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Faster Property Testers in a Variation of the Bounded Degree

Model
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Property testing algorithms are highly efficient algorithms that come with probabilistic accuracy guarantees.

For a property P , the goal is to distinguish inputs that have P from those that are far from having P with

high probability correctly, by querying only a small number of local parts of the input. In property testing

on graphs, the distance is measured by the number of edge modifications (additions or deletions) that are

necessary to transform a graph into one with property P . Much research has focused on the query complexity

of such algorithms, i. e., the number of queries the algorithm makes to the input, but in view of applications,

the running time of the algorithm is equally relevant.

In (Adler, Harwath, STACS 2018), a natural extension of the bounded degree graph model of property

testing to relational databases of bounded degree was introduced, and it was shown that on databases of

bounded degree and bounded tree-width, every property that is expressible in monadic second-order logic

with counting (CMSO) is testable with constant query complexity and sublinear running time. It remains

open whether this can be improved to constant running time.

In this article we introduce a new model, which is based on the bounded degree model, but the distance

measure allows both edge (tuple) modifications and vertex (element) modifications. We show that every prop-

erty that is testable in the classical model is testable in our model with the same query complexity and run-

ning time, but the converse is not true. Our main theorem shows that on databases of bounded degree and

bounded tree-width, every property that is expressible in CMSO is testable with constant query complexity

and constant running time in the new model. Our proof methods include the semilinearity of the neighbor-

hood histograms of databases having the property and a result by Alon (Proposition 19.10 in Lovász, Large

networks and graph limits, 2012) that states that for every bounded degree graph G there exists a constant

size graphH that has a similar neighborhood distribution to G.

It can be derived from a result in (Benjamini et al., Advances in Mathematics 2010) that hyperfinite heredi-

tary properties are testable with constant query complexity and constant running time in the classical model

(and hence in the new model). Using our methods, we give an alternative proof that hyperfinite hereditary

properties are testable with constant query complexity and constant running time in the new model.

We argue that our model is natural and our meta-theorem showing constant-time CMSO testability sup-

ports this.
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1 INTRODUCTION

Extracting information from large amounts of data and understanding its global structure can be an
immensely challenging and time-consuming task. When the input data is huge, many traditionally
“efficient” algorithms are no longer practical. The framework of property testing aims at addressing
this problem. Property testing algorithms (testers, for short) are given oracle access to the inputs,
and their goal is to distinguish between inputs that have a given property P or are structurally
far from having P with high probability correctly. This can be seen as a relaxation of the classical
yes/no decision problem for P. Testers make these decisions by exploring only a small number of
local parts of the input that are randomly chosen. They come with probabilistic guarantees on the
quality of the answer. Typically, only a constant number of small local parts are explored and the
algorithms often run in constant or sublinear time. This speedup in running time, while sacrificing
some accuracy, can be crucial for dealing with large inputs. In particular, it can be useful for a
quick exploration of newly obtained data (e.g., biological networks). Based on the outcome of the
exploration, a decision can then be taken whether to use a more time-consuming exact algorithm
in a second step.

A property is simply an isomorphism-closed class of graphs or relational databases. For example,
each Boolean database query q defines a property Pq , the class of all databases satisfying q. In the
bounded degree graph model [18], a uniform upper boundd on the degree of the graphs is assumed.
For a small ϵ ∈ (0, 1], two graphs G and H , both on n vertices, are ϵ-close, if at most ϵdn edge
modifications (deletions or insertions in G orH ) are necessary to make G andH isomorphic. If G
andH are not ϵ-close, then they are called ϵ-far. A graph G is called ϵ-close to a property P if G is
ϵ-close to a member of P, and G is ϵ-far from P otherwise. The natural generalization of this model
to relational databases of bounded degree (where a database has degree at most d if each element
in its domain appears in at most d tuples) was studied in [1], where two databases D and D′,
both with n elements in the domain, are ϵ-close, if at most ϵdn tuple modifications (deletions from
relations or insertions to relations) are necessary to make D and D′ isomorphic, and D and D′
are ϵ-far otherwise. We call this model for bounded degree relational databases the BDRD model.

