
ar
X

iv
:2

30
5.

12
04

0v
1

 [
cs

.D
C

]
 1

9
M

ay
 2

02
3

Specification and Runtime Checking of Derecho, A

Protocol for Fast Replication for Cloud Services

Kumar Shivam Vishnu Paladugu Yanhong A. Liu
Stony Brook University

{kshivam,vpaladugu,liu}@cs.stonybrook.edu

May 17, 2023

Abstract

Reliable distributed systems require replication and consensus among distributed

processes to tolerate process and communication failures. Understanding and assur-

ing the correctness of protocols for replication and consensus have been a significant

challenge. This paper describes the precise specification and runtime checking of Dere-

cho, a more recent, sophisticated protocol for fast replication and consensus for cloud

services.

A precise specification must fill in missing details and resolve ambiguities in English

and pseudocode algorithm descriptions while also faithfully following the descriptions.

To help check the correctness of the protocol, we also performed careful manual analysis

and increasingly systematic runtime checking. We obtain a complete specification that

is directly executable, and we discover and fix a number of issues in the pseudocode.

These results were facilitated by the already detailed pseudocode of Derecho and made

possible by using DistAlgo, a language that allows distributed algorithms to be easily

and clearly expressed and directly executed.

keywords: replication and consensus protocols, executable specification, runtime checking

1 Introduction

Reliable distributed systems require replication and consensus among distributed processes
to tolerate process and communication failures. Many algorithms and variations have been
proposed for replication and consensus, starting from Virtual Synchrony (VS) by Birman
and Joseph [BJ87], and Viewstamped Replication (VR) by Oki and Liskov [OL88], in-
cluding the well-known Paxos algorithm by Lamport [Lam98], among many others, e.g.,
see [VRA15, CL21]. However, understanding and assuring the correctness of these algo-
rithms have remained a significant challenge, especially as more sophisticated algorithms are
being developed.

1

http://arxiv.org/abs/2305.12040v1

This paper. This paper describes the precise specification and runtime checking of Dere-
cho [JBG+19a], a more recent, sophisticated protocol for fast replication and consensus
for cloud services. Derecho provides state machine replication and dynamic membership
tracking, especially for replicating large data with non-blocking pipelines, and is shown to
be significantly faster than comparable widely used, highly-tuned, standard tools. It em-
ploys a lock-free distributed shared memory called a shared-state table (SST) for sharing
protocol-control information, especially suitable for running on remote direct memory access
(RDMA).

Our specification is written in DistAlgo [LSL17], a language that allows distributed algo-
rithms to be easily and clearly expressed and directly executed. It provides all three benefits
enabled by DistAlgo: (1) distributed processes and communications, both synchronous and
asynchronous, are expressed at a high level as pseudocode, (2) the specification is completely
precise, supported by formal operational semantics of DistAlgo, and (3) the specification is
directly executable in distributed environments, supported by the DistAlgo compiler that is
built on top of the Python compiler.

A precise specification must fill in missing details and resolve ambiguities in English
and pseudocode algorithm descriptions while also faithfully following the descriptions. Our
specification is especially facilitated by Derecho’s already detailed pseudocode and descrip-
tions [JBG+19a, Appendix A], as well as Derecho’s active team of experienced researchers
and developers. Derecho pseudocode uses exact fields of structures for information kept in
the system state, especially including for the SST, and provides in detail the key steps in
both steady-state execution and view change protocols.

To help check the correctness of the Derecho specification, we also performed careful
manual analysis and increasingly systematic runtime checking. The clarity of the specifica-
tion allows some issues to be noticed by quick manual inspection, while automatic running
and checking allow more subtle issues to be discovered.

We specified and checked well-established safety properties as well as various progress
queries and results. These specifications and automatic checking are enabled by a general
framework for runtime checking of safety and liveness properties [LS20] supported by Dis-
tAlgo. As a result, the properties are specified at a high level as logical statements and are
checked automatically by a checker process while the protocol runs, without changes to the
specification of the protocol that can obscure the clarity of the protocol specification.

There has been a significant amount of related research, as discussed in Section 7. Our
work contains three main contributions:

• We develop a rigorous specification of Derecho that corresponds closely to the pseu-
docode and is complete, precise, and directly executable.

• We discover and fix a number of issues in the Derecho pseudocode, e.g., [JBG+19b,
Errata, page 50], and helped improve the pseudocode [Jha22, page 72].

• We demonstrate through Derecho a practical method for developing a rigorous and
improved specification through not only manual inspection but also automated runtime
checking.

2

Note that the bugs and fixes we found are for the Derecho pseudocode [JBG+19a], and
have been checked and confirmed by the Derecho team [JBG+19b, Jha22, Jha23]. In all
cases, Derecho developers have also checked and confirmed that the bugs are not in their
implementation in C++ [Jha22, Jha23].

Bugs in protocol pseudocode are quite normal, simply because pseudocode is manually
created and there is no way to run or check other than by staring at it. DistAlgo is exactly for
expressing protocols easily and precisely at such pseudocode level, and then running them for
testing and for systematic runtime checking of desired properties. A complete specification
of Derecho in DistAlgo can be found at [der].

2 Derecho and specification language

2.1 Derecho overview

Derecho [JBG+19a] is a replication protocol for coordinating distributed actions. The pro-
tocol supports state machine replication by utilizing specialized hardware technology, specif-
ically RDMA. RDMA enables direct access to remote memory without involving the CPU,
using hardware such as Network Interface Card (NIC), resulting in higher throughput and
lower latency through avoidance of context switching.

The protocol employs group multicasting to order client request messages and supports
atomic multicast and total-ordered message delivery. In this context, a group is defined as a
set of member processes referred to as nodes. Atomic multicast ensures that messages sent
by a member node are either delivered to all member nodes or none at all, while total-ordered
message delivery guarantees that messages are delivered in the same order to all member
nodes in the group.

Each node in a group maintains a copy of SST, one row for each node. Each node updates
its own row in the SST and propagates the update to other nodes using RDMA.

The protocol has two main parts.

(1) Steady-state execution. Derecho employs the SST multicast (SMC) protocol for small
message multicast, as described in Section 4. To initiate a multicast, one of the nodes in
the group stores the incoming request message in SST’s ring buffer data structure, which is
propagated to all nodes in the group. Each node buffers the message upon receiving it until
it knows all the nodes in the group have received it. Atomic multicast delivery of a message
happens when all the previous messages have been delivered on all nodes, and the current
message has been received on all nodes.

(2) View change. Derecho employs virtual synchrony [BJ87] to track dynamic membership
in a process group computing style. Process groups allow members to join and leave the group
while the application is active, triggering a membership change. Each membership change
initiates a new epoch (view), and the protocol progresses through a series of epochs, each
with its own membership. A two-phase commit pattern is used to carry out a membership
change, with information exchanged via the SST.

3

2.2 Language for precise specification

For precise executable specification of Derecho at a high level that corresponds to algo-
rithm pseudocode, we use DistAlgo [LSLG12, LSL17]. DistAlgo supports the following four
main concepts of distributed programming by building on an object-oriented programming
language, Python.

(1) Distributed processes that can send messages. A type P of processes is defined
by

process P: stmt

The body stmt may contain, among usual definitions,

• a setup definition for setting up the values used in the process,

• a run definition for running the main flow of the process, and

• receive definitions for handling received messages.

A process can refer to itself as self. Expression self.attr (or attr when there is no ambiguity)
refers to the value of attr in the process.

• ps := n new P creates n new processes of type P , and assigns the new processes to
ps.

• ps.setup(args) sets up processes ps using values of args .

• ps.start() starts run of ps.

new can have an additional clause, at node , specifying remote nodes where the created pro-
cesses will run; the default is the local node.

A process can easily send a message m to processes ps:

send m to ps

(2) Control flow for handling received messages. Received messages can be handled
both asynchronously, using receive definitions, and synchronously, using await statements.

• A receive definition is of the following form:

receive m from p: stmt

It handles, at yield points, un-handled messages that match m from p. A yield point
is of the form - - l , where l is a label; it specifies a point in the program where control
yields to handling of un-handled messages, if any, and resumes afterwards. There is an
implicit yield point before each await statement, for handling messages while waiting.
The from clause is optional.

4

• An await statement is of the following form:

await cond1 : stmt1 or ... or condk: stmtk timeout t: stmt

It waits for one of cond1 , ..., condk to be true or a timeout after period t , and then
nondeterministically selects one of stmt1 , ..., stmtk , stmt whose conditions are true to
execute. Each branch is optional. So is the statement in await with a single branch.

(3) High-level queries for synchronization conditions. High-level queries can be used
over message histories, and patterns can be used to match messages.

• Histories of messages sent and received by a process are kept in sent and received,
respectively. sent is updated at each send statement, by adding each message sent.
received is updated at the next yield point if there are un-handled messages, by adding
un-handled messages before executing all matching receive definitions.

Expression sent m to p is equivalent to m to p in sent. It returns true iff a message
that matches m to p is in sent. The to clause is optional. Expression
received m from p is similar.

• A pattern can be used to match a message, in sent and received, and by a receive

definition. A constant value, such as "release", or a previously bound variable, in-
dicated with prefix =, in the pattern must match the corresponding components of
the message. An underscore matches anything. Previously unbound variables in the
pattern are bound to the corresponding components in the matched message.

For example, received("release",t3,=p2) matches every triple in received whose
first component is "release" and third component is the value of p2, and binds t3 to
the second component.

A query can be an existential or universal quantification, a comprehension, or an aggregation
over sets or sequences.

• An existential quantification and a universal quantification are of the following two
forms, respectively:

some v1 in s1, ..., vk in sk has cond

each v1 in s1, ..., vk in sk has cond

They return true iff for some or each, respectively, a combination of values of variables
that satisfies all vi in si clauses, cond holds.

• A comprehension is of the following form:

{e: v1 in s1, ..., vk in sk, cond}

It returns the set of values of e for all combinations of values of variables that satisfy
all vi in si clauses and condition cond .

• An aggregation is of the form agg s, where agg is an aggregation operator such as
count or max. It returns the value of applying agg to the set value of s.

5

• In all query forms above, each vi can be a pattern.

Other operations, such as set union and sequence concatenation, can also be used.

(4) Configuration for setting up and running. Configuration for requirements such as
the use of logical clocks and the use of reliable and FIFO channels can be specified in a main

definition. For example, configure channel = fifo specifies that fifo channels are used and
TCP is used for process communication.

DistAlgo also supports automatic visualization of replays forward and backward, making
it much easier to understand protocol runs.

DistAlgo compiler, Python syntax, queries, and extended sent and received. To
allow anyone with Python to run DistAlgo directly, DistAlgo compiler supports the Python
syntax [LLS17]. For example, send m to p is written as send(m, to=p), and
each sent m to p has cond is written as each(sent(m, to=p), has=cond); in patterns, =var
is written as var.

While Derecho pseudocode does not use high-level set queries, these queries are critical
to specify the many reducer functions used. Also, slightly extended p.sent and p.received,
denoting the process p’s sent and received sequences, respectively, is critically helpful for
specifying the properties to be checked.

In our specification in DistAlgo, the following convention for comments are used: (1)
comments after # are text or pseudocode copied from the Derecho paper [JBG+19a], except
when noted as from email with Sagar Jha; (2) comments after ## (or no comments) describe
code we had to fill in; and (3) comments after ### describe changes to the pseudocode in
paper.

3 Specifying system state

Information maintained in a system is essential for specifying the system. We define classes
with fields that allow the algorithm steps in DistAlgo to match the corresponding steps in
pseudocode exactly. Fig. 1 shows the complete precise specification in DistAlgo.

The key information maintained by Derecho is the SST, specified as a list of SSTRow

objects. Fig. 1 (lines 7-32) shows the definition of class SSTRow with its fields. For instance,
field slots (line 13) is a list for a ring buffer, with reusable slots (lines 1-6) for request
messages and related metadata.

In addition to the SST, Derecho needs a View object to hold information about an epoch
(used interchangeably with view in Derecho), such as the leader and members in the view.
This object is critical in the membership-change protocol, which is triggered when a member
joins or leaves the group. Fig. 1 shows the definition of class View (lines 33-47) with its fields
and methods to add and remove members.

Function write sst in Fig. 2 (lines 1-5) specifies an update to the SST. It updates the
local SST and sends an rdma write sst message to other nodes. Upon receiving the message,

6

1 class Slot :

2 """A slot stores a client request message . A vector of slots is a field in SST """

3 def __init__ (self):

4 self .buf = None # (p.33) a request of up to max_message_size characters ## initialized in Node .init ()

5 self .index = 0 # (p.33) index associated with a slot ## initialized in Node .init ()

6 self .size = 0 # ## size of the request , set in get_buffer () ### defined but not used

7 class SSTRow:

8 """A shared state table (SST) row that stores info about a node .

