
Invited Paper: Lessons from HotStuff
Dahlia Malkhi
Chainlink Labs

Maofan Yin
Chainlink Labs
Ava Labs, Inc.

ABSTRACT
This article will take you on a journey to the core of blockchains,
their Byzantine consensus engine, where HotStuff emerged as a
new algorithmic foundation for the classical Byzantine generals
consensus problem. The first part of the article underscores the
theoretical advances HotStuff enabled, including several models in
whichHotStuff-based solutions closed problemswhichwere opened
for decades. The second part focuses on HotStuff performance in
real life setting, where its simplicity drove adoption of HotStuff as
the golden standard for blockchain design, and many variants and
improvements built on top of it. Both parts of this document are
meant to describe lessons drawn from HotStuff as well as dispel
certain myths.

CCS CONCEPTS
• Software and its engineering→ Software fault tolerance; •
Security and privacy → Distributed systems security.

KEYWORDS
Byzantine fault tolerance; consensus; blockchain; HotStuff

ACM Reference Format:
Dahlia Malkhi and Maofan Yin. 2023. Invited Paper: Lessons from HotStuff. 
In The 5th workshop on Advanced tools, programming languages, and PLat-
forms for Implementing and Evaluating algorithms for Distributed systems 
(ApPLIED 2023), June 19, 2023, Orlando, FL, USA. ACM, New York, NY, USA, 
8 pages. https://doi.org/10.1145/3584684.3597268

1 INTRODUCTION
Every time you use a cloud service, there are servers behind the
scenes keeping redundant copies of your data, solving the dis-
tributed consensus problem to keep information available and con-
sistent against the breakdown of some servers; Every time you fly a
modern airplane, there are extra sensors and avionics to keep it air-
borne, reaching a consensus on automated inputs to flight controls
against malfunctioning components; At the core of blockchains
are systems that also solve consensus, to collectively maintain an
immutable history of transactions against the worst type of failures,
“Byzantine”, orchestrated by rogue participants.

For four decades, experts in the field of distributed computing
searched for optimal solutions to the classical Byzantine Fault Tol-
erant (BFT) consensus problem [23]. Recently, a master thesis titled 
“Consensus in the Age of Blockchains” [6], which was looking for

ApPLIED 2023, June 19, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0128-3/23/06.
https://doi.org/10.1145/3584684.3597268

a blockchain solution that developers can understand, changed
the way we think about the problem. It led to the introduction of
HotStuff [43], the first practical solution (the meaning of “practical”
is defined below) with optimal communication complexity, that
emerged as a new algorithmic foundation for the classical BFT
consensus problem and a golden standard for blockchains.

This article will take you on a journey from the emergence of
HotStuff to lessons from it along two dimensions, foundational
and applied. The first part, Sections 3–Section 5, underscores the
theoretical advances HotStuff enabled, including several models in
which HotStuff-based solutions closed problems which were open
for decades. This part finishes off with a surprising recent observa-
tion, HotStuff-2 [28], demonstrating that it is possible to improve
the original HotStuff latency by as much as 33% without sacrificing
any of its desirable properties (Section 5). The second part, Sec-
tion 6, focuses on HotStuff performance in real life settings, where
its simplicity drove the adoption of HotStuff as the golden standard
for blockchain design, and many variants and improvements built
on top of it.

2 PRELIMINARIES
The Problem. Briefly, in log replication, a group of hosts referred

to as nodes reach agreement on a growing sequence of bundled
values called “blocks”. For our purposes, a solution is viewed as
“practical” if it maintains consistency against any unforeseen net-
work delays and advances at network speed, namely, as soon as a
certain threshold of messages are received from participants. This
setting is known as partially-synchronous.

More specifically, partially-synchronous BFT consensus repli-
cates a log among 𝑛 = 3𝑓 + 1 nodes, 𝑓 of which are Byzantine.
Byzantine nodes may collude and deviate from the specified pro-
tocol arbitrarily, though still with some common constraints (e.g.,
cannot have infinite computational power). There is a known bound
Δ on message transmission delays (neglecting message processing
as marginal), such that after an unknown Global Stabilization Time
(GST), all transmissions arrive within Δ bound to their destinations.

Nodes output increasing log prefixes with the following guaran-
tees:

Safety At all times, for every pair of correct nodes, the output
log of one is a prefix of the other.

Liveness After GST, all non-faulty nodes repeatedly output
(growing) logs.

We additionally desire to simultaneously achieve 𝑂 (𝑛2) worst-
case communication, optimistically linear communication, an op-
timistically fast latency, and optimistic responsiveness. We define
these properties more formally below.

Performance measures. Theoretical complexitymeasures are eval-
uated after GST, since no progress is guaranteed until then. There
are two principal complexity measures: communication, measured

This work is licensed under a Creative Commons 
Attribution-ShareAlike International 4.0 License.

https://doi.org/10.1145/3584684.3597268
https://doi.org/10.1145/3584684.3597268
https://creativecommons.org/licenses/by-sa/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3584684.3597268&domain=pdf&date_stamp=2023-06-20


ApPLIED 2023, June 19, 2023, Orlando, FL, USA Dahlia Malkhi and Maofan Yin

in the number of bits sent over communication channels (by one
node or in total); and latency, measured in units of network delays,
maximum (Δ) or actual (𝛿). We are interested in several aspects
of these measures (communication and/or latency): expected, opti-
mistic, and worst-case.