Our contributions. In this article we propose a new model for property testing on bounded degree
relational databases, which we call the BDRD+/− model, with a distance measure that allows both
tuple deletions and insertions, and deletion and insertion of elements of the domain. On graphs,
this translates to edge insertions and deletions, and vertex insertions and deletions. We argue that
this yields a natural distance measure. Indeed, take any (sufficiently large) graph G, and letH be
obtained from G by adding an isolated vertex. Then G andH are ϵ-far for every ϵ ∈ (0, 1] under
the classical distance measure, although they only differ in one vertex. In contrast, our distance
measure allows for a small number of vertex modifications. While comparing graphs on different
numbers of vertices by adding isolated vertices was done implicitly as part of the study of the
testability of outerplanar graphs [5], to the best of our knowledge, such a distance measure has
not been considered before as part of a model in property testing, which seems surprising to us.

Formally, in the BDRD+/− model, two databases D and D′ are ϵ-close if they can be made
isomorphic by at most ϵdn modifications, where a modification is either (1) removing a tuple from
a relation, (2) inserting a tuple into a relation, (3) removing an element from the domain (and, as a
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consequence, any tuple containing that element is removed), or (4) inserting an element into the
domain. Here n is the minimum of the sizes of the domains ofD and D′. In Section 3 we give the
full details of our model. We note that the BDRD+/− model differs from the BDRD model only in
the choice of the distance measure. While we work in the setting of relational databases, we would
like to emphasize that our results carry over to (undirected and directed) graphs, as these can be
seen as special instances of relational databases.

It is known that in the bounded degree graph model, every minor-closed property is testable [7],
and, more generally, every hyperfinite graph property is testable [25] with constant query com-
plexity. However, no bound on the running time can be obtained in these general settings. Indeed,
there exist hyperfinite properties (of edgeless graphs) that are uncomputable. In [1], Adler and
Harwath ask which conditions guarantee both low query complexity and efficient running time.
They prove a meta-theorem stating that, on classes of databases (or graphs) of bounded degree
and bounded tree-width, every property that can be expressed by a sentence of monadic second-

order logic with counting (CMSO) is testable with constant query complexity and polylogarith-

mic running time in the BDRD model. Treating many algorithmic problems simultaneously, this
can be seen as an algorithmic meta-theorem within the line of research inspired by Courcelle’s fa-
mous theorem [10] that states that each property of relational databases that is definable in CMSO
is decidable in linear time on relational databases of bounded tree-width. CMSO extends first-

order logic (FO), and hence properties expressible in FO (e.g., subgraph/sub-database freeness)
are also expressible in CMSO. Other examples of graph properties expressible in CMSO include
bipartiteness, colorability, even-hole-freeness, and Hamiltonicity. Rigidity (i.e., the absence of a
non-trivial automorphism) cannot be expressed in CMSO (cf. [11] for more details).

Our main theorem (Theorem 21) shows that in the BDRD+/− model, on classes of databases
(or graphs) of bounded degree and bounded tree-width, every property that can be expressed by
a sentence of CMSO is testable with constant query complexity and constant running time. The
question whether constant running time can also be achieved in the BDRD model remains open.

We show that the BDRD+/− model is in fact stronger than the BDRD model: any property
testable in the BDRD model is also testable in the BDRD+/− model with the same query com-
plexity and running time (Lemma 4), but there are examples that show that the converse is not
true (Lemma 6).

We also discuss the constant time testability of hyperfinite hereditary properties in the BDRD
and BDRD+/− models (Theorems 27 and 28, respectively). To the best of our knowledge it has not
been shown explicitly that hyperfinite hereditary properties are uniformly testable in constant
time (in the bounded degree graph or BDRD models). In [7] it is proved that every monotone
hyperfinite property is constant time testable in the bounded degree graph model. In [12] the
authors prove that hereditary properties are testable in constant time on classes of non-expanding
hereditary properties (which include hyperfinite hereditary classes) in the bounded degree graph
model. We sketch a proof that hyperfinite hereditary properties are uniformly testable in constant
time in the BDRD model (and hence the BDRD+/− model) using methods similar to [7] and [12].
We then give an alternative proof showing that hyperfinite hereditary properties are uniformly
testable in constant time in the BDRD+/− model using different techniques, similar to those used
for our main theorem (Theorem 21).

In the future, it would be interesting to obtain a characterization of the properties that are (effi-
ciently) testable in the BDRD+/− model.