9 A SST has a SSTRow for each member node and is stored in each member"""

10 def __init__ (self , n, window_size): ## initialize SST columns for the row ; all used in pseudocode but the last two

11 # n: ## number of member nodes in the group

12 # window_size : ## length of vector of slots for storing client req msgs received by the node , directly or indirectly

13 self .slots = [Slot () for _ in range (window_size)] # (p.33) vector of window_size slots ## for client request msgs

14 self .received_num = [-1] * n # (p.33) number of messages received from each node ### number -1

15 ## initialized in Node .init (), and set in receive_req ()

16 self .global_index = -1 # ## global index of last message received from the most lagging node

17 self .latest_delivered_index = -1 # ## min of self .global_index over all members

18 self .latest_received_index = [-1] * n # ## index of latest msg received from each node , set in recv to received_num

19 ## i.e., self .received_num -1 ### redundant , but not clear with null msgs

20 self .min_latest_received = [-1] * n # ## for each node , min of latest_received_index over all rows in SST

21 self .suspected = [False] * n # ## for each node , whether that node is suspected to have failed

22 self .wedged = False # ## true when any node is suspected

23 self .changes = [] # ## list of nodes suspected (or added from joins) to proposed as changes by the leader

24 self .num_changes = 0 # ## number of nodes in self .changes , i.e., length of self .changes

25 self .num_acked = 0 # ## number of nodes in self .changes acknowledged

26 ### set in 1 place by us , using num_changes

27 self .num_committed = 0 # ## min of self .num_acked over not suspected nodes

28 self .num_installed = 0 # ## number of nodes installed (added /removed) by the node , as proposed by the leader

29 self .ragged_edge_computed = False # ## true for leader calling terminate_epoch or others after leader did;

30 ## the call happens when leader’s num_committed > self ’s num_installed

31 self .active = False # (p.40) ## true when the epoch is active , only used at start ### not in pseudocode

32 ### could use logical or over sst[my_rank]. suspected or even just own suspected

33 class View ():

34 """A view that holds the information of an epoch . An epoch is the duration of a view ."""

35 def __init__ (self , n, epoch =0, leader_rank =0):

36 # n: ## number of members in the view

37 self .epoch = epoch # ## epoch number of the view ; epoch and view used interchangeably in the paper

38 self .leader_rank = leader_rank # ## index of the leader

39 self .members = [None] * n # ## list of member nodes in the view

40 self .failed = [False] * n # ## for each node , whether that node is suspected and thus considered failed

41 def add_member (self , node): ## add member to the view

42 self .members .append(node) ## append node to members

43 self .failed.append(False) ## add the failed attribute corresponding to the added node

44 def remove_member (self , node): ## remove node from members of the view

45 index = self .members .index (node) ## get index of node in members

46 del self .failed[index] ## remove failed entry for node

47 self .members .remove(node) ## remove node from members

Figure 1: Specification of system state.

7

1 def write_sst (row , col , val , index =None): ## write SST entry at row and col , at index if col is a list , with val

2 wt_local_sst (row , col , val , index) ## write local SST

3 msg = (’rdma_write_sst ’, row , col , val , index , curr_view .epoch) ## msg to send to others

4 msg_tagged = (’data ’ if col == "slots " else ’control ’,) + msg ## tag the msg as data or control

5 send (msg_tagged , to= others) ## send the message to other nodes

6 def receive(msg = (_, ’rdma_write_sst ’, row , col , val , index , epoch)): ## _ ignores tag ’data ’ or ’control ’

7 output("received : ", (’rdma_write_sst ’, row , col , val , index , epoch))

8 if epoch != curr_view .epoch : # (p.40) ## if msg is for a different epoch , ignore

9 output(’received rdma_write_sst msg for different epoch , current: ’, curr_view .epoch , ’ and msg: ’, epoch)

10 return

11 if col == "slots " and any(curr_view .failed): # (p.12) ## if msg is a req and curr view has failed members , ignore

12 output("Failure detected , new data messages dropped")

13 return

14 if row in freeze: # (p.16) ## if msg is for a row in freeze , ignore; should do at write

15 output("ignored rdma_write_sst msg because of frozen row: ", row , " node : ", G[row])

16 return

17 wt_local_sst (row , col , val , index) ## write local SST

18 def wt_local_sst (row , col , val , index =None): ## write local entry at row and col , at index if col is a list , with val

19 if index is None : ## if index is None , meaning col is not a list

20 setattr(sst[row], col , val) ## just update SST entry with val

21 else : ## col is a list

22 entry = getattr(sst[row], col) ## retrieve SST entry at row and col

23 entry [index] = val ## update the element at index of entry with val

24 setattr(sst[row], col , entry) ## update SST entry at row and col with updated entry

Figure 2: Specification of function for writing to SST.

1 def LogicalOr (col):

2 """ logical ’OR’ of all values in column col in sst """

3 return any (getattr (sst[row], col) for row in range (len(sst)))

Figure 3: Specification of an example reducer function.

nodes execute a receive handler (lines 6-17), which calls function wt local sst to update
the SST row corresponding to the sender node (lines 18-24).

The protocol uses a number of reducer functions on the SST. These functions read SST
entries and compute aggregation information. These reducer functions are specified to com-
pute exactly as stated in the pseudocode. Fig. 3 shows an example, LogicalOr.

4 Specifying steady-state execution

Steady-state execution describes atomic multicast delivery of a client request message across
the nodes in a group. The messages are delivered in a round-robin fashion according to a
global message order captured by global index, where each node sends one multicast in each
delivery cycle.

Fig. 4 shows a complete precise specification of steady-state execution in DistAlgo. It
consists of three main parts: sending messages, receiving messages, and in-order delivery of
messages.

The first part consists of functions send req and get buffer. Upon receiving a request
message from a client, the receive handler (lines 1-8) is executed. We added a check to
avoid processing duplicate requests (lines 4-7). Subsequently, function send req is called,
which uses function get buffer (line 23) to obtain a slot in field slots to hold the request.
Function get buffer returns a pointer to the ring buffer if the request message previously in
that slot has been successfully received on all the nodes in the group, and nullptr otherwise.
However, in our specification, we return the slot number if the reservation is successful

8

1 def receive(msg =(’request ’, req)): ## receive request from client , and send req to the group

2 client , req_id , _ = req ## request is of form (client , req_id , cmd)

3 output("request: ", req , " received from client: ", client)

4 if some (sent ((’response ’, _req_id , res), to= _client)): ## if a response to req was already sent

5 output("Duplicate request received : ", req , ". Sending result: ", res , " back .")

6 send ((’response ’, req_id , res), to= client) ## send the response again

7 return

8 send_req (req) ## send request by putting it in the next slot , if a slot is available

9 # (p.33) A.2.3 Sending. First the sending node reserves one of the slots :

10 def get_buffer (msg_size): # char * get_buffer (msg_size) {

11 assert msg_size <= max_msg_size # assert(msg_size <= max_msg_size);

12 completed_num = Min("received_num ", my_rank) # completed_num = Min{sst [*]. received_num [my_rank]};

13 if sent_num - completed_num == window_size : # if (sent_num - completed_num < window_size) {

14 ### changed < to == ### first changed < to > in ERRATA of paper , but it caused deadlock

15 output("slot verctor full , returning , sent_num : ", sent_num , " completed_num : ", completed_num)

16 return None # return nullptr; }

17 slot = (sent_num + 1) % window_size # slot = (sent_num + 1) % window_size ;

18 sst[my_rank].slots [slot].size = msg_size # sst[my_rank].slots [slot].size = msg_size ;

19 return slot # return sst[my_rank].slots [slot].buf; } ### return slot

20 # (p.34) After get_buffer returns a non -null buffer ,

21 # the application writes the message contents in the buffer and calls send

22 def send_req (req): # void send () {

23 slot = get_buffer (len(req [2]) if req else 0) ## get slot for req if available

24 if slot == None : return ## # (p.34) ### added

25 # slot = (sent_num + 1) % window_size ; ### redundant ; what if None ?

26 sst[my_rank].slots [slot].buf = req ## # (p.34) the application writes the message contents in the buffer

27 sst[my_rank].slots [slot].index += 1 # sst[my_rank].slots [slot].index ++;

28 write_sst (my_rank , "slots ", sst[my_rank].slots [slot], slot) ## wrote to SST just above , but need to multicast

29 sent_num += 1 # sent_num ++; }

30 # (p.34) A.2.4 Receiving . ## if there is a req msg in next slot , increment received_num and call recv

31 def receive_req (): # always { ### made function and called in run

32 for i in range (n): # for i in 1 to n { ### fixed to be 0..n-1

33 slot = (sst[my_rank]. received_num [i]+1) % window_size

34 # slot = (sst[my_rank]. received_num [i]+1) %window_size

35 if sst[i]. slots [slot]. index == (sst[my_rank].received_num [i]+1) // window_size + 1:

36 # if (sst[i].slots [slot].index == (sst[my_rank]. received_num [i]+1) /window_size +1) {

37 write_sst (my_rank , "received_num ", sst[my_rank]. received_num [i]+1, i)

38 # ++sst[my_rank]. received_num [i];

39 recv (M(i, sst[my_rank]. received_num [i]), i, sst[my_rank]. received_num [i])

40 # recv (M(i, sst[my_rank]. received_num [i])); }}}

41 # (p.34) A.3 Atomic Multicast Delivery in the Steady State

42 # A.3.1 Receive . ## received request msg , update msgs and related indices , but first send null msgs if needed

43 def recv (req , i, k): # on recv (M(i,k)) {

44 ### the if -block below is added to avoid stalls by slow senders in delivery of received message ,

45 ### pseudocode here as in email from Sagar Jha to Vishnu Paladugu on 11/29/19 , quoting an email by him dated 7/29/18

46 # if (I am a sender && this subgroup is not in unordered mode) { ### ignored

47 if my_rank < i and k > sent_num : # if (my_rank < i && I have not sent M(my_rank , k)) { ### used sent_num

48 for _ in range (k - sent_num): ## for every missing msg : ### do all at once to be more efficient

49 output("sending no -op , case 1")

50 send_req (None) # send a null message }

51 elif my_rank > i and k-1 > sent_num : # else if (my_rank > i && I have not sent M(my_rank , k-1)) { ### used sent_num

52 for _ in range (k-1 - sent_num): ## for every missing msg : ### do all at once to be more efficient

53 output("sending no -op , case 2")

54 send_req (None) # send a null message }}

55 msgs [gi(i, k)] = req # msgs [gi(M(i,k))] = M(i,k);

56 write_sst (my_rank , "latest_received_index ", k, i)

57 # sst[my_rank]. latest_received_index [i] = k;

58 min_index_received , lagging_node_rank = min_and_idx (sst[my_rank]. latest_received_index)

59 # (min_index_received , lagging_node_rank) =

60 # (min ,argmin) i sst[my_rank]. latest_received_index [i];

61 write_sst (my_rank , "global_index ", (min_index_received + 1) * len(G) + lagging_node_rank - 1)

62 # sst[my_rank]. global_index = (min_index_received + 1) * |G| + lagging_node_rank - 1;

63 # }

64 # (p.34) A.3.2 Stability and Delivery .

65 ## deliver consecutive msgs that have been received by all nodes , in order of global index of the msgs

66 def stability_delivery (): # always { ### made function and called in run

67 stable_msg_idx = Min("global_index ") # stable_msg_index = Min{sst [*]. global_index }

68 sorted_keys = sorted(msgs .keys ()) ## sort because msgs must be delivered in increasing global index

69 for g_idx in sorted_keys : # for (msg : msgs) {

70 if g_idx <= stable_msg_idx : # if (msg.global_index <= min_stable_msg_index) { ### min_ deleted

71 deliver_upcall (g_idx , msgs [g_idx]) # deliver_upcall (msg); ### add first argument , to see global_index in

output

72 del msgs [g_idx] # msgs .remove(msg .global_index); }}

73 if sorted_keys and min (sorted_keys) <= stable_msg_idx :

74 ## if there stored reqs are less than received reqs

75 ### added test to not multicast unnecessarily as this is in an always

76 write_sst (my_rank , "latest_delivered_index ", stable_msg_idx)

77 # sst [my_rank].latest_delivered_index = stable_msg_index }

Figure 4: Specification of steady-state execution.

9

1 def deliver_upcall (global_idx , req): ## execute request req , at decided global index

2 output("in deliver_upcall (), gi: ", global_idx , " and req: ", req)

3 if req is None : return ## if request is a null msg for no-op, return

4 (client , req_id , _) = req ## request is form (client , req_id , cmd)

5 if not some (sent ((’response ’, _req_id , _), to= _client)): ## if request has not been responded to before

6 state , res = execute(global_idx , req , state) ## execute request at global_idx in state

7 send ((’response ’, req_id , res), to= client) ## send response to client

8 output("response sent to the client/sim process , index : ", global_idx , "response : ", res)

9 def execute(global_idx , req , state): ## execute the command in req in given state

10 (_, req_id , _) = req ## request is of form (client , req_id , cmd)

11 return (state +[(global_idx , req)], req_id) ## return call history and req_id as new state and result

Figure 5: Specification of functions for delivering and executing requests.

and None otherwise (lines 16 and 19). The message is then written in all nodes by calling
write sst (line 28).

The second part uses functions receive req and recv to receive incoming messages from
other nodes. Function receive req checks for new messages from other nodes in the group
(lines 31-40). It is run continually to simulate ”always” in the pseudocode, by using a
nondeterministic random choice to select a function to run in node’s run function’s top-level
infinite loop. Upon receiving a message, function recv is called, which stores the message in a
dictionary data structure along with calculating global index, which represents the highest
global index of the message that can be safely delivered based on the local computation
(lines 43-63).