Measures expressed as expectations are taken over protocol coin
tosses, notably for electing “leaders” internally (see Section 3). Op-
timistic performance measures are taken in faultless, synchronous
executions. These measures also reflect the protocol performance
after a certain stabilization time following GST, but this analysis is
left out of this short paper. Worst-case performance measures are
taken against an unlucky cascade of 𝑂 (𝑛) (leader) failures.

The desirable performance goals, which are derived from several
known lower bounds, are as follows:

Latency. A solution has optimistic responsiveness if optimistic
latency is 𝑂 (𝛿) per decision. An Ω(𝑛Δ) worst-case latency
is mandated by the Aguilera-Toueg bound [4].

Communication. A solution is optimal in worst-case com-
munication if it incurs 𝑂 (𝑛2) communication cost [13]. The
best communication cost to optimistically reach is𝑂 (𝑛) (the
lower bound is trivial).

Load-Balance. A solution has load balance if the same com-
munication cost is incurred per party over a sequence of
consensus decisions. Notably, this implies rotating leaders
regularly.

It’s worth noting that throughput is not a theoretical complexity
measure.We discuss the throughput of various systems in Section 6.

3 WHY HOTSTUFF?
In order to understand the improvement HotStuff introduces, let us
consider a brief evolution of practical BFT solutions that led to it
and the scaling properties they targeted.

View-by-View Recipe. PBFT [9], a landmark in BFT solutions
introduced two decades ago, emphasizes optimistically low latency.
It established a view-by-view “recipe” that works as follows. A view
consists of two abstract steps. In the first step, a designated leader
attempts to reconcile an output value, and in the second step, nodes
ratify if there is an agreement and commit it. An advantage of this
leader-based regime is that it is optimistically responsive (defined
in Section 2), that is, under synchronous faultless settings, it does
not need to wait for the maximum Δ delay, it instead incurs the
actual network delay 𝛿 . Therefore, PBFT exhibits a desirable feature,
responsiveness, in optimistic settings:

F-1 Optimistic responsiveness

Linear Secure Broadcast. PBFT employs a secure broadcast build-
ing block to disseminate a leader proposal. A secure broadcast pro-
vides a guarantee that non-faulty nodes deliver the same message
from a sender, if any, and that messages from non-faulty leaders are
reliably delivered. A second secure broadcast is used for assembling
2𝑓 + 1 votes to commit the proposal.

PBFT’s original secure broadcast protocol is based on a protocol
by Bracha [5] and has quadratic communication complexity. Two
pioneering works in the field, VBA [8] and Rampart [36], which
were later adopted in SBFT [17], employ signature aggregation for
secure broadcast whose communication complexity is linear: A

sender collects signatures on its message by a quorum of 2𝑓 + 1 out
of 𝑛 = 3𝑓 + 1, aggregates the signatures into a Quorum Certificate
(QC) and disseminates the QC.

Replacing PBFT’s secure broadcast with a linear variant yields
a two-step protocol depicted in Figure 1(left), each step a linear
secure broadcast, and achieves the following feature:

F-2 Optimistic communication linearity

View-Change with Quadratic Complexity. If a leader fails or the
network stalls (before GST) during the ratify step, as depicted in
Figure 1(right), a new leader needs to check if any value is locked
by a node from a previous view, and ratify it.

The ratify step in all the above protocols uses a lock-commit
paradigm (aka commit-adopt [14]), where sufficiently many nodes
are locked before any node can commit. If a new leader does not
learn of any locked value, it can make a different proposal. How-
ever, if it turns out that some nodes are locked on another value,
they nevertheless need to vote for the (safe) new proposal to al-
low progress. Consequently, in PBFT, a new leader must prove that
2𝑓 + 1 nodes did not vote to commit a different proposal. This ap-
proach for justifying a new leader proposal after a view-change
is the foundation of all protocols in the PBFT family, including
FaB [29], Zyzzyva [21], Aardvark [11], SBFT [17], and most former
protocols in the two-phase HotStuff family [3, 15, 16, 18, 40] except
HotStuff-2, which we will get to later. Unfortunately, this justifica-
tion proof is complex to code and incurs quadratic communication
complexity.

Simplified View-Change without Responsiveness. Tendermint [6]
introduced a simpler view-change sub-protocol than PBFT, later
adopted in Casper [7]. A new leader proposal simply hinges on the
latest locked value (the highest block receiving a QC) the leader
knows. In fact, this simplification turns a new leader sub-protocol
identical to a steady leader sub-protocol. That is, in Tendermint
there is no explicit view-change sub-protocol. This provides another
crucial tenet for blockchains: rotating leaders routinely, balancing
participation and control among all nodes, as captured by the fol-
lowing feature:

F-3 Balanced communication load over sequences of decisions
However, to guarantee that a leader obtains the latest locked

value in the system, a leader in Tendermint has to wait for the
maximum network delay Δ. Hence, it does not satisfy optimistic
responsiveness (F-1), namely, each view sub-protocol incurs an
explicit delay for themaximumnetwork latency. Moreover, the view
sub-protocol is simpler but has the same complexity as PBFT,𝑂 (𝑛2).
Nevertheless, Tendermint provided a crucial step in simplifying the
view-change that is harnessed in HotStuff.