Our techniques. We assume a fixed upper bound on the degree of all databases. For proving our
main theorem, we give a general condition under which properties are testable in constant time
in the BDRD+/− model. To describe this condition let us first briefly introduce some terminology.
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A property P is hyperfinite on a class of databases C if every database in P can be partitioned into
connected components of constant size by removing only a constant fraction of the tuples such
that the resulting partitioned database is in C. For r ∈ N and an element a in the domain of a
database D, the r -neighborhood type of a in D is the isomorphism type of the sub-database of
D induced by all elements that are at distance at most r from a in the underlying graph of D,
expanded by a. The r -histogram of a bounded degree database D, denoted by hr (D), is a vector
indexed by the r -neighborhood types, where the component corresponding to the r -neighborhood
type τ contains the number of elements in D that realize τ . The r -neighborhood distribution of D
is the vector hr (D)/n,whereD is on n elements. We show that for any property P and input class
C, if P is hyperfinite on C and the set of r -histograms of the databases in P are semilinear, then P is
testable on C in constant time (Theorem 20). As a corollary we then obtain our main theorem, that
every property definable by a CMSO sentence is testable on the class of databases with bounded
degree and bounded tree-width in constant time (Theorem 21).

In addition, we prove a more general version of Theorem 20. We show that for any property
P and input class C, if P is hyperfinite on C and the set of r -histograms of the databases in P

are close to being semilinear, then P is testable on C in constant time (Theorem 25). We show
that hyperfinite hereditary properties are examples of such properties; i.e., they are close to being
semilinear (Lemma 31). Combining Theorem 25 and Lemma 31, we get an alternative proof that
hyperfinite hereditary properties are uniformly testable in constant time in the BDRD+/− model
(Theorem 28). We believe that this highlights that semilinearity of neighborhood histograms is a
natural and powerful concept. In the sketch of the proof that every hyperfinite hereditary property
is constant time testable in the BDRD model (which uses methods similar to [7] and [12]), we start
by testing for hyperfiniteness, which is done by extending the methods of [7]. In the tester for
hyperfiniteness, an estimate of the input database’s neighborhood distribution vector is computed,
which is then compared against a δ -net of all the neighborhood distribution vectors of hyperfinite
databases (where δ is some small constant). If the input is declared to be hyperfinite, we then
sample a constant number of elements and check if the induced sub-database on the union of the
(fixed radius) neighborhoods of the sampled elements is in the property. In our alternative tester,
an estimate of the neighborhood distribution vector of the input database is computed and then
compared against the neighborhood distributions of constant size databases in the property.

Alon [24, Proposition 19.10] proved that for every bounded degree graph G there exists a con-
stant size graphH that has a similar neighborhood distribution to G. However, the proof is based
on a compactness argument and does not give an explicit upper bound on the size ofH . Finding
such a bound was suggested by Alon as an open problem [20]. We ask under which conditions on
a given property P for every member of P there exists a constant size database with a similar neigh-
borhood distribution that is also in P. It is known that hyperfinite properties are local in the BDRD
model [1, 25], where a property is local if for any given database D from the input class, if D has
a similar r -histogram to some database in the property, then D must be close to the property. We
define a similar notion for the BDRD+/− model and show that hyperfinite properties are also local
in the BDRD+/− model (Theorem 11). Using the locality of hyperfinite properties, we show that for
any property P that is hyperfinite on the input class C and whose r -histograms are semilinear, if a
databaseD is in P, then there exists a constant size databaseD′ in P with a similar neighborhood
distribution, but this is not true for databases in C that are far from P. Furthermore, we obtain
upper and lower bounds on the size of D′. We can then use this result to construct constant time
testers. We first use the algorithm EstimateFrequenciesr,s (given in [25] and adapted to databases
in [1]) to approximate the neighborhood distribution of the input database. Then we only have
to check if the estimated distribution is close to the neighborhood distribution of a constant size
database in the property.
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As a corollary (Corollary 17), we obtain an explicit bound on the size on graphsH from Alon’s
theorem for “semilinear” properties, i.e., properties, where the histogram vectors of the neighbor-
hood distributions form a semilinear set.

Further related work. Other than the work already mentioned in [1], there are only a handful
of results on relational databases that utilize models from property testing. Chen and Yoshida [9]
study a model that is close to the general graph model (cf., e.g., [3]) in which they study the testabil-
ity of homomorphism inadmissibility. Ben-Moshe et al. [6] study the testability of near-sortedness
(a property of relations that states that most tuples are close to their place in some desired or-
der). Our model differs from both of these, as it relies on a degree bound and uses different types
of oracle access. Explicit bounds for Alon’s theorem restricted to high-girth graphs were given
in [14].

Obtaining a characterization of constant query testable properties is a long-standing open prob-
lem. Ito et al. [21] give a characterization of the one-sided error constant query testable monotone
and hereditary graph properties in the bounded degree (directed and undirected) graph model.
Fichtenberger et al. [15] show that every constant query testable property in the bounded degree
graph model either is finite or contains an infinite hyperfinite subproperty.