The third part uses stability delivery to deliver messages, in order of their global
indexes, that have been received on all nodes (lines 66-77). The minimum of the global index

across nodes, known as the stable msg idx (line 67), is the index up to which messages can
be safely delivered.

The pseudocode lacks a definition of function deliver upcall. We added it, as shown in
Fig. 5. In our specification, we have abstracted the atomic multicast delivery of a request
message from its execution. Function deliver upcall takes global index and request and
signifies the delivery of the request (lines 1-8). If a corresponding response has not been sent
for a request, it calls the function execute (lines 9-11) to signify execution of the request.
This approach helps prevent execution of duplicate requests that may arise due to client
resends.

5 Specifying view change

Upon encountering the failure of a node, the group undergoes a membership change by
employing a two-phase commit. A key part of the algorithm is leader selection. Fig. 6 shows
its complete precise specification in DistAlgo.

The leader-selection algorithm is specified by two functions, find new leader (lines 1-4)
and an ”always” running function leader selection (lines 6-25). Function find new leader

selects the first non-suspected node as the leader. In function leader selection, if a new
leader selected is different from the current leader (line 8), it waits until all non-suspected
nodes recognize it as the leader before continuing (lines 12-23).

10

1 def find_new_leader (r): # find_new_leader (r) {

2 for i in range (len (curr_view .members)): # for (int i = 0; i < curr_view .max_rank ; ++i) { ### max_rank replaced

3 if sst[r]. suspected [i]: continue # if (sst[r]. suspected [i]) continue ;

4 else : return i # else return i }}

5 # (p.35) ## update the current view , at the end , with the new leader

6 def leader_selection (): # always { ### made function and called in run

7 new_leader = find_new_leader (my_rank) # new_leader = find_new_leader (my_rank)

8 if new_leader != curr_view .leader_rank : # if (new_leader != curr_view .leader_rank && new_leader == my_rank)

9 if new_leader == my_rank: ### split 2 conjuncts , to add the else -branch for the second

10 # all_others_agree = True # bool all_others_agree = true ### moved into while -loop

11 ### if not moved , if it becomes False in for -loop below , it stays False , and the while -loop never stops

12 while find_new_leader (my_rank) == my_rank : # while (find_new_leader (my_rank) == my_rank) {

13 --receive_messages ## yield to receive msgs

14 ### needed to receive updates to SST which may result in new leader selection ### break atomicity

15 all_others_agree = True ### moved here from outside while -loop , as explained above

16 for r in range (len(sst)): # for (r: SST.rows) {

17 if not sst[my_rank]. suspected [r]: # if (sst [my_row]. suspected [r] == false)

18 all_others_agree = all_others_agree and (find_new_leader (r) == my_rank)

19 # all_others_agree &&= (find_new_leader (r) == my_rank) }

20 if all_others_agree : # if (all_others_agree) {

21 curr_view .leader_rank = my_rank # curr_view .leader_rank = my_rank;

22 output("I am the new leader !!!")

23 break # break ; }}}

24 else : ## else : ### added else -branch , for when new leader is not self

25 curr_view .leader_rank = new_leader ## set current view ’s leader to be new leader

Figure 6: Specification of leader selection.

6 Runtime checking and analysis

6.1 Manual inspection and automated checking

To help ensure the correctness of the protocol specification, we perform careful manual
inspection automated testing, and increasingly systematic runtime checking of safety and
progress properties, and repeat this process for each anomaly and improvement discovered
until all inspections, tests, and checks pass. This approach led to a complete precise specifi-
cation in DistAlgo, after filling in missing details in the English and pseudocode description
and resolving additional issues.

The testing and checking methodology consists of configuring and executing the proto-
col with varying numbers of requests and member nodes, ring buffer size, etc., as well as
introducing random node failures. The systematic runtime checking was enabled by a gen-
eral framework in DistAlgo for runtime checking of safety and liveness properties without
touching the complete protocol specification [LS20].

6.2 Properties checked

For property checking, the following messages are used:

• p.sent(‘deliver upcall’, i, req, t) for p calling deliver upcall(i, req) at time
t

• p.sent(‘execute’, i, req) for p calling execute(i, req)

• p.receive(’request’, req) for message (’request’, req) received by p

An important property discussed in the paper [JBG+19a] is the round-robin message
delivery.

11

Delivery ordering. ”Derecho uses a simple round-robin delivery order: Each active
sender can provide one multicast per delivery cycle, and the messages are delivered in round-
robin manner. The global index of M(i, k), gi(M(i, k)) is the position of this message in the
round-robin ordering.”

each p.sent (’deliver_upcall ’, i1 , req1 , t),

p.sent (’deliver_upcall ’, i2 , req2 , t2)

has (not i2 >i1 or t2 >t)

We also check the following well-known properties, taken and quoted exactly from Paxos-
SB [KA08], except that an update in Paxos-SB corresponds to a client request, and a server
is a node process in Derecho.

Validity. ”Only an update that was introduced by a client (and subsequently initiated
by a server) may be executed.”

each p.sent (’execute ’, i, req)

has some p1.received (’request ’, _req)

Agreement. ”If two servers execute the ith update, then these updates are identical.”
each p1.sent (’execute ’, i, req1),

p2.sent (’execute ’, i, req2)

has req1 =req2

Uniform integrity. ”If a server executes an update on sequence number i, then the
server does not execute the update on any other sequence number i’ > i.”

each p.sent (’execute ’, i, req) has

not some =p.sent (’execute ’, i2, =req) has i2 >i

Additionally, we use aggregation queries to specify and check important progress prop-
erties, e.g., the total number of executed request equals the total number of client requests.

count (req: p.receive(’request ’, req)

= count (req: p.sent (’execute ’, i, req)

6.3 Issues found and fixed

Our specification and checking approach—by following the pseudocode exactly, facilitated
by the already detailed pseudocode of Derecho—has also led to finding and fixing some issues
in the pseudocode. Many of these issues were difficult to identify in the original pseudocode
due to usual problems with pseudocode, compounded with the complexity of Derecho, but
became evident after the specification in DistAlgo. While most of the issues were easy to
find and fix, others were not.

Some initial issues (e.g., typos) and more were already addressed in an errata [JBG+19b,
Errata, page 50] and a dissertation [Jha22], and some others (e.g., adding null messages to
prevent stalls, Fig. 4 lines 47-54) were resolved with help from Derecho developers [Jha19,
Jha23]. In all cases, Derecho developers have checked and confirmed that these bugs are not
in their implementation in C++.

The first bugs [JBG+19b, Errata, page 50] were found mostly by manual inspection,
when writing and examining the DistAlgo specification by following the text description of
the logic and the pseudocode of the protocol and cross checking. The rest were essentially all
discovered first by automated testing and checking and then by manual inspection, adding

12

tests and checks, and running again to confirm. The fixes proposed passed all tests, checks,
and inspections.

We discuss two examples issues discovered and fixed, for steady-state execution and view
change, respectively. Despite being minor in hindsight, such issues were tricky to discover
due to complex control flows from high nondeterminism. Both helped improve Derecho’s
pseudocode [Jha22, pages 144 and 149].

Overwriting in ring buffer. In steady-state execution, field slots in SST stores requests
in a ring buffer of size window size (Fig. 1, line 13). To prevent overwriting a slot, get buffer

should return nullptr if the number of pending messages equals the buffer size, i.e., sent num

(number of messages sent by the node) - completed num (number of sent messages that have
been received by all nodes) = window size (Fig. 4 line 13). Instead, the check uses ”<”
originally [JBG+19a, Sec. A.2.3, page 33] and ”>” in a later errata [JBG+19b, Errata, page
50]).

Note that the improved Derecho pseudocode uses ≥ [Jha22, page 144], which is also
correct and was how we first proposed to fix. Using ”=” is more precise, because for the
protocol to be correct, ”>” should never happen.

This is clearly a minor bug, and finding the ”fix” in the errata was relatively quick.
However, discovering more issues after that and debugging them were highly involved, but
solved with help by both manual inspection and automatic checking. The bug manifested
as a deadlock in function receive req (Fig. 4, line 35) for nodes that did not receive the
previous message in the slot. It only happens when the ring buffer is full, after a long
execution trace of member nodes handling many client requests, even for a small buffer size.

Deadlock in leader selection. Leader selection (Fig. 6) selects the first non-suspected
node (lines 1-4) as the new leader and uses variable all others agree to track a logical
conjunction checking if all nodes agree with the new leader (lines 10, 18, and 20). We
discovered that if a node did not initially agree, i.e., find new leader returned a different
leader, all others agree would be set to False (line 18) on the new leader’s node, and cause
a deadlock because all others agree can never be set to True again.

To fix this, we (1) move the first write to all others agree from outside (line 10) to
inside (line 15) of the while, to reset it in each iteration, and (2) add an else branch to
update the new leader for non-leader nodes (lines 24-25).

6.4 Resulting specification and direct execution

Table 1 shows the size of specification of Derecho in DistAlgo.
DistAlgo specifications can be run directly. For example, Derecho specification in a file

derecho.da (Appendix A) can be executed with Python 3.7 by simply running
pip install pyDistAlgo to install DistAlgo and then running python -m da derecho.da.
To run the system with a failure of a node injected, set test failure to True in method
main.

The specification with steady-state and failure-induced membership change runs smoothly.

13

Table 1: Specification size (in number of lines, including output lines, excluding empty
or comment-only lines) for Derecho specification in DistAlgo (derecho.da in Appendix A
excluding method main and class Sim).

Protocol component Size
state and helper functions 95
steady-state execution, incl. delivering&executing reqs 63
view change 132
imports, helper, choices in run 14
total 304

For instance, with 1000 requests, three nodes, one client, window-size 400 and no failure,
the average time over 10 runs was 4.8 seconds, measured on a 2.6 GHz 6-Core Intel Core
i7 CPU with 16 GB RAM running macOS Ventura and Python 3.7.12. A complete sample
run for three nodes, one client, and ten requests, with window-size as ten can be found in
Appendix B.

Note that this is essentially the same speed for runtime checking. Our specification is
not currently optimized for efficiency; it directly runs many reducer functions aggregations,
sorting, and output constantly, each taking linear time or worse. These high-level functions
are essential for ensuring correctness. The efficiency of such expensive functions can be
improved drastically, asymptotically, by using incrementalization, as in [LSL17]. Our goal
in this work is to develop a complete, precise, and correct specification.

7 Related work and conclusion

Significant efforts have been devoted to specifying, testing, analyzing, checking, and ver-
ifying distributed algorithms, as evidenced by works such as [HHK+15, CLS16, PLSS17].
Furthermore, various specification languages and verification tools, such as TLA+ Toolbox
[Lam94, Lam02, Mic] and Ivy [MP20], have been developed to aid in this task. Another
area of focus is verifying the executable specifications of distributed consensus protocols,
as demonstrated by projects like IronFleet [HHK+15] and Verdi [WWP+15]. For example,
Verdi [WWA+16] provides a verified implementation of Raft in Coq [Coq] with 50,000 lines of
proof. Nonetheless, the challenge remains in the significant development efforts and expertise
required for such verification.

Runtime verification (RV) is a useful tool for ensuring the correct functioning of complex
distributed algorithms and their executable specifications, especially for real-world applica-
tions written in general-purpose programming languages, where manual verification can be
prohibitively difficult. Several RV tools have been developed, including MoP [CR05, CR07]
and ELarva [CFG12]. However, they either have not been applied to general distributed
systems or have more complex property specification and checking processes. Although
WidsChecker [LLPZ07] found bugs in Paxos’ IO automata specification, it is tightly coupled
with programs developed using WidsToolkit, is not publicly available, and requires complex

14

specification scripts. In contrast, our runtime verification framework [LS20] enables clear
and precise high-level specifications of properties, allowing for the detection of subtle bugs
in protocol pseudocode and earlier specifications.

Previous research has explored different approaches for producing executable code from
formal specifications, such as from process algebras [HCS01], I/O automata [GLMT09], and
various high-level languages, like Dedalus [AMC+11], Bloom [ACHM11], EventML [Bic09],
and DAHL [LNRS10]. However, DistAlgo [LSLG12, LSL17] stands out as a language specifi-
cally designed for easy and precise expression and direct execution of distributed algorithms.
Additional work using DistAlgo includes many distributed algorithms specified in DistAlgo,
e.g., [LSL17] and on github (https://github.com/search?q=distalgo), automatic trans-
formations of Event-B models [Gra20] into DistAlgo, as well as uses in various BS and MS
theses, e.g., [Wid20, Laz21, Shi22].

For our study, we selected Derecho due to its importance in various high-speed data repli-
cation in intelligent IoT edge applications [SYL+22], with optimization techniques like Spin-
dle [JRB22] improving bandwidth utilization for small messages. Nevertheless, compared to
multi-Paxos [VRA15], with a corresponding executable specification in DistAlgo [LCS19],
Derecho is much more complex with many more pieces of information maintained in much
more sophisticated control flows and with less complete pseudocode. This made it challeng-
ing to determine some of the missing details in the specification.

Our directly executable specification closely corresponds to the protocol pseudocode, and
this helped us better understand the protocol, leading us to identify missing details required
for a complete, precise, executable specification. We use runtime checking to check important
safety and progress properties of the protocol. Future work includes the incorporation of
various fault-injection testing methods with the current runtime verification framework, use
of the specification in DistAlgo to help with proof development [RJB21] for both safety
and liveness, as well as automated ways to correlate formal specifications in DistAlgo with
efficient implementations in lower-level languages such as C++.