Linear, Simple View-Change with Responsiveness. HotStuff [43]
harnesses and enhances the simple Tendermint view-change in the
following manner:

First, it removes the need for each view-change to delay, thereby
satisfying F-1 in addition to F-2 and F-3. This is achieved by employ-
ing three consecutive secure broadcasts, instead of two, to form a
decision, as depicted in Figure 2. The first broadcast forms a QC
guaranteeing the uniqueness of a leader proposal; the second pro-
vides 2𝑓 + 1 nodes with a copy of the QC (referred to as “key”) to



Invited Paper: Lessons from HotStuff ApPLIED 2023, June 19, 2023, Orlando, FL, USA

Figure 1: Two-step protocol, each step a linear secure broadcast (left). Possible failures during ratify step (right).

Figure 2: HotStuff three-step protocol.

pass to the next leader, before any node can become locked or com-
mit a value; the third confirms that 2𝑓 + 1 have a key and commits
the value.

In a way, HotStuff spreads the lock-commit ratification step over
two linear secure broadcasts. The extra phase guarantees that if any
party is locked on a leader proposal, then 2𝑓 + 1 already obtained a
key corresponding to this lock. Correspondingly, the next leader
would learn about the latest lock even if 𝑓 are Byzantine. In Figure 3,
the new leader (party 2) obtains the key from party 3 (Byzantine
party 4 may not send its key), despite party 3 itself not reaching
the lock stage.

Figure 3: HotStuff view-change scenario.

Second, HotStuff employs linear secure broadcasts to spread a
leader proposal, making the view-change linear.

Third, a view-change sub-protocol must additionally address
view-synchronization, referred to as a Pacemaker in [43]. A Pace-
maker coordinates for nodes to enter the next view roughly at the
same time as the leader in order to guarantee progress. RareSync [10]
and Lewis-Pye [25] demonstrate a Pacemaker, which was men-
tioned only at a high-level in HotStuff [43], that has worst-case
𝑂 (𝑛2) communication complexity.

Jointly, these enhancements achieve the following feature:
F-4 Worst-case communication optimality
In summary, all the mentioned desirable performance properties

(F-1,2,3,4) are simultaneously achieved by HotStuff with an optimal
Pacemaker. It is worth noting that the HotStuff family of protocols
suffers an extra phase within the view sub-protocol compared with
PBFT and Tendermint. We will come back to this in Section 5.

4 HOTSTUFF KEY CONTRIBUTIONS
4.1 Pipelining
An important property stemming from the simplified leader replace-
ment protocol is that all three secure broadcast steps of HotStuff
are essentially identical. This led to a key contribution introduced
in HotStuff, namely, pipelining the protocol over a chain of blocks,
each block embodying one step of the protocol. Furthermore, each
block can be proposed by a different leader.

Figure 4: Pipelining.

Each block in a pipeline is constructed by a leader proposal in
one view and becomes certified via secure broadcast. The next view
proposes a block which is chained to the previous one, constituting
the second step of the first proposal, and simultaneously, the first
step of a new proposal. And so on. Figure 4 depicts a pipeline of
three blocks, the first of which becomes committed.

The most important outcome of HotStuff pipelining is that it is
easy to understand how the protocol constructs a replicated chain
of blocks. Figure 5 below provides an easy visual explanation of



ApPLIED 2023, June 19, 2023, Orlando, FL, USA Dahlia Malkhi and Maofan Yin

the HotStuff three-chain rule: whenever the depicted three-block
pattern occurs, the head of the three-chain becomes committed.

Figure 5: Three-chain commit rule.

Prior to HotStuff, log replication solutions reached consensus
one position at a time via a multi-round protocol, in a notoriously
sophisticated fashion [1, 30]. Contrarily, HotStuff is apparent and
intuitive, one simply looks for an uninterrupted chain of blocks to
identify a consensus decision. View changes that are necessary to
resume the replication are depicted by forks from the main branch.

HotStuff also manages to encode almost all of its protocol state
into the data (i.e., blocks) it replicates, reducing to just two types of
messages: block proposals and votes. The execution of the protocol
and final commitment are made solely by checking the immutable
chain fabrication that implicitly represents a consistent causal or-
dering among all messages. This inspired “zero-cost” consensus
protocols [12, 37] that also use blocks to vote and thus entirely op-
erate upon the data it replicates without extra message exchange.

4.2 Linearity
The linear fast path and view-change subprotocols of HotStuff em-
powered several tight solutions to open challenges in the consensus
arena.

Partially-synchronous BA. The most direct tight results enabled
by HotStuff are RareSync [10] and Lewis-Pye [25], the first opti-
mal partially-synchronous Byzantine agreement solutions, whose
worst-case communication complexity is𝑂 (𝑛2) with𝑂 (𝑛Δ) latency
(recall, worst-case complexities are taken after GST, against a cas-
cade of 𝑓 actual leader failures). Both solutions address HotStuff’s
view-synchronization black-box component, solving it with both
expected and worst-case 𝑂 (𝑛2) communication complexity.

Asynchronous BA. VABA [2] is the first optimal solution to the
long standing validated asynchronous Byzantine agreement prob-
lem1 whose communication complexity is 𝑂 (𝑛2).

