and b̂[𝑖] are rounded

to 0 in line 1 of Algorithm 4. I.e., ãI and
˜bI are both all zero vectors. So, to prove (11), we must show that���〈âI, b̂I〉��� ≤ 𝜖 ·√︃‖âI ‖2 + ‖b̂I ‖2 . This follows from Cauchy-Schwarz and our assumption that ‖aI ‖, ‖bI ‖ < 1√

𝐿���〈âI, b̂I〉��� ≤ ‖âI ‖‖b̂I ‖ ≤ 1

√
𝐿
max

(
‖âI ‖, ‖b̂I ‖

)
≤ 1

√
𝐿

√︃
‖âI ‖2 + ‖b̂I ‖2.

Setting 𝐿 ≥ 1

𝜖2
gives (11), completing Claim (3) of the lemma.

Claim 4: For 𝐿 ≥ 𝑛3, max

(
‖a′I ‖‖b

′‖, ‖a′‖‖b′I ‖
)
≤ 2𝐵. Recall that by construction ‖a′‖ = ‖a‖ and ‖b′‖ = ‖b‖. Thus,

dividing each side of the inequality by ‖a‖‖b‖ it su�ces to show:

max

( ‖a′I ‖
‖a‖ ,

‖b′I ‖
‖b‖

)
≤ 2max

(
‖aI ‖
‖a‖ ,

‖bI ‖
‖b‖

)
.

I.e., we must show that max(‖ãI ‖, ‖b̃I ‖) ≤ 2max(‖âI ‖, ‖b̂I ‖). It su�ces to show that ‖ãI ‖ ≤ 2‖âI ‖ and that

‖b̃I ‖ ≤ 2‖b̂I ‖. We focus on proving this for a. The bound for b follows the same argument. We consider two cases.

Let 𝑖∗ = argmax𝑖∈1,...,𝑛 |â[𝑖] |.
Case 1: 𝑖∗ ∉ I. In this case, all entries in âI are only rounded in line 1 of Algorithm 4. They are thus all rounded

down and so ‖ãI ‖ ≤ ‖âI ‖, giving the claim.

Case 2: 𝑖∗ ∈ I. In this case, since â is a unit vector, we have ‖âI ‖ ≥ |â[𝑖∗] | ≥ 1/
√
𝑛 ≥ 1/

√
𝐿 when 𝐿 > 𝑛.

Further, all entries in âI are rounded down, except â[𝑖∗]. But as shown via (13), |ã[𝑖∗] | ≤ |â[𝑖∗] | + 𝑛√
𝐿
. Thus,

‖ãI ‖ ≤ ‖âI ‖ + 𝑛√
𝐿
≤ 2‖âI ‖, as long as 𝐿 ≥ 𝑛3.

This completes Claim (4) and thus the lemma. �
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Putting everything together. Finally, we prove our main result by combining Lemma 3 with Lemma 2.

Proof of Theorem 2. Given any a, b ∈ R𝑛 , let a′ and b′ be de�ned as in Lemma 3. Consider applying Algorithm 3 to

compute sketches𝑊a,𝑊b,𝑊a′,𝑊b′ of size𝑚 = 𝑂 (1/𝜖2), using discretization parameter 𝐿 = 𝑂 (𝑛6/𝜖2). Using the �rst
claim of Lemma 3 , we can apply Lemma 2 to a′, b′ to show that with probability ≥ 2/3,

|F (𝑊a′,𝑊b′) − 〈a′, b′〉| ≤ 𝜖 max

(
‖a′I ‖‖b

′‖, ‖a′‖‖b′I ‖
)
.

Combining triangle inequality with Claims (2) and (4) of Lemma 3, we conclude that with probability ≥ 2/3,

|F (𝑊a,𝑊b) − 〈a, b〉| ≤ |〈a, b〉 − 〈a′, b′〉|
+ 2𝜖 max (‖aI ‖‖b‖, ‖a‖‖bI ‖) .

Finally, applying Claim (3) of Lemma 3 gives that

|F (𝑊a,𝑊b) − 〈a, b〉| ≤ 3𝜖 max (‖aI ‖‖b‖, ‖a‖‖bI ‖) .

After adjusting 𝜖 by a factor of 1/3, this establishes the bound of Theorem 2. The probability of success is 2/3. Using
a standard trick, we can boost the success probability by computing 𝑡 = 𝑂 (log(1/𝛿)) independent sketches of a, b
using Algorithm 3 with independent random seeds [Cormode et al., 2011]. Call these sketches𝑊

(1)
a , . . . ,𝑊

(𝑡 )
a and

𝑊
(1)
b , . . . ,𝑊

(𝑡 )
b . For any 𝑖 , with probability ≥ 2/3,

|F (𝑊 (𝑖)
a ,𝑊

(𝑖)
b ) − 〈a, b〉| ≤ 𝜖 max (‖aI ‖‖b‖, ‖a‖‖bI ‖) .

Via a standard Cherno� bound, with probability at least 1 − 𝛿 , this bound holds for > 𝑡/2 of the independent sketches.
Thus, if we take the median estimate produced by the sketches, it will satisfy the desired bound with probability

≥ 1 − 𝛿 . Concatenating our 𝑡 independent sketches into a single sketch, we can see that the total sketch size is

𝑡 ·𝑚 = 𝑂 (log(1/𝛿)/𝜖2), giving Theorem 2. �
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