Acknowledgments

We thank the Derecho team, Ken Birman and Sagar Jha in particular, for their prompt replies
to our inquiries and their detailed and helpful explanations about the Derecho protocol. We
thank Thejesh Arumalla for careful study of work by the Derecho team and greatly helpful
questions and discussions. This work was supported in part by NSF under grant CCF-
1954837 and ONR under grant N00014-21-1-2719.

References

[ACHM11] Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and William R. Marczak.
Consistency analysis in bloom: a calm and collected approach. In Conference
on Innovative Data Systems Research, 2011.

15

https://github.com/search?q=distalgo

[AMC+11] Peter Alvaro, William R. Marczak, Neil Conway, Joseph M. Hellerstein, David
Maier, and Russell Sears. Dedalus: Datalog in time and space. In Oege de Moor,
Georg Gottlob, Tim Furche, and Andrew Sellers, editors, Datalog Reloaded,
pages 262–281, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[Bic09] Mark Bickford. Component specification using event classes. In Grace A. Lewis,
Iman Poernomo, and Christine Hofmeister, editors, Component-Based Software
Engineering, pages 140–155, Berlin, Heidelberg, 2009. Springer Berlin Heidel-
berg.

[BJ87] Kenneth P. Birman and Thomas A. Joseph. Exploiting virtual synchrony in
distributed systems. SIGOPS Oper. Syst. Rev., 21(5):123–138, November 1987.

[CFG12] Christian Colombo, Adrian Francalanza, and Rudolph Gatt. Elarva: A moni-
toring tool for Erlang. In Sarfraz Khurshid and Koushik Sen, editors, Runtime
Verification, pages 370–374, Berlin, Heidelberg, 2012. Springer Berlin Heidel-
berg.

[CL21] Saksham Chand and Yanhong A. Liu. Brief announcement: What’s live? un-
derstanding distributed consensus. pages 565–568, July 2021.

[CLS16] Saksham Chand, Yanhong A. Liu, and Scott D. Stoller. Formal verification of
multi-paxos for distributed consensus. In John Fitzgerald, Constance Heitmeyer,
Stefania Gnesi, and Anna Philippou, editors, FM 2016: Formal Methods, pages
119–136, Cham, 2016. Springer International Publishing.

[Coq] Coq, a formal proof management system. https://coq.inria.fr/.

[CR05] Feng Chen and Grigore Roşu. Java-mop: A monitoring oriented programming
environment for java. In International Conference on Tools and Algorithms for
Construction and Analysis of Systems, 2005.

[CR07] Feng Chen and Grigore Roşu. Mop: An efficient and generic runtime verifica-
tion framework. In Proceedings of the 22nd Annual ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages and Applications, OOP-
SLA ’07, page 569–588, New York, NY, USA, 2007. Association for Computing
Machinery.

[der] Derecho distalgo github repository. https://github.com/unicomputing/derecho-
distalgo.

[GLMT09] Chryssis Georgiou, Nancy A. Lynch, Panayiotis Mavrommatis, and Joshua A.
Tauber. Automated implementation of complex distributed algorithms specified
in the ioa language. International Journal on Software Tools for Technology
Transfer, 11:153–171, 2009.

16

[Gra20] Alexis Grall. Automatic generation of distalgo programs from event-b models.
In Alexander Raschke, Dominique Méry, and Frank Houdek, editors, Rigorous
State-Based Methods, pages 414–417, Cham, 2020. Springer International Pub-
lishing.

[HCS01] D. Hansel, R. Cleaveland, and S.A. Smolka. Distributed prototyping from val-
idated specifications. In Proceedings 12th International Workshop on Rapid
System Prototyping. RSP 2001, pages 97–102, 2001.

[HHK+15] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno,
Michael L. Roberts, Srinath Setty, and Brian Zill. Ironfleet: Proving practical
distributed systems correct. In Proceedings of the 25th Symposium on Oper-
ating Systems Principles, SOSP ’15, page 1–17, New York, NY, USA, 2015.
Association for Computing Machinery.

[JBG+19a] Sagar Jha, Jonathan Behrens, Theo Gkountouvas, Matthew Milano, Weijia
Song, Edward Tremel, Robbert Van Renesse, Sydney Zink, and Kenneth P. Bir-
man. Derecho: Fast state machine replication for cloud services. ACM Trans.
Comput. Syst., 36(2), April 2019.

[JBG+19b] Sagar Jha, Jonathan Behrens, Theo Gkountouvas, Matthew Milano, Weijia
Song, Edward Tremel, Robbert van Renesse, Sydney Zink, and Kenneth P.
Birman. Derecho: Fast state machine replication for cloud services. ACM
Trans. Comput. Syst., 36:4:1–4:49, 2019. with Errata, page 50, Nov. 2019.
https://www.cs.cornell.edu/ken/derecho-tocs.pdf.

[Jha19] Sagar Jha. Re: Null sends, November 27 2019. Email, with Vishnu Paladugu,
forwarding an email dated Jul 29, 2018.

[Jha22] Sagar Jha. RDMA-accelerated state machine for cloud ser-
vices. PhD thesis, Cornell University, Ithaca, NY, 12 2022.
https://www.cs.cornell.edu/projects/Quicksilver/public_pdfs/dissertation.pdf.

[Jha23] Sagar Jha. Re: Understanding the derecho’s view-change algorithm, April 30
2023. Email with Kumar Shivam.

[JRB22] Sagar Jha, Lorenzo Rosa, and Ken Birman. Spindle: Techniques for optimizing
atomic multicast on rdma. In 2022 IEEE 42nd International Conference on
Distributed Computing Systems (ICDCS), pages 1085–1097, 2022.

[KA08] Jonathan Kirsch and Yair Amir. Paxos for system builders: An overview. In
Proceedings of the 2nd Workshop on Large-Scale Distributed Systems and Mid-
dleware, LADIS ’08, New York, NY, USA, 2008. Association for Computing
Machinery.

17

https://www.cs.cornell.edu/ken/derecho-tocs.pdf
https://www.cs.cornell.edu/projects/Quicksilver/public_pdfs/dissertation.pdf

[Lam94] Leslie Lamport. The temporal logic of actions. ACM Trans. Program. Lang.
Syst., 16(3):872–923, may 1994.

[Lam98] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst.,
16(2):133–169, may 1998.

[Lam02] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hard-
ware and Software Engineers. Addison-Wesley Longman Publishing Co., Inc.,
USA, 2002.

[Laz21] Aleksandar Lazic. The library of distributed protocols. Master’s thesis, Univer-
sity of Fribourg, 2021.

[LCS19] Yanhong A. Liu, Saksham Chand, and Scott D. Stoller. Moderately complex
paxos made simple: High-level executable specification of distributed algorithms.
In Proceedings of the 21st International Symposium on Principles and Practice
of Declarative Programming, PPDP ’19, New York, NY, USA, 2019. Association
for Computing Machinery.

[LLPZ07] Xuezheng Liu, Wei Lin, Aimin Pan, and Zheng Zhang. WiDS checker: Com-
bating bugs in distributed systems. In 4th USENIX Symposium on Networked
Systems Design & Implementation (NSDI 07), Cambridge, MA, April 2007.
USENIX Association.

[LLS17] Yanhong A. Liu, Bo Lin, and Scott Stoller. DistAlgo Language Description.
http://distalgo.cs.stonybrook.edu, March 2017.

[LNRS10] NUNO P. LOPES, JUAN A. NAVARRO, ANDREY RYBALCHENKO, and
ATUL SINGH. Applying prolog to develop distributed systems. Theory and
Practice of Logic Programming, 10(4-6):691–707, 2010.

[LS20] Yanhong A. Liu and Scott D. Stoller. Assurance of distributed algorithms and
systems: Runtime checking of safety and liveness. In Jyotirmoy Deshmukh
and Dejan Ničković, editors, Runtime Verification, pages 47–66, Cham, 2020.
Springer International Publishing.

[LSL17] Yanhong A. Liu, Scott D. Stoller, and Bo Lin. From clarity to efficiency for
distributed algorithms. ACM Transactions on Programming Languages and Sys-
tems, 39(3):12:1–12:41, May 2017.

[LSLG12] Yanhong A. Liu, Scott D. Stoller, Bo Lin, and Michael Gorbovitski. From
clarity to efficiency for distributed algorithms. In Proceedings of the 27th ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages
and Applications, pages 395–410, 2012.

[Mic] Microsoft research. the tla toolbox. http://lamport.azurewebsites.net/tla/toolbox.html.

18

http://distalgo.cs.stonybrook.edu

[MP20] Kenneth L. McMillan and Oded Padon. Ivy: A multi-modal verification tool
for distributed algorithms. In Computer Aided Verification: 32nd International
Conference, CAV 2020, Los Angeles, CA, USA, July 21–24, 2020, Proceedings,
Part II, page 190–202, Berlin, Heidelberg, 2020. Springer-Verlag.

[OL88] Brian M. Oki and Barbara H. Liskov. Viewstamped replication: A new primary
copy method to support highly-available distributed systems. In Proceedings of
the Seventh Annual ACM Symposium on Principles of Distributed Computing,
PODC ’88, page 8–17, New York, NY, USA, 1988. Association for Computing
Machinery.

[PLSS17] Oded Padon, Giuliano Losa, Mooly Sagiv, and Sharon Shoham. Paxos made epr:
Decidable reasoning about distributed protocols. Proc. ACM Program. Lang.,
1(OOPSLA), oct 2017.

[RJB21] Lorenzo Rosa, Sagar Jha, and Ken Birman. DerechoDDS: Efficiently leveraging
RDMA for fast and consistent data distribution. In CARS 2021 6th International
Workshop on Critical Automotive Applications: Robustness & Safety, Münich,
Germany, September 2021.

[Shi22] Kumar Shivam. Specification and runtime checking of algorithms for replication
and consensus in distributed systems. Master’s thesis, Stony Brook University,
2022.

[SYL+22] Weijia Song, Yuting Yang, Thompson Liu, Andrea Merlina, Thiago Garrett,
Roman Vitenberg, Lorenzo Rosa, Aahil Awatramani, Zheng Wang, and Ken
Birman. Cascade: An edge computing platform for real-time machine intel-
ligence. In Proceedings of the 2022 Workshop on Advanced Tools, Program-
ming Languages, and PLatforms for Implementing and Evaluating Algorithms
for Distributed Systems, ApPLIED ’22, page 2–6, New York, NY, USA, 2022.
Association for Computing Machinery.

[VRA15] Robbert Van Renesse and Deniz Altinbuken. Paxos made moderately complex.
ACM Comput. Surv., 47(3), feb 2015.

[Wid20] Roland Widmer. Byzantine-fault tolerant algorithms in DistAlgo. bachelors
thesis, 2020.

[WWA+16] Doug Woos, James R. Wilcox, Steve Anton, Zachary Tatlock, Michael D. Ernst,
and Thomas Anderson. Planning for change in a formal verification of the raft
consensus protocol. In Proceedings of the 5th ACM SIGPLAN Conference on
Certified Programs and Proofs, CPP 2016, page 154–165, New York, NY, USA,
2016. Association for Computing Machinery.

[WWP+15] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang,
Michael D. Ernst, and Thomas Anderson. Verdi: A framework for implementing

19

and formally verifying distributed systems. SIGPLAN Not., 50(6):357–368, jun
2015.

20

A Derecho executable specification in DistAlgo

1 # This is a DistAlgo implementation of Derecho , as described in

2 # Sagar Jha , Jonathan Behrens , Theo Gkountouvas , Matthew Milano , Weijia Song ,

3 # Edward Tremel , Robbert van Renesse , Sydney Zink , and Kenneth P. Birman.

4 # "Derecho : Fast State Machine Replication for Cloud Services ",

5 # ACM Transactions on Computer Systems , Vol . 36, No. 2. Article 4. March 2019.

6 # http :// www.cs.cornell.edu/ken/derecho .pdf

7 # In the code below , the following convention for comments are used :

8 # 1. comments after # are text or pseudocode copied from the paper ,

9 # except a block from an email from Sagar Jha as noted in function recv .

10 # 2. comments after ## (or no comments) indicate code we had to fill in.

11 # 3. comments after ### indicate changes to pseudocode in paper .

12 import sys ## for taking command line arguments

13 import time ## for timing about runs of the protocol

14 import random ## for taking a random choice among multiple actions

15 import os ## for getting a bytestring of random bytes of a given size

16 def min_and_idx (l):

17 """ min of list l and index of first min element """

18 m = min(l)

19 return m, l.index (m)

20 # (p.12-13) 3.4 Shared State Table : The SST (par .2)

21 # Derecho uses protocols that run on a novel replicated data structure

22 # that we call the shared state table , or SST.

23 # The SST offers a tabular distributed shared memory abstraction .

24 # Every member of the top -level group holds ## top -level not in key protocol steps

25 # its own replica of the entire table , in local memory.

26 # Within this table , there is one identically formatted row per member.

27 # A member has full read /write access to its own row but

28 # is limited to read -only copies of the rows associated with other members.