VABA invokes 𝑛 simultaneous HotStuff consensus instances,
where each node acts as the leader. After 𝑛 − 𝑓 instances com-
plete, VABA elects in retrospect one instance unpredictably and
uniformly at random. It either has reached a decision by its leader,
or orchestrates 𝑛 view-changes from it to the next wave of 𝑛 in-
stances. Running 𝑛 simultaneous views and electing a random
leader in retrospect was suggested before in [20], but the HotStuff
linear view-change enabled managing 𝑛 view-changes with overall
complexity 𝑂 (𝑛) · 𝑛 = 𝑂 (𝑛2).
1In a nutshell, validated agreement enforces an external validity predicate on decisions,
rather than the theoretical Byzantine agreement problem formulation requiring all
nodes to start with the same input.

Optimistically Asynchronous BA. Bolt-Dumbo [26] and Jolteon
and Ditto[15] demonstrate an optimistically asynchronous Byzan-
tine agreement, a problem pioneered in [22, 35]. They use a two-
phase variant of HotStuff as an optimistically linear path, for the
case of a non-faulty leader and partial synchrony settings. They
employ a quadratic asynchronous protocol as the fallback upon a
leader failure, thereby providing resilience against asynchrony.

4.3 The Pacemaker Module
The Pacemaker abstraction introduced by HotStuff captures the
view synchronization challenge as a separate module in BFT con-
sensus. This modularity contributed further to HotStuff developer-
friendliness. Additionally, the formulation of the Pacemaker as a
problem in itself has sparked interest, leading to several advances.

Briefly, a Pacemaker solves the Byzantine view synchronization
problem, where a group of processes enters/leaves views until it
reaches a view with a non-faulty leader and spends sufficient over-
lapping time in the view for the leader to drive a consensus decision.
Before HotStuff, BFT solutions for the partial synchrony settings
required quadratic communication complexity per view-change,
hence no one cared if coordinating view advancement also incurs
quadratic communication. Linearity has shifted the challenge to
developing a Pacemaker with low communication.

Cogsworth [32] and a protocol by Naor and Keidar (NK) [33]
demonstrate Pacemakers with expected linear communication com-
plexity whose worst-case is 𝑂 (𝑛3). Expected linearity is achieved
via the following strategy. When nodes want to move to the next
view, they send a message only to the next view’s leader. The leader
collects the messages from the nodes, and once it receives enough
messages, it combines them into a threshold signature and sends it
to the nodes. This all-to-leader, leader-to-all communication pattern
is similar to the one used in HotStuff; the trick in Cogsworth/NK is
utilizing 𝑓 + 1 consecutive leaders as fallback relayers, staggering
leaders one at a time—each after a (tunable) Pacemaker timeout,
until there is progress. One of the relayers is non-faulty and will
facilitate entering the next view.

Two recent works, RareSync[10] and Lewis-Pye (LP) [25], solve
the view synchronization problem with both expected and worst-
case𝑂 (𝑛2) communication complexity. Both use a similar approach,
which is remarkably simple and elegant. It bundles consecutive
views into epochs, where each epoch consists of 𝑓 + 1 consecutive
views. Nodes employ a Bracha-like all-to-all coordination protocol
in the first view of each epoch, and then they advance through the
rest of the views in the same epoch using timeouts if there is no
progress in the underlying consensus protocol. The downside of
RareSync/LP is that the expected message complexity and latency
are as bad as the worst case, hence the expected case performance
is worse than previous solutions.

It remains open and an active area of research to find view-
synchronization solutions with both optimal worst-case and ex-
pected/optimistic performance. Further discussion of view synchro-
nization appears in [27].

5 TWO-PHASE HOTSTUFF
Since the introduction of HotStuff it remained an open challenge
to achieve the desirable properties F-1,2,3,4 it encompasses with a



Invited Paper: Lessons from HotStuff ApPLIED 2023, June 19, 2023, Orlando, FL, USA

two-phase view rather than a three-phase sub-protocol. Recently,
a two-phase HotStuff variant named HotStuff-2 was introduced
in [28] showing it is possible to simultaneously achieve all five desir-
able properties. That is, it is possible to solve partially-synchronous
BFT and simultaneously achieve a two-phase commit sub-protocol
within a view, optimistic responsiveness, optimistic communica-
tion linearity, balanced load across nodes, and 𝑂 (𝑛2) worst-case
communication. The main takeaway is that two phases are enough
for BFT after all.

HotStuff-2 is remarkably simple, adding no substantial com-
plexity to the original HotStuff protocol. It builds on two secure
broadcasts. The first step certifies with a QC uniqueness of a leader
proposal. The second one is a lock-commit step for ratifying it.

The key observation is that a new leader can choose between
two options: If the leader obtains a QC from the preceding view,
it knows that it has obtained the latest locked value that possibly
exists in the system. In this case, it proceeds with a proposal in a
responsive manner. Otherwise, the leader knows that a timer delay
of Δ must have expired in the preceding view. In that case, there
is no responsiveness anyway, hence it waits an extra Δ to obtain
the latest locked value in the system. Figure 6 depicts two possible
HotStuff-2 view-change scenarios.