29 # (p.32) Appendix

30 # A PSEUDO -CODE FOR KEY PROTOCOL STEPS (p.32-38)

31 # A.1 Notation

32 # A.1.1 SST

33 # column_name ->string|string[int] // e.g. wedged or latest_received_index [3]

34 # sst_row ->sst [row_rank] ## row_rank is index of the row in sst

35 # row_rank ->int ## index of row is in 0.. len(sst)

36 # sst_column ->sst [*]. column_name

37 # sst_entry -> sst_row.column_name // e.g. sst [0]. stable_msg_index [0]

38 # A rank of a member is the index of its row in the SST .

39 # The code shown below is run by every process , but each has a distinct rank (referred to as my_rank).

40 # (p.33) A.2 SMC

41 # In what follows , we begin by presenting the SST multicast (SMC),

42 # which implements a ring -buffer multicast .

43 # In combination with the atomic multicast delivery logic and

44 # the membership management protocol that follows , we obtain a full Paxos .

45 # RDMC could be similarly formalized but is omitted for brevity .

46 #

47 # A.2.1 SST Structure . SMC uses two fields , slots and received_num .

48 # slots is a vector of window_size slots ,

49 # each of which can store a message of up to max_message_size characters .

50 # The index associated with a slot is used to signal that

51 # a new message is present in that slot :

52 # For example , if a slot ’s index had value k and transitions to k + 1,

53 # then a new message is available to be received .

54 # The vector received_num holds

55 # counters of the number of messages received from each node .

56 class Slot :

57 """A slot stores a client request message . A vector of slots is a field in SST """

58 def __init__ (self):

59 self .buf = None # (p.33) a request of up to max_message_size characters ## initialized in Node .init ()

60 self .index = 0 # (p.33) index associated with a slot ## initialized in Node .init ()

61 self .size = 0 # ## size of the request , set in get_buffer () ### defined but not used

62 class SSTRow:

63 """A shared state table (SST) row that stores info about a node .

64 A SST has a SSTRow for each member node and is stored in each member"""

65 def __init__ (self , n, window_size): ## initialize SST columns for the row ; all used in pseudocode but the last two

66 # n: ## number of member nodes in the group

67 # window_size : ## length of vector of slots for storing client req msgs received by the node , directly or indirectly

68 self .slots = [Slot () for _ in range (window_size)] # (p.33) vector of window_size slots ## for client request msgs

69 self .received_num = [-1] * n # (p.33) number of messages received from each node ### number -1

70 ## initialized in Node .init (), and set in receive_req ()

71 self .global_index = -1 # ## global index of last message received from the most lagging node

72 self .latest_delivered_index = -1 # ## min of self .global_index over all members

73 self .latest_received_index = [-1] * n # ## index of latest msg received from each node , set in recv to received_num

74 ## i.e., self .received_num -1 ### redundant , but not clear with null msgs

21

75 self .min_latest_received = [-1] * n # ## for each node , min of latest_received_index over all rows in SST

76 self .suspected = [False] * n # ## for each node , whether that node is suspected to have failed

77 self .wedged = False # ## true when any node is suspected

78 self .changes = [] # ## list of nodes suspected (or added from joins) to proposed as changes by the leader

79 self .num_changes = 0 # ## number of nodes in self .changes , i.e., length of self .changes

80 self .num_acked = 0 # ## number of nodes in self .changes acknowledged

81 ### set in 1 place by us , using num_changes

82 self .num_committed = 0 # ## min of self .num_acked over not suspected nodes

83 self .num_installed = 0 # ## number of nodes installed (added /removed) by the node , as proposed by the leader

84 self .ragged_edge_computed = False # ## true for leader calling terminate_epoch or others after leader did;

85 ## the call happens when leader’s num_committed > self ’s num_installed

86 self .active = False # (p.40) ## true when the epoch is active , only used at start ### not in pseudocode

87 ### could use logical or over sst[my_rank]. suspected or even just own suspected

88 class View ():

89 """A view that holds the information of an epoch . An epoch is the duration of a view ."""

90 def __init__ (self , n, epoch =0, leader_rank =0):

91 # n: ## number of members in the view

92 self .epoch = epoch # ## epoch number of the view ; epoch and view used interchangeably in the paper

93 self .leader_rank = leader_rank # ## index of the leader

94 self .members = [None] * n # ## list of member nodes in the view

95 self .failed = [False] * n # ## for each node , whether that node is suspected and thus considered failed

96 def add_member (self , node): ## add member to the view

97 self .members .append(node) ## append node to members

98 self .failed.append(False) ## add the failed attribute corresponding to the added node

99 def remove_member (self , node): ## remove node from members of the view

100 index = self .members .index (node) ## get index of node in members

101 del self .failed[index] ## remove failed entry for node

102 self .members .remove(node) ## remove node from members

103 class Node (process):

104 ## simulate Derecho ’s write to SST using RDMA :

105 ## each node owns a row in the SST and is the only writer of the row;

106 ## each write to local SST must be multicasted to all other nodes to update their copies of the row.

107 def write_sst (row , col , val , index =None): ## write SST entry at row and col , at index if col is a list , with val

108 wt_local_sst (row , col , val , index) ## write local SST

109 msg = (’rdma_write_sst ’, row , col , val , index , curr_view .epoch) ## msg to send to others

110 msg_tagged = (’data ’ if col == "slots " else ’control ’,) + msg ## tag the msg as data or control

111 send (msg_tagged , to= others) ## send the message to other nodes

112 def receive(msg = (_, ’rdma_write_sst ’, row , col , val , index , epoch)): ## _ ignores tag ’data ’ or ’control ’

113 output("received : ", (’rdma_write_sst ’, row , col , val , index , epoch))

114 if epoch != curr_view .epoch : # (p.40) ## if msg is for a different epoch , ignore

115 output(’received rdma_write_sst msg for different epoch , current: ’, curr_view .epoch , ’ and msg: ’, epoch)

116 return

117 if col == "slots " and any(curr_view .failed): # (p.12) ## if msg is a req and curr view has failed members , ignore

118 output("Failure detected , new data messages dropped")

119 return

120 if row in freeze: # (p.16) ## if msg is for a row in freeze , ignore; should do at write

121 output("ignored rdma_write_sst msg because of frozen row: ", row , " node : ", G[row])

122 return

123 wt_local_sst (row , col , val , index) ## write local SST

124 def wt_local_sst (row , col , val , index =None): ## write local entry at row and col , at index if col is a list , with val

125 if index is None : ## if index is None , meaning col is not a list

126 setattr(sst[row], col , val) ## just update SST entry with val

127 else : ## col is a list

128 entry = getattr(sst[row], col) ## retrieve SST entry at row and col

129 entry [index] = val ## update the element at index of entry with val

130 setattr(sst[row], col , entry) ## update SST entry at row and col with updated entry

131 ## functions below are called in pseudocode ; they are here because sst , G, and my_rank are defined in Node

132 # (p.32, under A.1.1) reducer function , for example ,

133 def Min(col , index =None): # (p.32) Min(sst_column) represents the minimum of all the entries of the column.

134 """ min value of column col , at given index if col is a list , in sst """

135 if index is None :

136 return min(getattr(sst[row], col) for row in range (len(sst)))

137 else :

138 return min(getattr(sst[row], col)[index] for row in range (len (sst)))

139 def NotFailed (): # (p.32) NotFailed is a filtering function that removes the rows that are suspected , from the column

140 return [row for row in range (len(sst)) if not sst[my_rank].suspected [row]]

141 def MinNotFailed (col): # (p.32) MinNotFailed (sst_column) is a Min(NotFailed (sst_column)) ### direct Min not work

142 """ min of all values of column col for non -suspected nodes in sst """

143 return min (getattr (sst[row], col) for row in NotFailed ())

144 def LogicalAndNotFailed (col):

145 """ logical ’AND ’ of all values in column col for non -suspected nodes in sst """

146 return all (getattr (sst[row], col) for row in NotFailed ())

147 def LogicalOr (col):

148 """ logical ’OR’ of all values in column col in sst """

22

149 return any (getattr (sst[row], col) for row in range (len(sst)))

150 def Count (col , val): # (p.32) Count (sst_column , value) counts the number of entries that are equal to value .

151 """ count of rows in sst where column col has value val """

152 # return len ([row for row in range (len(sst)) if getattr(sst[row], col) == val]) ### this follows the English but

153 return len ([i for i in range (len(sst)) if getattr(sst[my_rank], col)[i] == val]) ### this is intended from use

154 def min_with_val (col , val):

155 """ min rank of row in sst where column col has value val """

156 return min (row for row in range (len (sst)) if getattr(sst[row], col) == val)

157 def max_gi (): # (at call) max over n of (sst [my_rank].min_latest_received [n] * |G| + n)"""

158 """ max value of the global index of all the messages in the group ,"""

159 return max ((sst[my_rank]. min_latest_received [i] * len(G) + i) for i in range (len (G)))

160 # (p.32) A.1.2 Message Ordering . The group is represented by G.

161 def M(i, k): # M(i,k) represents a message with i as the sender rank and k as the sender index .

162 # For example , the zeroth message by sender number 2 is M(2,0).

163 """ request msg in vector of slots given sender ’s rank i and sender ’s message index k"""

164 return sst[i].slots [k%window_size].buf

165 def gi(i, k): # The global index of M(i, k), gi(M(i, k)) is the position of this message in the round -robin ordering .

166 """ global message index of a message given sender’s rank i and sender’ message index k"""

167 return k * len (G) + i # gi(M(i, k)) = i * |G| + k ### bug fixed , in ERRATA of paper

168 # (p.33) A.2.2 Initialization .

169 def initialize (): ## initialize SST and other fields , using G and window_size

170 self .n = len(G) # ## number of nodes in group G

171 self .sst = [SSTRow(n, window_size) for _ in range (n)]

172 # for i in 1 to n {

173 # for j in 1 to n {

174 # sst[i]. received_num [j] = -1; }

175 # for k in 1 to window_size {

176 # sst[i].slots [k].buf = nullptr

177 # sst[i].slots [k].index = 0 }}

178 self .sent_num = -1 # sent_num = -1 ## number of messages sent by this node - 1

179 self .msgs = {} # ## dict of requests received but not yet executed , indexed by global index

180 self .freeze = set () # (p.16 ln 1, p.41 B.3 ln 3-6) SST rows of failed members ### is a call in pseudocode

181 ## set of rows of members sensed or suspected failed ### could use sst[my_rank]. suspected

182 self .others = set(G)-{self } ## set of other nodes in the group

183 return n, sst , sent_num , msgs , freeze , others

184 def setup (G, my_rank , window_size , max_msg_size , state):

185 # G: ## list of nodes in the group

186 # my_rank: ## index of this node in the list of nodes

187 # window_size : ## size of the vector of slots for SST

188 # max_msg_size : ## max message size , in number of bytes

189 ## state : history of states of the application

190 self .n, self .sst , self .sent_num , self .msgs , self .freeze , self .others = initialize ()

191 self .curr_view = View (n) # ## current view

192 self .curr_view .members = G # ## members of current view , set to G

193 output(’initial group : ’, G)

194 def run ():

195 write_sst (my_rank , "active", True) # (p.40) ## mark the epoch

196 await (LogicalAndNotFailed ("active")) # (p.40) ## wait for the members to be active

197 while True :

198 --receive_messages ## yield to receive messages

199 choice = random.choice ([’recv ’, ’stable’, ’suspect ’, ’elect ’, ’other ’])

200 if choice == ’recv ’: receive_req () # always

201 elif choice == ’stable’: stability_delivery () # always

202 elif choice == ’suspect ’: suspect () # always

203 elif choice == ’elect ’: leader_selection () # always

204 # (p.36) A.4.2 Terminating old view and installing new view after wedging .

205 elif sst[curr_view .leader_rank]. num_changes > sst[my_rank]. num_acked :

206 # when (sst[leader_rank]. num_changes > sst [my_rank].num_acked) {

207 leader_rank = curr_view .leader_rank ## ### added definition needed for uses below

208 if leader_rank != my_rank : # if (curr_view .leader_rank != my_rank) {

209 output("leader: ", G[leader_rank], " proposed a new change")

210 output("changes list received from leader is: ", sst[leader_rank].changes)

211 write_sst (my_rank , "num_changes ", sst[leader_rank]. num_changes)

212 # sst [my_rank].num_changes = sst[leader_rank]. num_changes ;

213 write_sst (my_rank , "changes", sst[leader_rank]. changes)

214 # sst [my_rank].changes = sst[leader_rank]. changes;

215 write_sst (my_rank , "num_committed ", sst[leader_rank]. num_committed)

216 # sst [my_rank].num_committed = sst [leader_rank].num_committed ;

217 # curr_view .wedge (); ### not defined

218 write_sst (my_rank , "wedged", True) # sst [my_rank].wedged = true ;

219 # }}

220 write_sst (my_rank , "num_acked ", sst[leader_rank]. num_changes)

221 ## acknowledge the changes ### missing but needed to terminate

222 ### added based on email from Sagar Jha to Shivam Kumar on 4/30/23

223 elif (curr_view .leader_rank == my_rank and # when (curr_view .leader_rank == my_rank and

224 MinNotFailed ("num_acked ") > sst[my_rank]. num_committed):

23

225 # MinNotFailed (sst [*]. num_acked) > sst[my_rank]. num_committed) {

226 output("commit_proposal_leader : ", G[curr_view .leader_rank])

227 write_sst (my_rank , "num_committed ", MinNotFailed ("num_acked "))

228 # sst[my_rank]. num_committed = MinNotFailed (sst [*]. num_acked);

229 # }

230 elif sst[curr_view .leader_rank]. num_committed > sst[my_rank]. num_installed :

231 # when (sst [my_rank].num_committed [leader_rank] > sst[my_rank]. num_installed [my_rank]) {

232 output("leader: ", G[curr_view .leader_rank], " committed a new membership change")

233 # curr_view .wedge (); ### not defined

234 write_sst (my_rank , "wedged", True) # sst[my_rank]. wedged = true ;

235 await (LogicalAndNotFailed ("wedged")) # when (LogicalAndNotFailed (sst [*]. wedged) == true) {

236 terminate_epoch () # terminate_epoch (); }}

237 def receive(msg =(’request ’, req)): ## receive request from client , and send req to the group

238 client , req_id , _ = req ## request is of form (client , req_id , cmd)

239 output("request: ", req , " received from client: ", client)

240 if some (sent ((’response ’, _req_id , res), to= _client)): ## if a response to req was already sent

241 output("Duplicate request received : ", req , ". Sending result: ", res , " back .")