Prior to HotStuff-2, there has been a long line of HotStuff vari-
ants aiming to improve HotStuff’s view regime to two phases. Fast
HotStuff [18], DiemBFT-v4 [40], and Jolteon and Ditto [15], provide
two-phase view regimes but revert to a PBFT quadratic view-change
(Ditto also adds resilience against asynchrony, as mentioned above).
Hence, they do not satisfy F-4, namely they incur 𝑂 (𝑛2) communi-
cation every time a leader is faulty. A fortiori, an unlucky cascade
of faulty leaders incurs 𝑂 (𝑛3) communication. Wendy [16] and
MSCFCL [3] also revert to a PBFT view-change with a leader proof
to convince parties of a safe proposal, but focus on compressing the
leader proof. These schemes employ somewhat heavy hammers:
Wendy introduces a novel signature scheme that works only when
the gap between views that make progress is constant-bounded and
MSCFCL utilizes succinct arguments of knowledge whose complex-
ity blows up quickly. All of these advances are much more complex
than HotStuff-2, whose suprising upshot is that none of them is
necessary.

6 SCALING
Aside from theoretical considerations, practical consensus protocols
also need to be fast and scalable when it comes to actual implemen-
tation. Over the past years, as we learned about HotStuff variants
and studied subsequent protocols, we extracted several insights
about improving the performance of HotStuff and discovered some
prevailing myths about scalability.

The main scalability challenge is the overhead of coordination
among an increasing number of participating nodes and increas-
ing network latencies among them. The goal is to maintain high
throughput and low latency.

6.1 What is the “Leader Bottleneck”
The principal reason for using leader-based consensus protocols
in general, not just HotStuff, which we’ve heard repeatedly from
multiple blockchain projects, is the emphasis on low latency. In

particular, using the reconcile/ratify consensus recipe described in
Section 5, a good leader can drive the reconciliation step in one
network round-trip, and in just one more (logical) step, agreement
can be detected and committed. However, one of the strongest
weaknesses mentioned in the literature is the so-called “leader
bottleneck”.

Specifically in HotStuff, the leader bottleneck is manifested in a
pipeline of linear secure broadcasts. In each instance in the pipeline,
first, a leader disseminates blocks and all other nodes are not com-
municating with one another, thereby the network bandwidth is
underutilized; second, the leader collects signed messages from all
nodes, validates (aggregates) the signatures, and updates its proto-
col state, while all other nodes are idle. Linear secure broadcasts are
invoked in a sequence, where each one has to wait for responses
from 2𝑓 + 1 nodes before it moves to the next step. This takes a
full round-trip to and from the slowest node among the fastest 2/3
of the network. In WAN settings with geo-distributed nodes, this
almost always takes an order of hundreds of milliseconds, including
additional time spent verifying 2𝑓 + 1 votes.

At first glance, it thus appears that low latency comes at the cost
of bounded throughput.

We proceed to describe prevailing approaches for parallelizing
work in order to saturate network and computational resources.
Some approaches are compatible with HotStuff and may be har-
nessed to increase its throughput; others hinge on new BFT con-
sensus foundations.

6.2 Saturating the Resources
Parallel Computation. A simple way to increase throughput is to

offload networking and computationally intensive tasks to workers.
Despite the sequential skeleton of a consensus protocol, signature
verification, “mempool” (a blockchain subsystem which buffers
transactions from clients and bundles them into blocks) synchro-
nization, and/or block dissemination, can be made parallel in be-
tween the key phases of the consensus. For example, we heard
that from many real-life HotStuff systems that the leader work is
offloaded to a farm of CPUs or even to a local cluster of hosts, each
handling messages to/from other nodes and carrying verification
in parallel.

Large Blocks. Another simple way to increase throughput and
ameliorate the idle time caused by network latency is to batch larger
payloads per block. The key insight here is that the non-network
time required to handle/process/execute a block grows linearly with
block size, whereas network transmission time remains almost fixed,
or grows very slowly. This means that the utilization rate increases
by larger blocks and throughput grows. However, although this
will increase throughput it will also increase latency. Additionally,
larger blocks do not scale throughput forever. In the limit, very
large blocks increase latency to a point where further throughput
may not be gained. The long-version HotStuff paper [42] uses this
technique, whose evaluation section shows the throughput satu-
rates at batching hundreds of transactions (“400 vs. 800” curves).
The sweet spot is adhoc to the specific application and its transac-
tions, varying across practical blockchain instantiations and their
deployment.



ApPLIED 2023, June 19, 2023, Orlando, FL, USA Dahlia Malkhi and Maofan Yin

Figure 6: HotStuff-2: Some parties may not commit in a view but they become locked in it.
Case 1: the highest lock is obtained by the next view leader and it proceeds responsively (left).
Case 2: no honest party obtains a lock in a view, and the next view leader has to wait to propose in the next view (right).

Block Waves. Recently, an approach built on a different consen-
sus foundation has demonstrated excellent resource utilization by
nodes working in parallel on proposing/parsing blocks, and then
driving a consensus decision on a wave of blocks. It is much more
effective than batching because nodes can “buffer” blocks collabo-
ratively and then let a consensus decision commit the entire wave.
Moreover, information can continue spreading by nodes in the back-
ground while driving the next consensus decision, so that even if
consensus stalls, the network continues having utility. More specif-
ically, the idea is to let the entire network propose new blocks and
organize the blocks by a layered DAGwhere each layer corresponds
to a logical phase of the consensus protocol [12, 37]. Then, by some
deterministic graph traversal, the blocks of each wave could be
pipelined to commit in a linear order, triggered by the key phases.
The upper diagram of Figure 7 sketches this approach in terms of
network scheduling.

It is interesting to contrast the DAG approach with a “smart
mempool” approach depicted in the bottom diagram. The idea is that
blocks can be proposed in parallel and disseminated to the mempool
with causal relations. Leaders can inject special blocks into the
mempool, forming “bundles” in their proposals, and carrying QCs
for previous bundles. The main difference is that bundles can have
free structures, as shown in the figure. This is applicable to HotStuff
and other chain-style protocols in general.

Concurrent Instances. Instead of carrying parallel work with the
effort of a single leader, one can run multiple consensus instances
concurrently, aka a “leaderless” approach, as in [19, 24, 38, 39]. The
core idea in these protocols is to partition the replicated chain (log)
according to some rules (e.g., round-robin) into pre-designated slots.
All instances are performed in parallel by the nodes. Of course a
realistic scheme needs to be fault tolerant, hence it needs a mecha-
nism to handle faulty instances. This requires making a consensus
decision, but the consensus method for this does not need to be
high-throughput. Like the wave approach, the main drawback of
running concurrent instances is the increased latency to reach fi-
nality.

Figure 7: Driving waves/bundles of blocks.

Sharding. Since consensus offers fault-tolerance by introducing
redundancy, scaling state-machine replication is fundamentally
capped at the throughput of a single node. Therefore, the best
scenario is that the replicas can perform as a cohort close to a
single machine (the conceptual state machine being replicated)
performance. It is worth remarking that some blockchain projects
“scale out” via sharding [41], but this trades off fault tolerance,
effectively reducing the global resilience down to the resilience
of each single shard. Sharding is left out of scope from this short
paper.

6.3 Concluding Remarks
We call on a systematic evaluation of the existing or emerging con-
sensus systems, by clearly identifying the improvements brought
by any of the aforementioned techniques and their combinations.
Specifically, while the sequential logic in a consensus instance is
inevitable, one can offload as much as possible from the core logic



Invited Paper: Lessons from HotStuff ApPLIED 2023, June 19, 2023, Orlando, FL, USA

so it is only left with lightweight small state mutation that is just
enough to bookkeep the protocol state, and then parallelize work on
the rest. Another important topic is separating data dissemination
and availability from sequencing digests of the data. An additional
issue is that end users usually do not directly participate in the con-
sensus protocol, and thus the mempool used for disseminating user
requests could create fairness issues with respect to sequencing,
known as Miner/Maximal Extractable Value (MEV).

However, the common practice is to merely show full-system
performance results and compare them against other full systems,
which are also complex. In our experience, various engineering
optimizations and system considerations may have surprising per-
formance gains that have little to do with the fundamental con-
sensus protocol. Moreover, common optimizations like batching
and parallelizing message (signature) validation are applicable to
many protocols. To avoid making apple-to-orange comparisons, the
scientific community would benefit from a systematic, ingredient-
by-ingredient study of the performance. Improving throughput, for
example, affects the latency and it would be useful to know where
it crosses a prohibitive point. Careful engineering is another point
which would be beneficial to isolate.

Ultimately, to arrive at a high-performance, carefully engineered
system, it requires using multiple techniques to saturate both the
network and computational resources as much as possible.

On the foundational side, additional effort is needed to improve
Pacemakers: the holy grail is a Pacemaker with expected linear com-
munication, worst-case quadratic communication, and only 𝑂 (Δ)
delay per leader failure. The introduction of HotStuff-2 opens a door
for a new generation of protocols. For example, it would be interest-
ing to explore merging methods that were previously introduced
to improve latency in HotStuff (e.g., [15, 16, 18]) into HotStuff-
2. Another potential direction would be exploring if HotStuff-2
brings new insights or improvements in other fault models, e.g., in
Momose-Ren [31] where the core structure of HotStuff is adapted
to the Sleepy model of Pass and Shi [34].

ACKNOWLEDGMENTS
We are grateful to multiple projects that adopted HotStuff and
shared their insights and improvements with us, and for excellent
input that helped improve this manuscript by Kartik Nayak, Mike
Reiter, and Alberto Sonnino.

REFERENCES
[1] Ittai Abraham, Guy Gueta, Dahlia Malkhi, Lorenzo Alvisi, Rama Kotla, and

Jean-Philippe Martin. 2017. Revisiting Fast Practical Byzantine Fault Tolerance.
arXiv:cs.DC/1712.01367

[2] Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. 2019. Asymptotically
Optimal Validated Asynchronous Byzantine Agreement. Proceedings of the 2019
ACM Symposium on Principles of Distributed Computing (2019).

[3] Mark Abspoel, Thomas Attema, and Matthieu Rambaud. 2020. Malicious security
comes for free in consensus with leaders. Cryptology ePrint Archive (2020).

[4] Marcos Kawazoe Aguilera and Sam Toueg. 1999. A simple bivalency proof that
t-resilient consensus requires t+ 1 rounds. Inform. Process. Lett. 71, 3-4 (1999),
155–158.

[5] Gabriel Bracha. 1987. Asynchronous Byzantine Agreement Protocols. Inf. Comput.
75 (1987), 130–143.

[6] Ethan Buchman. 2016. Tendermint: Byzantine fault tolerance in the age of
blockchains. Ph.D. Dissertation. University of Guelph.