242 send ((’response ’, req_id , res), to= client) ## send the response again

243 return

244 send_req (req) ## send request by putting it in the next slot , if a slot is available

245 # (p.33) A.2.3 Sending. First the sending node reserves one of the slots :

246 def get_buffer (msg_size): # char * get_buffer (msg_size) {

247 assert msg_size <= max_msg_size # assert(msg_size <= max_msg_size);

248 completed_num = Min("received_num ", my_rank) # completed_num = Min{sst [*]. received_num [my_rank]};

249 if sent_num - completed_num == window_size : # if (sent_num - completed_num < window_size) {

250 ### changed < to == ### first changed < to > in ERRATA of paper , but it caused deadlock

251 output("slot verctor full , returning , sent_num : ", sent_num , " completed_num : ", completed_num)

252 return None # return nullptr; }

253 slot = (sent_num + 1) % window_size # slot = (sent_num + 1) % window_size ;

254 sst[my_rank].slots [slot].size = msg_size # sst[my_rank].slots [slot].size = msg_size ;

255 return slot # return sst[my_rank].slots [slot].buf; } ### return slot

256 # (p.34) After get_buffer returns a non -null buffer ,

257 # the application writes the message contents in the buffer and calls send

258 def send_req (req): # void send () {

259 slot = get_buffer (len(req [2]) if req else 0) ## get slot for req if available

260 if slot == None : return ## # (p.34) ### added

261 # slot = (sent_num + 1) % window_size ; ### redundant ; what if None ?

262 sst[my_rank].slots [slot].buf = req ## # (p.34) the application writes the message contents in the buffer

263 sst[my_rank].slots [slot].index += 1 # sst[my_rank].slots [slot].index ++;

264 write_sst (my_rank , "slots ", sst[my_rank].slots [slot], slot) ## wrote to SST just above , but need to multicast

265 sent_num += 1 # sent_num ++; }

266 # (p.34) A.2.4 Receiving . ## if there is a req msg in next slot , increment received_num and call recv

267 def receive_req (): # always { ### made function and called in run

268 for i in range (n): # for i in 1 to n { ### fixed to be 0..n-1

269 slot = (sst[my_rank]. received_num [i]+1) % window_size

270 # slot = (sst[my_rank]. received_num [i]+1) %window_size

271 if sst[i]. slots [slot]. index == (sst[my_rank].received_num [i]+1) // window_size + 1:

272 # if (sst[i].slots [slot].index == (sst[my_rank]. received_num [i]+1) /window_size +1) {

273 write_sst (my_rank , "received_num ", sst[my_rank]. received_num [i]+1, i)

274 # ++sst[my_rank]. received_num [i];

275 recv (M(i, sst[my_rank]. received_num [i]), i, sst[my_rank]. received_num [i])

276 # recv (M(i, sst[my_rank]. received_num [i])); }}}

277 # (p.34) A.3 Atomic Multicast Delivery in the Steady State

278 # A.3.1 Receive . ## received request msg , update msgs and related indices , but first send null msgs if needed

279 def recv (req , i, k): # on recv (M(i,k)) {

280 ### the if -block below is added to avoid stalls by slow senders in delivery of received message ,

281 ### pseudocode here as in email from Sagar Jha to Vishnu Paladugu on 11/29/19 , quoting an email by him dated 7/29/18

282 # if (I am a sender && this subgroup is not in unordered mode) { ### ignored

283 if my_rank < i and k > sent_num : # if (my_rank < i && I have not sent M(my_rank , k)) { ### used sent_num

284 for _ in range (k - sent_num): ## for every missing msg : ### do all at once to be more efficient

285 output("sending no -op , case 1")

286 send_req (None) # send a null message }

287 elif my_rank > i and k-1 > sent_num : # else if (my_rank > i && I have not sent M(my_rank , k-1)) { ### used sent_num

288 for _ in range (k-1 - sent_num): ## for every missing msg : ### do all at once to be more efficient

289 output("sending no -op , case 2")

290 send_req (None) # send a null message }}

291 msgs [gi(i, k)] = req # msgs [gi(M(i,k))] = M(i,k);

292 write_sst (my_rank , "latest_received_index ", k, i)

293 # sst[my_rank]. latest_received_index [i] = k;

294 min_index_received , lagging_node_rank = min_and_idx (sst[my_rank]. latest_received_index)

295 # (min_index_received , lagging_node_rank) =

296 # (min ,argmin) i sst[my_rank]. latest_received_index [i];

297 write_sst (my_rank , "global_index ", (min_index_received + 1) * len(G) + lagging_node_rank - 1)

298 # sst[my_rank]. global_index = (min_index_received + 1) * |G| + lagging_node_rank - 1;

299 # }

300 # (p.34) A.3.2 Stability and Delivery .

301 ## deliver consecutive msgs that have been received by all nodes , in order of global index of the msgs

302 def stability_delivery (): # always { ### made function and called in run

303 stable_msg_idx = Min("global_index ") # stable_msg_index = Min{sst [*]. global_index }

24

304 sorted_keys = sorted(msgs .keys ()) ## sort because msgs must be delivered in increasing global index

305 for g_idx in sorted_keys : # for (msg : msgs) {

306 if g_idx <= stable_msg_idx : # if (msg.global_index <= min_stable_msg_index) { ### min_ deleted

307 deliver_upcall (g_idx , msgs [g_idx]) # deliver_upcall (msg); ### add first argument , to see global_index in

output

308 del msgs [g_idx] # msgs .remove(msg .global_index); }}

309 if sorted_keys and min (sorted_keys) <= stable_msg_idx :

310 ## if there stored reqs are less than received reqs

311 ### added test to not multicast unnecessarily as this is in an always

312 write_sst (my_rank , "latest_delivered_index ", stable_msg_idx)

313 # sst [my_rank].latest_delivered_index = stable_msg_index }

314 # (p.35) A.4 View Change Protocol

315 # A.4.1 Failure Handling and Leader Proposing Changes for Next View .

316 def receive(msg =(’failure ’, r)): # every 1 millisecond {

317 # post RDMA write with completion to every SST row that is not frozen

318 # if (no completion polled from row r) {

319 ### receive failure of row r, simulating polling on SST for not receiving completion from row r for a time period

320 freeze.add(r) # sst.freeze(r); ### not defined; added field in Node to track this

321 report_failure (r) # report_failure (r); }}

322 # (p.35) ## update the suspected field upon noticing a node failure

323 def report_failure (r): # report_failure (r) {

324 write_sst (my_rank , "suspected ", True , r) # sst[my_rank]. suspected [r] = true ;

325 write_sst (my_rank , "active", False) ## (p.40) ## mark the epoch as inactive

326 total_failed = Count (’suspected ’, True) # total_failed = Count (sst [*]. suspected , true);

327 if total_failed >= (n + 1)/2: # if (total_failed >= (num_members + 1)/2) { ### num_members =n

328 raise Exception ("ERROR : derecho_partitioning_exception ") # throw derecho_partitioning_exception ; }}

329 def find_new_leader (r): # find_new_leader (r) {

330 for i in range (len (curr_view .members)): # for (int i = 0; i < curr_view .max_rank ; ++i) { ### max_rank replaced

331 if sst[r]. suspected [i]: continue # if (sst[r]. suspected [i]) continue ;

332 else : return i # else return i }}

333 # (p.35) ## update the current view , at the end , with the new leader

334 def leader_selection (): # always { ### made function and called in run

335 new_leader = find_new_leader (my_rank) # new_leader = find_new_leader (my_rank)

336 if new_leader != curr_view .leader_rank : # if (new_leader != curr_view .leader_rank && new_leader == my_rank)

337 if new_leader == my_rank: ### split 2 conjuncts , to add the else -branch for the second

338 # all_others_agree = True # bool all_others_agree = true ### moved into while -loop

339 ### if not moved , if it becomes False in for -loop below , it stays False , and the while -loop never stops

340 while find_new_leader (my_rank) == my_rank : # while (find_new_leader (my_rank) == my_rank) {

341 --receive_messages ## yield to receive msgs

342 ### needed to receive updates to SST which may result in new leader selection ### break atomicity

343 all_others_agree = True ### moved here from outside while -loop , as explained above

344 for r in range (len(sst)): # for (r: SST.rows) {

345 if not sst[my_rank]. suspected [r]: # if (sst [my_row]. suspected [r] == false)

346 all_others_agree = all_others_agree and (find_new_leader (r) == my_rank)

347 # all_others_agree &&= (find_new_leader (r) == my_rank) }

348 if all_others_agree : # if (all_others_agree) {

349 curr_view .leader_rank = my_rank # curr_view .leader_rank = my_rank;

350 output("I am the new leader !!!")

351 break # break ; }}}

352 else : ## else : ### added else -branch , for when new leader is not self

353 curr_view .leader_rank = new_leader ## set current view ’s leader to be new leader

354 # (p.36) ## poll field suspected in SST and propagate the status to all members in the group

355 def suspect (): # always { ### made function and called in run

356 for r in range (n): # for (every row r and s) {

357 for s in range (n):

358 if sst[r].suspected [s]: # if (sst [r]. suspected [s] == true) {

359 if my_rank == s: ## if self is suspected : (p.?)

360 output("I am suspected and will be removed , shutting down myself now ")

361 exit () ## shut down self

362 if not sst[my_rank].suspected [s]: ### added test to not multicast repeatedly

363 write_sst (my_rank , "suspected ", True , s) # sst[my_rank]. suspected [s] = true

364 # }}

365 for s in range (n): # for (s=0; s < num_members ; ++s) { ### num_member =n

366 if sst[my_rank].suspected [s]: # if sst [my_rank].suspected [s] == true and curr_view .failed[s] == false {

367 if not curr_view .failed[s]: ### split 2 conjuncts , to let next if run by next leader when leader fails

368 freeze.add(s) # freeze(s) ### not defined; added field in Node to track this

369 report_failure (s) # report_failure (s)

370 curr_view .failed[s] = True # curr_view .failed[s] = true

371 # curr_view .wedge () ### not defined

372 write_sst (my_rank , "wedged", True) # sst[my_rank]. wedged = true

373 if curr_view .leader_rank == my_rank and G[s] not in sst[my_rank]. changes:

374 # if (curr_view .leader_rank == my_rank and sst[my_rank].changes .contains (s) == false) {

375 output("changes list updated with : ", G[s])

376 # next_change_index = sst[my_rank]. num_changes - sst[my_rank].num_installed ;

377 ### omitted , position is not needed to add to Python list

378 changes = sst[my_rank]. changes

379 changes .append(G[s])

380 write_sst (my_rank , "changes", changes)

381 # sst[my_rank]. changes[next_change_index] = id of node owning s

25

382 num_changes = sst[my_rank]. num_changes + 1

383 write_sst (my_rank , "num_changes ", num_changes)

384 # sst[my_rank]. num_changes ++;

385 # }}}}

386 # (p.37) ## continue A.4.2 in second half of run ()

387 def terminate_epoch (): # terminate_epoch () {

388 leader_rank = curr_view .leader_rank

389 committed_count = sst[leader_rank].num_committed - sst[leader_rank]. num_installed

390 # committed_count = sst [leader_rank].num_committed - sst [leader_rank].num_installed ;

391 next_view = View (n, curr_view .epoch + 1) ## create a new

392 next_view .members = curr_view .members .copy () # next_view .members = curr_view .members

393 for change_idx in range (committed_count): # for (change_index =0; change_index <committed_count ;change_index ++){

394 node = sst[my_rank].changes [change_idx] # node_id = sst[my_rank]. changes[change_index];

395 if node in next_view .members: # if (curr_view .contains (node_id) == true) {

396 next_view .remove_member (node) # new_view .members.remove(node_id); } ### new_view -> next_view

397 output("Removed node from next_view ’s group : ", node)

398 else : # else {

399 next_view .add_member (node) # next_view .members .append(node_id); }}

400 output("Added node to next_view ’s group : ", node)

401 if leader_rank == my_rank : # if (leader_rank == my_rank) {

402 leader_ragged_edge_cleanup () # leader_ragged_edge_cleanup ();

403 else : # else {

404 await sst[leader_rank]. ragged_edge_computed # when (sst[leader_rank]. ragged_edge_computed == true) {

405 non_leader_ragged_edge_cleanup () # non_leader_ragged_edge_cleanup (); }}

406 curr_view = next_view # curr_view = next_view ;

407 resetup(sst[my_rank], committed_count) ## re-setup the system , reinitialize SST and other fields

408 output (’new view installed with members: ’, curr_view .members)

409 # }

410 # (p.37-38) ## clean up ragged edge

411 def leader_ragged_edge_cleanup (): # leader_ragged_edge_cleanup () {

412 if LogicalOr ("ragged_edge_computed "): # if (LogicalOr (sst [*]. ragged_edge_computed) == true) {

413 rank = min_with_val ("ragged_edge_computed ", True)

414 # Let rank be s.t. sst[rank].ragged_edge_computed is true

415 for i in range (len(G)): # for (n = 0; n < |G|; ++n) {

416 write_sst (my_rank , "min_latest_received ", sst[rank]. min_latest_received [i], i)

417 # sst[my_rank].min_latest_received [n] = sst [rank]. min_latest_received [n]; }

418 # sst[my_rank]. ragged_edge_computed = true ; } ### lifted outside if

419 else : # else {

420 for i in range (len(G)): # for (n = 0; n < |G|; ++n) {

421 write_sst (my_rank , "min_latest_received ", Min("latest_received_index ", i), i)

422 # sst[my_rank].min_latest_received [n] = Min (sst [*]. latest_received_index [n]);

423 # sst[my_rank]. ragged_edge_computed = true ; } ### lifted outside else

424 write_sst (my_rank , "ragged_edge_computed ", True)

425 deliver_in_order () # deliver_in_order (); }

426 # (p.38) ## clean up ragged edge

427 def non_leader_ragged_edge_cleanup (): # non_leader_ragged_edge_cleanup () {

428 leader_rank = curr_view .leader_rank

429 for i in range (len (G)): # for (n = 0; n < |G|; ++n) {

430 write_sst (my_rank , "min_latest_received ", sst[leader_rank]. min_latest_received [i], i)

431 # sst [my_rank].min_latest_received [n] = sst [leader_rank].min_latest_received [n]; }

432 write_sst (my_rank , "ragged_edge_computed ", True)

433 # sst[my_rank]. ragged_edge_computed = true ;

434 deliver_in_order () # deliver_in_order (); }

435 # (p.38) ## after clean up of ragged edge , deliver pending

436 def deliver_in_order (): # deliver_in_order () {

437 curr_g_idx = sst[my_rank]. latest_delivered_index

438 # curr_global_index = sst[my_rank].latest_delivered_index ;

439 max_g_idx = max_gi() # max_global_index = max over n of (sst[my_rank].min_latest_received [n] * |G| + n);

440 for g_idx in range (curr_g_idx + 1, max_g_idx + 1):

441 # for (global_index = curr_global_index + 1; global_index <= max_global_index ; ++ global_index) {

442 sender_index = g_idx // len(G) # sender_index = global_index / |G|;

443 sender_rank = g_idx % len(G) # sender_rank = global_index % |G|;

444 if sender_index <= sst[my_rank]. min_latest_received [sender_rank]:

445 # if (sender_index <= sst[my_rank]. min_latest_received [sender_rank]) {

446 output("delivering message with global index : ", g_idx , " and message: ", msgs [g_idx])

447 deliver_upcall (g_idx , msgs [g_idx]) # deliver_upcall (msgs [global_index]); }}}

448 ## not del in msgs and write_sst as in stability_delivery becaue this is failure case , to rest msg to {}

449 # (p.40) Next , Derecho creates a new SST instance for the new epoch and

450 # associates an RDMC session with each sender for each subgroup or shard

451 # (thus , if a subgroup has k senders , then it will have k superimposed RDMC sessions : one per sender).

452 # The epoch is now considered to be active.

453 def resetup(old_sst_row , num_changes_installed): ## re-setup system after next view with membership is prepared

454 self .G = curr_view .members ## new group members in current view

455 self .my_rank = curr_view .members.index (self) ## set my_rank based on the index in the new_view

456 initialize () ## reinitialize the system

457 cur_epoch = curr_view .epoch

458 send ((’view_change ’, cur_epoch), to= others) ## send completion of view change to all other nodes

459 output("view_change message sent to all other nodes ; waiting to receive the same from others")

460 await each (p in others , has=some (received ((’view_change ’, _cur_epoch), from_ =_p))) ## wait to receive same from all

others

461 # await each (p in others , has=received ((’ view_change ’, cur_epoch), p)) ## wait to receive same from all others

26

462 output("view_change message received from all other nodes ; starting the epoch ")

463 write_sst (my_rank , "changes", old_sst_row .changes [num_changes_installed :])

464 ## copy uninstalled /pending changes to new group ’s SST

465 write_sst (my_rank , "num_installed ", old_sst_row .num_installed + num_changes_installed)

466 ## update num_installed with new changes installed

467 write_sst (my_rank , "num_changes ", old_sst_row .num_changes) ## copy old num_changes

468 write_sst (my_rank , "num_committed ", old_sst_row .num_committed)## copy old num_committed

469 write_sst (my_rank , "num_acked ", old_sst_row .num_acked) ## copy old num_ack

470 write_sst (my_rank , "active", True) ## (p.40)

471 def deliver_upcall (global_idx , req): ## execute request req , at decided global index

472 output("in deliver_upcall (), gi: ", global_idx , " and req: ", req)

473 if req is None : return ## if request is a null msg for no-op, return

474 (client , req_id , _) = req ## request is form (client , req_id , cmd)

475 if not some (sent ((’response ’, _req_id , _), to= _client)): ## if request has not been responded to before

476 state , res = execute(global_idx , req , state) ## execute request at global_idx in state

477 send ((’response ’, req_id , res), to= client) ## send response to client

478 output("response sent to the client/sim process , index : ", global_idx , "response : ", res)

479 def execute(global_idx , req , state): ## execute the command in req in given state

480 (_, req_id , _) = req ## request is of form (client , req_id , cmd)

481 return (state +[(global_idx , req)], req_id) ## return call history and req_id as new state and result

482 ## The rest is for simulation , testing , and performance measurements

483 class RequestMetrics :

484 """ object holding metrics for a request """

485 def __init__ (self , cpu_start_time , run_start_time):

486 self .success = False ## maintains the success status of the request

487 self .cpu_start_time = cpu_start_time ## cpu clock time at the time of sending request

488 self .cpu_end_time = 0.0 ## cpu clock time at the time of receiving the response for the request

489 self .run_start_time = run_start_time ## system time at the time of sending request

490 self .run_end_time = 0.0 ## system time at the time of receiving the response for the request

491 class Sim(process):

492 """ simulator for failure injection and client requests """

493 def setup (nodes , num_requests , test_failure , msg_size):

494 ## nodes ; list of nodes in the system

495 ## num_request ; total number of requests to send

496 ## test_failure ; whether to test a node failure scenario

497 ## msg_size ; size of the client request messages

498 self .metrics = {} ## stores the metrics per request id

499 self .num_resp = 0 ## number of responses received

500 def run ():

501 failure_injected = False ## whether a failure message has been sent to the system

502 for tid in range (num_requests):

503 metrics[tid] = RequestMetrics (time .clock (), time .time ())

504 node = random.sample(nodes ,1) ## randomly select a node to send the request

505 output("sent request : ", tid , " to node : ", node)

506 send ((’request ’, (self , tid , os.urandom (msg_size))), to= node)

507 # Uncomment to use sim as an external failure detector

508 # External failure detector

509 if test_failure and not failure_injected and tid == num_requests /2: ## failing last node

510 send ((’failure ’, 0), to= nodes [1]) ## send index of the last node as a failed node to all nodes

511 # send ((’ failure ’, len(nodes) -2) , to= nodes [1])

512 output("Sent failure message to first node ")

513 nodes .remove(nodes [0])

514 failure_injected = True

515 output(’done sending all requests ’)

516 while True :

517 if await (len(setof (tid , received ((’response ’, tid , res)))) == num_requests):

518 output("---- ---- all responded ")

519 send ((’metrics ’, list (metrics .values ())), to= parent ())

520 break

521 elif timeout (10) :

522 output("---- ---- timeout !!!")

523 for tid in range (num_requests):

524 if not metrics [tid].success :

525 n = random.sample(nodes ,1)

526 output(’sending message: ’, tid , ’ to node : ’, n)

527 send ((’request ’, (self , tid , os.urandom(msg_size))), to=n)

528 send (’done ’, to= parent ())

529 def receive(msg= (’response ’, tid , res), from_ = p):

530 if not metrics[tid]. success:

531 cur_metric = metrics[tid]

532 cur_metric .cpu_end_time = time .clock ()

533 cur_metric .run_end_time = time .time ()

534 cur_metric .success = True

535 num_resp += 1

536 output("---- Received tid: ", tid , " from : ", p, " with num_resp : ", num_resp) ## output response received

27

537 def main ():

538 # config(channel is fifo , handling is all , clock is lamport , visualize is {

539 # # colors: override message and process colors , defaults to random (to fix random

540 # # supports any valid CSS color value

541 # # https :// developer .mozilla.org/en-US/docs /Web/CSS/color_value

542 # # examples : Transparent , Yellow , DarkRed , rgb (255, 255 ,0) ,

543 # # rgba (255, 255, 0, 0.1) , hsl (210, 100%, 50%)

544 # ’colors ’: {

545 # # processes

546 # #’Sim ’: ’aquamarine ’,

547 # # messages

548 # ’request ’: ’purple’,

549 # ’response ’: ’blue ’,

550 # ’data ’: ’lime ’,

551 # ’control ’: ’red ’,

552 # ’rdma_write_sst ’: ’gray ’

553 # }

554 # })

555 config(channel is {fifo ,reliable }, clock is lamport , handling is all)

556 num_nodes = int(sys.argv [1]) if len(sys.argv) > 1 else 3 ## number of nodes in the system

557 num_requests = int(sys.argv [2]) if len(sys.argv) > 2 else 10 ## number of requests from applications

558 nreps = int(sys.argv [3]) if len(sys.argv) > 3 else 1 ## number of repetitions , for calculating metrics

559 msg_size = int(sys.argv [4]) if len(sys.argv) > 4 else 1 ## size of request messages

560 window_size = int(sys.argv [5]) if len(sys.argv) > 5 else 10 ## window size for vector of slots

561 max_msg_size = 10 ## max message size , in number of bytes

562 test_failure = False ## whether to test a failure scenario

563 throughputs = []

564 for _ in range (nreps):

565 t1 = time .time ()

566 nodes = sorted(list (new(Node , num= num_nodes))) ## create Node processes , ordering only for ease of tracing

567 state = [] ## history of state of the application

568 for rank , node in enumerate (nodes): ## setup Node processes

569 setup (node , (nodes , rank , window_size , max_msg_size , state))

570 start (nodes)

571 sim = new(Sim , (nodes , num_requests , test_failure , msg_size)) ## create and set up Sim process

572 start (sim)

573 await (received ((’done ’), from_ =sim)) ## wait to receive ’done ’ from sim

574 throughputs .append(round (num_requests /(time .time () - t1)))

575 print ("--------- time :", time .time () - t1)

576 end(sim)

577 end(nodes)

578 cpu_times = []

579 run_times = []

580 total_runs = 0

581 for metrics in listof(metric , received (("metrics", metric))):

582 for metric in metrics :

583 total_runs += 1

584 if metric.success:

585 cpu_times .append(metric.cpu_end_time - metric.cpu_start_time)

586 run_times .append(metric.run_end_time - metric.run_start_time)

587 output("AVG cpu_times ", round (sum(cpu_times)/len(cpu_times), 5))

588 output("AVG run_times ", round (sum(run_times)/len(run_times), 5))

589 output("AVG throughput ", round (sum(throughputs)/len(throughputs), 5))

Listing 1: Complete specification in DistAlgo.

B Derecho sample output

1 [190] da.api <MainProcess >:INFO : <Node_ :4ec01 > initialized at 127.0.0.1:(UdpTransport =13024, TcpTransport =44810) .

2 [190] da.api <MainProcess >:INFO : Starting program <module ’derecho ’ from ’./ derecho.da’ >...

3 [190] da.api <MainProcess >:INFO : Running iteration 1 ...