[7] Vitalik Buterin and Virgil Griffith. 2017. Casper the Friendly Finality Gadget.
arXiv preprint arXiv:1710.09437 (2017).

[8] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. 2001. Secure
and Efficient Asynchronous Broadcast Protocols. IACR Cryptol. ePrint Arch.
(2001), 6. http://eprint.iacr.org/2001/006

[9] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance.
In Proceedings of the Third USENIX Symposium on Operating Systems Design
and Implementation (OSDI), New Orleans, Louisiana, USA, February 22-25, 1999,
Margo I. Seltzer and Paul J. Leach (Eds.). USENIX Association, 173–186. https:
//dl.acm.org/citation.cfm?id=296824

[10] Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Vincent Gramoli, Rachid
Guerraoui, Jovan Komatovic, and Manuel Vidigueira. 2022. Byzantine Consensus
Is Θ(n2): The Dolev-Reischuk Bound Is Tight Even in Partial Synchrony!. In
International Symposium on Distributed Computing.

[11] Allen Clement, EdmundWong, Lorenzo Alvisi, Mike Dahlin, and Mirco Marchetti.
2009. Making Byzantine Fault Tolerant Systems Tolerate Byzantine Faults. In
Proceedings of the 6th USENIX Symposium on Networked Systems Design and
Implementation (NSDI’09). USENIX Association, 153–168.

[12] George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, andAlexander Spiegel-
man. 2022. Narwhal and Tusk: a DAG-based mempool and efficient BFT consen-
sus. In EuroSys ’22: Seventeenth European Conference on Computer Systems, Rennes,
France, April 5 - 8, 2022, Yérom-David Bromberg, Anne-Marie Kermarrec, and
Christos Kozyrakis (Eds.). ACM, 34–50. https://doi.org/10.1145/3492321.3519594

[13] Danny Dolev and Rüdiger Reischuk. 1985. Bounds on information exchange for
Byzantine agreement. Journal of the ACM (JACM) 32, 1 (1985), 191–204.

[14] Eli Gafni. 1998. Round-by-round fault detectors (extended abstract): unifying
synchrony and asynchrony. In Proceedings of the Seventeenth Annual ACM Sym-
posium on Principles of Distributed Computing (PODC ’98).

[15] Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Sonnino, Alexander Spiegelman,
and Zhuolun Xiang. 2022. Jolteon and Ditto: Network-adaptive efficient consen-
sus with asynchronous fallback. In Financial Cryptography and Data Security:
26th International Conference, FC 2022. Springer, 296–315.

[16] Neil Giridharan, Heidi Howard, Ittai Abraham, Natacha Crooks, and Alin
Tomescu. 2021. No-commit proofs: Defeating livelock in BFT. Cryptology ePrint
Archive (2021).

[17] Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas,
Michael Reiter, Dragos Adrian Seredinschi, Orr Tamir, and Alin Tomescu. 2019.
SBFT: A Scalable and Decentralized Trust Infrastructure. In Proceedings - 49th An-
nual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN
2019 (Proceedings - 49th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2019). 568–580.

[18] Mohammad M Jalalzai, Jianyu Niu, Chen Feng, and Fangyu Gai. 2020. Fast-
HotStuff: A fast and resilient HotStuff protocol. arXiv preprint arXiv:2010.11454
(2020).

[19] Dakai Kang, Sajjad Rahnama, Jelle Hellings, and Mohammad Sadoghi. 2023.
Practical View-Change-Less Protocol through Rapid View Synchronization.
arXiv:cs.DB/2302.02118

[20] Jonathan Katz and Chiu-Yuen Koo. 2009. On expected constant-round protocols
for Byzantine agreement. J. Comput. System Sci. 75, 2 (2009), 91–112. https:
//doi.org/10.1016/j.jcss.2008.08.001

[21] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund
Wong. 2007. Zyzzyva: Speculative Byzantine Fault Tolerance. In Proceedings of
Twenty-First ACM SIGOPS Symposium on Operating Systems Principles (SOSP ’07).
Association for Computing Machinery, 45–58.

[22] Klaus Kursawe and Victor Shoup. 2005. Optimistic Asynchronous Atomic Broad-
cast. In Automata, Languages and Programming. 204–215.

[23] Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzantine Gener-
als Problem. ACM Trans. Program. Lang. Syst. 4, 3 (jul 1982), 382–401.

[24] Kfir Lev-Ari, Alexander Spiegelman, Idit Keidar, and Dahlia Malkhi. 2019.
FairLedger: A Fair Blockchain Protocol for Financial Institutions. In Interna-
tional Conference on Principles of Distributed Systems.

[25] Andrew Lewis-Pye. 2022. Quadratic worst-case message complexity for State
Machine Replication in the partial synchrony model. ArXiv abs/2201.01107
(2022).

[26] Yuan Lu, Zhenliang Lu, and Qiang Tang. 2022. Bolt-Dumbo Transformer: Asyn-
chronous Consensus As Fast As the Pipelined BFT. Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security (2022).

[27] Dahlia Malkhi and Oded Naor. 2022. The Latest View on View Synchronization.
https://blog.chain.link/view-synchronization/ (2022).

[28] Dahlia Malkhi and Kartik Nayak. 2023. Extended Abstract: HotStuff-2: Optimal
Two-Phase Responsive BFT. Cryptology ePrint Archive, Paper 2023/397. https:
//eprint.iacr.org/2023/397 https://eprint.iacr.org/2023/397.