4 [190] da.api <MainProcess >:INFO : Waiting for remaining child processes to terminate ...(Press "Ctrl -C" to force kill)

5 [239] derecho.Node <Node :b4c02 >: OUTPUT: initial group : [<Node :b4c02 >, <Node :b4c03 >, <Node :b4c04 >]

6 [241] derecho.Node <Node :b4c03 >: OUTPUT: initial group : [<Node :b4c02 >, <Node :b4c03 >, <Node :b4c04 >]

7 [243] derecho.Node <Node :b4c04 >: OUTPUT: initial group : [<Node :b4c02 >, <Node :b4c03 >, <Node :b4c04 >]

8 ./derecho.da:566: DeprecationWarning : time .clock has been deprecated in Python 3.3 and will be removed from Python 3.8:

use time .perf_counter or time .process_time instead

9 metrics[tid] = RequestMetrics (time .clock (), time .time ())

10 [263] derecho.Sim <Sim:b4c05 >:OUTPUT: sent request : 0 to node : [<Node :b4c04 >]

11 [286] derecho.Sim <Sim:b4c05 >:OUTPUT: sent request : 1 to node : [<Node :b4c04 >]

12 [286] derecho.Sim <Sim:b4c05 >:OUTPUT: sent request : 2 to node : [<Node :b4c03 >]

13 [292] derecho.Node <Node :b4c04 >: OUTPUT: request: (<Sim:b4c05 >, 0, b’d’) received from client: <Sim:b4c05 >

14 [293] derecho.Node <Node :b4c04 >: OUTPUT: request: (<Sim:b4c05 >, 1, b’\xe1 ’) received from client: <Sim:b4c05 >

15 [309] derecho.Sim <Sim:b4c05 >:OUTPUT: sent request : 3 to node : [<Node :b4c02 >]

16 [310] derecho.Node <Node :b4c03 >: OUTPUT: sending no -op , case 1

17 [312] derecho.Node <Node :b4c03 >: OUTPUT: request: (<Sim:b4c05 >, 2, b’+’) received from client: <Sim:b4c05 >

18 [315] derecho.Node <Node :b4c02 >: OUTPUT: sending no -op , case 1

28

19 [319] derecho.Sim <Sim:b4c05 >:OUTPUT: sent request : 4 to node : [<Node :b4c02 >]

20 [319] derecho.Sim <Sim:b4c05 >:OUTPUT: sent request : 5 to node : [<Node :b4c03 >]

21 [319] derecho.Sim <Sim:b4c05 >:OUTPUT: sent request : 6 to node : [<Node :b4c03 >]

22 [320] derecho.Sim <Sim:b4c05 >:OUTPUT: sent request : 7 to node : [<Node :b4c02 >]

23 [320] derecho.Sim <Sim:b4c05 >:OUTPUT: sent request : 8 to node : [<Node :b4c02 >]

24 [320] derecho.Sim <Sim:b4c05 >:OUTPUT: sent request : 9 to node : [<Node :b4c03 >]

25 [320] derecho.Sim <Sim:b4c05 >:OUTPUT: done sending all requests

26 [322] derecho.Node <Node :b4c02 >: OUTPUT: sending no -op , case 1

27 [325] derecho.Node <Node :b4c02 >: OUTPUT: request: (<Sim:b4c05 >, 3, b’\x14 ’) received from client: <Sim:b4c05 >

28 [325] derecho.Node <Node :b4c02 >: OUTPUT: request: (<Sim:b4c05 >, 4, b’\xbf ’) received from client: <Sim:b4c05 >

29 [325] derecho.Node <Node :b4c02 >: OUTPUT: request: (<Sim:b4c05 >, 7, b’\x06 ’) received from client: <Sim:b4c05 >

30 [326] derecho.Node <Node :b4c02 >: OUTPUT: request: (<Sim:b4c05 >, 8, b’\xb3 ’) received from client: <Sim:b4c05 >

31 [341] derecho.Node <Node :b4c03 >: OUTPUT: request: (<Sim:b4c05 >, 5, b’\x83 ’) received from client: <Sim:b4c05 >

32 [342] derecho.Node <Node :b4c03 >: OUTPUT: request: (<Sim:b4c05 >, 6, b’\xca ’) received from client: <Sim:b4c05 >

33 [342] derecho.Node <Node :b4c03 >: OUTPUT: request: (<Sim:b4c05 >, 9, b’0’) received from client: <Sim:b4c05 >

34 [344] derecho.Node <Node :b4c04 >: OUTPUT: sending no -op , case 2

35 [345] derecho.Node <Node :b4c03 >: OUTPUT: in deliver_upcall (), gi: 0 and req: None

36 [345] derecho.Node <Node :b4c03 >: OUTPUT: in deliver_upcall (), gi: 1 and req: None

37 [346] derecho.Node <Node :b4c03 >: OUTPUT: in deliver_upcall (), gi: 2 and req: (<Sim:b4c05 >, 0, b’d’)

38 [346] derecho.Node <Node :b4c03 >: OUTPUT: response sent to the client/sim process , index : 2 response : 0

39 ./derecho.da:598: DeprecationWarning : time .clock has been deprecated in Python 3.3 and will be removed from Python 3.8:

use time .perf_counter or time .process_time instead

40 cur_metric .cpu_end_time = time .clock ()

41 [346] derecho.Sim <Sim:b4c05 >:OUTPUT: ---- Received tid: 0 from : <Node :b4c03 > with num_resp : 1

42 [347] derecho.Node <Node :b4c04 >: OUTPUT: sending no -op , case 2

43 [351] derecho.Node <Node :b4c03 >: OUTPUT: in deliver_upcall (), gi: 3 and req: None

44 [351] derecho.Node <Node :b4c03 >: OUTPUT: in deliver_upcall (), gi: 4 and req: (<Sim:b4c05 >, 2, b’+’)

45 [351] derecho.Node <Node :b4c04 >: OUTPUT: in deliver_upcall (), gi: 0 and req: None

46 [351] derecho.Node <Node :b4c03 >: OUTPUT: response sent to the client/sim process , index : 4 response : 2

47 [351] derecho.Sim <Sim:b4c05 >:OUTPUT: ---- Received tid: 2 from : <Node :b4c03 > with num_resp : 2

48 [351] derecho.Node <Node :b4c04 >: OUTPUT: in deliver_upcall (), gi: 1 and req: None

49 [351] derecho.Node <Node :b4c04 >: OUTPUT: in deliver_upcall (), gi: 2 and req: (<Sim:b4c05 >, 0, b’d’)

50 [352] derecho.Node <Node :b4c03 >: OUTPUT: in deliver_upcall (), gi: 5 and req: (<Sim:b4c05 >, 1, b’\xe1 ’)

51 [352] derecho.Node <Node :b4c04 >: OUTPUT: response sent to the client/sim process , index : 2 response : 0

52 [352] derecho.Node <Node :b4c03 >: OUTPUT: response sent to the client/sim process , index : 5 response : 1

53 [352] derecho.Node <Node :b4c04 >: OUTPUT: in deliver_upcall (), gi: 3 and req: None

54 [352] derecho.Node <Node :b4c04 >: OUTPUT: in deliver_upcall (), gi: 4 and req: (<Sim:b4c05 >, 2, b’+’)

55 [352] derecho.Sim <Sim:b4c05 >:OUTPUT: ---- Received tid: 1 from : <Node :b4c03 > with num_resp : 3

56 [352] derecho.Node <Node :b4c04 >: OUTPUT: response sent to the client/sim process , index : 4 response : 2

57 [352] derecho.Node <Node :b4c04 >: OUTPUT: in deliver_upcall (), gi: 5 and req: (<Sim:b4c05 >, 1, b’\xe1 ’)

58 [353] derecho.Node <Node :b4c04 >: OUTPUT: response sent to the client/sim process , index : 5 response : 1

59 [354] derecho.Node <Node :b4c04 >: OUTPUT: sending no -op , case 2

60 [355] derecho.Node <Node :b4c03 >: OUTPUT: in deliver_upcall (), gi: 6 and req: (<Sim:b4c05 >, 3, b’\x14 ’)

61 [356] derecho.Node <Node :b4c03 >: OUTPUT: response sent to the client/sim process , index : 6 response : 3

62 [356] derecho.Sim <Sim:b4c05 >:OUTPUT: ---- Received tid: 3 from : <Node :b4c03 > with num_resp : 4

63 [357] derecho.Node <Node :b4c04 >: OUTPUT: in deliver_upcall (), gi: 6 and req: (<Sim:b4c05 >, 3, b’\x14 ’)

64 [357] derecho.Node <Node :b4c04 >: OUTPUT: response sent to the client/sim process , index : 6 response : 3

65 [367] derecho.Node <Node :b4c02 >: OUTPUT: in deliver_upcall (), gi: 0 and req: None

66 [367] derecho.Node <Node :b4c02 >: OUTPUT: in deliver_upcall (), gi: 1 and req: None

67 [367] derecho.Node <Node :b4c02 >: OUTPUT: in deliver_upcall (), gi: 2 and req: (<Sim:b4c05 >, 0, b’d’)

68 [367] derecho.Node <Node :b4c02 >: OUTPUT: response sent to the client/sim process , index : 2 response : 0

69 [367] derecho.Node <Node :b4c02 >: OUTPUT: in deliver_upcall (), gi: 3 and req: None

70 [367] derecho.Node <Node :b4c02 >: OUTPUT: in deliver_upcall (), gi: 4 and req: (<Sim:b4c05 >, 2, b’+’)

71 [368] derecho.Node <Node :b4c02 >: OUTPUT: response sent to the client/sim process , index : 4 response : 2

72 [368] derecho.Node <Node :b4c02 >: OUTPUT: in deliver_upcall (), gi: 5 and req: (<Sim:b4c05 >, 1, b’\xe1 ’)

73 [368] derecho.Node <Node :b4c02 >: OUTPUT: response sent to the client/sim process , index : 5 response : 1

74 [368] derecho.Node <Node :b4c02 >: OUTPUT: in deliver_upcall (), gi: 6 and req: (<Sim:b4c05 >, 3, b’\x14 ’)

75 [368] derecho.Node <Node :b4c02 >: OUTPUT: response sent to the client/sim process , index : 6 response : 3

76 [368] derecho.Node <Node :b4c02 >: OUTPUT: in deliver_upcall (), gi: 7 and req: (<Sim:b4c05 >, 5, b’\x83 ’)

77 [368] derecho.Node <Node :b4c02 >: OUTPUT: response sent to the client/sim process , index : 7 response : 5

78 [368] derecho.Node <Node :b4c02 >: OUTPUT: in deliver_upcall (), gi: 8 and req: None

79 [368] derecho.Node <Node :b4c02 >: OUTPUT: in deliver_upcall (), gi: 9 and req: (<Sim:b4c05 >, 4, b’\xbf ’)

80 [369] derecho.Sim <Sim:b4c05 >:OUTPUT: ---- Received tid: 5 from : <Node :b4c02 > with num_resp : 5

81 [369] derecho.Node <Node :b4c02 >: OUTPUT: response sent to the client/sim process , index : 9 response : 4

82 [369] derecho.Node <Node :b4c02 >: OUTPUT: in deliver_upcall (), gi: 10 and req: (<Sim:b4c05 >, 6, b’\xca ’)

83 [369] derecho.Node <Node :b4c02 >: OUTPUT: response sent to the client/sim process , index : 10 response : 6

84 [369] derecho.Sim <Sim:b4c05 >:OUTPUT: ---- Received tid: 4 from : <Node :b4c02 > with num_resp : 6

85 [369] derecho.Node <Node :b4c02 >: OUTPUT: in deliver_upcall (), gi: 11 and req: None

86 [369] derecho.Node <Node :b4c02 >: OUTPUT: in deliver_upcall (), gi: 12 and req: (<Sim:b4c05 >, 7, b’\x06 ’)

87 [369] derecho.Node <Node :b4c02 >: OUTPUT: response sent to the client/sim process , index : 12 response : 7

88 [369] derecho.Sim <Sim:b4c05 >:OUTPUT: ---- Received tid: 6 from : <Node :b4c02 > with num_resp : 7

89 [370] derecho.Sim <Sim:b4c05 >:OUTPUT: ---- Received tid: 7 from : <Node :b4c02 > with num_resp : 8

90 [371] derecho.Node <Node :b4c02 >: OUTPUT: in deliver_upcall (), gi: 13 and req: (<Sim:b4c05 >, 9, b’0’)

91 [371] derecho.Node <Node :b4c02 >: OUTPUT: response sent to the client/sim process , index : 13 response : 9

92 [371] derecho.Node <Node :b4c02 >: OUTPUT: in deliver_upcall (), gi: 14 and req: None

93 [371] derecho.Node <Node :b4c02 >: OUTPUT: in deliver_upcall (), gi: 15 and req: (<Sim:b4c05 >, 8, b’\xb3 ’)

94 [371] derecho.Sim <Sim:b4c05 >:OUTPUT: ---- Received tid: 9 from : <Node :b4c02 > with num_resp : 9

95 [371] derecho.Node <Node :b4c02 >: OUTPUT: response sent to the client/sim process , index : 15 response : 8

96 [372] derecho.Sim <Sim:b4c05 >:OUTPUT: ---- Received tid: 8 from : <Node :b4c02 > with num_resp : 10

97 [372] derecho.Sim <Sim:b4c05 >:OUTPUT: ---- ---- all responded

98 [374] derecho.Node_ <Node_ :4ec01 >: OUTPUT: AVG cpu_times 0.0058

99 [374] derecho.Node_ <Node_ :4ec01 >: OUTPUT: AVG run_times 0.05636

100 [374] derecho.Node_ <Node_ :4ec01 >: OUTPUT: AVG throughput 55.0

101 [374] da.api <MainProcess >:INFO : Main process terminated .

102 --------- time : 0.18188166618347168

Listing 2: Derecho output for group consisting of 3 nodes, 1 client, and 10 requests per client

29

with window-size as 10.

30

	1 Introduction
	2 Derecho and specification language
	2.1 Derecho overview
	2.2 Language for precise specification

	3 Specifying system state
	4 Specifying steady-state execution
	5 Specifying view change
	6 Runtime checking and analysis
	6.1 Manual inspection and automated checking
	6.2 Properties checked
	6.3 Issues found and fixed
	6.4 Resulting specification and direct execution

	7 Related work and conclusion
	A Derecho executable specification in DistAlgo
	B Derecho sample output