[29] Jean-Philippe Martin and L. Alvisi. 2006. Fast Byzantine Consensus. Dependable
and Secure Computing, IEEE Transactions on 3 (08 2006), 202– 215. https://doi.org/
10.1109/TDSC.2006.35

[30] James Mickens. 2014. The Saddest Moment. login Usenix Mag. 39, 3 (2014).
https://www.usenix.org/publications/login/june14/mickens

[31] Atsuki Momose and Ling Ren. 2022. Constant Latency in Sleepy Consensus. In
Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2022, Los Angeles, CA, USA, November 7-11, 2022. 2295–2308.

https://arxiv.org/abs/cs.DC/1712.01367
http://eprint.iacr.org/2001/006
https://dl.acm.org/citation.cfm?id=296824
https://dl.acm.org/citation.cfm?id=296824
https://doi.org/10.1145/3492321.3519594
https://arxiv.org/abs/cs.DB/2302.02118
https://doi.org/10.1016/j.jcss.2008.08.001
https://doi.org/10.1016/j.jcss.2008.08.001
https://blog.chain.link/view-synchronization/
https://eprint.iacr.org/2023/397
https://eprint.iacr.org/2023/397
https://eprint.iacr.org/2023/397
https://doi.org/10.1109/TDSC.2006.35
https://doi.org/10.1109/TDSC.2006.35
https://www.usenix.org/publications/login/june14/mickens


ApPLIED 2023, June 19, 2023, Orlando, FL, USA Dahlia Malkhi and Maofan Yin

[32] Oded Naor, Mathieu Baudet, Dahlia Malkhi, and Alexander Spiegelman.
2019. Cogsworth: Byzantine View Synchronization. https://arxiv.org/pdf/
1909.05204.pdf (2019).

[33] Oded Naor and Idit Keidar. 2020. Expected Linear Round Synchronization: The
Missing Link for Linear Byzantine SMR. ArXiv abs/2002.07539 (2020).

[34] Rafael Pass and Elaine Shi. 2017. The Sleepy Model of Consensus. In Advances in
Cryptology – ASIACRYPT 2017. Springer International Publishing, 380–409.

[35] HariGovind V. Ramasamy and Christian Cachin. 2005. Parsimonious Asyn-
chronous Byzantine-Fault-Tolerant Atomic Broadcast. In Proceedings of the 9th
International Conference on Principles of Distributed Systems (OPODIS’05). 88–102.

[36] Michael K. Reiter. 1994. Secure Agreement Protocols: Reliable and Atomic Group
Multicast in Rampart. In Proceedings of the 2nd ACM Conference on Computer
and Communications Security (CCS ’94). Association for Computing Machinery,
68–80.

[37] Alexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Lefteris Kokoris-
Kogias. 2022. Bullshark: DAG BFT protocols made practical. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security.
2705–2718.

[38] Chrysoula Stathakopoulou, Tudor David, Matej Pavlovic, and Marko Vukolic.
2022. [Solution] Mir-BFT: Scalable and Robust BFT for Decentralized Networks.

J. Syst. Res. 2, 1 (2022). https://doi.org/10.5070/sr32159278
[39] Chrysoula Stathakopoulou, Matej Pavlovic, and Marko Vukolic. 2022. State

machine replication scalability made simple. In EuroSys ’22: Seventeenth European
Conference on Computer Systems, Rennes, France, April 5 - 8, 2022, Yérom-David
Bromberg, Anne-Marie Kermarrec, and Christos Kozyrakis (Eds.). ACM, 17–33.
https://doi.org/10.1145/3492321.3519579

[40] The Diem Team. 2021. DiemBFT v4: State Machine Replication in the Diem
Blockchain. (2021). https://developers.diem.com/docs/technical-papers/state-
machine-replication-paper.

[41] Gavin Wood. 2023. Polkadot: vision for a heterogeneous multi-chain framework.
Cryptology ePrint Archive, Paper 2023/397. https://eprint.iacr.org/2023/397
https://eprint.iacr.org/2023/397.

[42] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai
Abraham. 2018. HotStuff: BFT Consensus in the Lens of Blockchain. CoRR
abs/1803.05069 (2018). arXiv:1803.05069

[43] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai Abra-
ham. 2019. HotStuff: BFT Consensus with Linearity and Responsiveness. In
Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing
(PODC ’19). Association for Computing Machinery, 347–356.

https://arxiv.org/pdf/1909.05204.pdf
https://arxiv.org/pdf/1909.05204.pdf
https://doi.org/10.5070/sr32159278
https://doi.org/10.1145/3492321.3519579
https://developers.diem.com/docs/technical-papers/state-machine-replication-paper
https://developers.diem.com/docs/technical-papers/state-machine-replication-paper
https://eprint.iacr.org/2023/397
https://eprint.iacr.org/2023/397
https://arxiv.org/abs/1803.05069

	Abstract
	1 Introduction
	2 Preliminaries
	3 Why HotStuff?
	4 HotStuff Key Contributions
	4.1 Pipelining
	4.2 Linearity
	4.3 The Pacemaker Module

	5 Two-Phase HotStuff
	6 Scaling
	6.1 What is the ``Leader Bottleneck''
	6.2 Saturating the Resources
	6.3 Concluding Remarks

	References