Organization. In Section 2 we introduce relevant notions used throughout the article. In Sec-
tion 3 we introduce our property testing model for relational databases of bounded degree and we
compare it to the classical model. In Section 4 we define the notion of locality in both the BDRD
and BDRD+/− models and prove that hyperfinite properties are local in the BDRD+/− model. In
Section 5 we prove our main theorems. In Section 6 we prove a more general theorem of the the-
orem proved in Section 5. Finally, in Section 7 we give an alternative proof of the constant time
uniform testability of hyperfinite hereditary properties in the BDRD+/− model.

2 PRELIMINARIES

We let N be the set of natural numbers including 0, and N≥1 = N \ {0}. For each n ∈ N≥1, we let
[n] = {1, 2, . . . ,n}.

Databases. A schema is a finite set σ = {R1, . . . ,R |σ | } of relation names, where each R ∈ σ has an

arity ar(R) ∈ N≥1. A databaseD of schema σ (σ -db for short) is of the formD = (D,RD1 , . . . ,R
D
|σ | ),

where D is a finite set, the set of elements ofD, and RDi is an ar(Ri )-ary relation on D. The set D is
also called the domain of D. An (undirected) graph G is a tuple G = (V (G),E (G)), where V (G) is
a set of vertices and E (G) is a set of two-element subsets of V (G) (the edges of G). An undirected
graph can be seen as an {E}-db, where E is a binary relation name, interpreted by a symmetric,
irreflexive relation.

We assume that all databases are linearly ordered or, equivalently, that D = [n] for some n ∈
N (similar to [22]). We extend this linear ordering to a linear order on the relations of D via
lexicographic ordering. The Gaifman graph of a σ -db D is the undirected graph G (D) = (V ,E),
with vertex setV := D and an edge between vertices a and b whenever a � b and there is an R ∈ σ
and a tuple (a1, . . . ,aar(R ) ) ∈ RD with a,b ∈ {a1, . . . ,aar(R ) }. The degree deg(a) of an element a in
a database D is the total number of tuples in all relations of D that contain a. We say the degree

deg(D) of a databaseD is the maximum degree of its elements. A class of databases C has bounded

degree if there exists a constant d ∈ N such that for all D ∈ C, deg(D) ≤ d . (We always assume
that classes of databases are closed under isomorphism.) Let us remark that the deg(D) and the
(graph-theoretic) degree of G (D) only differ by at most a constant factor (cf., e.g., [13]). Since we
only consider fixed finite schemas, both measures yield the same classes of relational structures
of bounded degree (cf. the discussion in [13]). We define the tree-width of a database D as the
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tree-width of its Gaifman graph. (See, e.g., [17] for a discussion of tree-width in this context.) A
class C of databases has bounded tree-width if there exists a constant t ∈ N such that all databases
D ∈ C have tree-width at most t . Let D be a σ -db, and M ⊆ D. The sub-database of D induced

by M is the database D[M] with domain M and RD[M] := RD ∩Mar(R ) for every R ∈ σ . An (ϵ,k )-
partition of a σ -dbD on n elements is a σ -dbD′ formed by removing at most ϵn many tuples from
D such that every connected component inD′ contains at mostk elements. A class ofσ -dbs C ⊆ D

is ρ-hyperfinite on D if for every ϵ ∈ (0, 1] and D ∈ C there exists an (ϵ, ρ (ϵ ))-partition D′ ∈ D

of D. We call C hyperfinite on D if there exists a function ρ such that C is ρ-hyperfinite on D.

Logics. We shall only briefly introduce FO and CMSO. Detailed introductions can be found
in [23] and [11]. Let var be a countable infinite set of variables, and fix a relational schema σ . The
set FO[σ ] is built from atomic formulas of the form x1 = x2 or R (x1, . . . ,xar(R ) ), where R ∈ σ and
x1, . . . ,xar(R ) ∈ var, and is closed under Boolean connectives (¬,∨,∧,→,↔) and existential and
universal quantifications (∃,∀). Monadic second-order logic (MSO) is the extension of first-order
logic that also allows quantification over subsets of the domain. CMSO extends MSO by allowing
first-order modular counting quantifiers ∃m for every integer m (where ∃mϕ is true in a σ -db if
the number of its elements for which ϕ is satisfied is divisible bym). A free variable of a formula is
an (individual or set) variable that does not appear in the scope of a quantifier. A formula without
free variables is called a sentence. For a σ -db D and a sentence ϕ we write D |= ϕ to denote that
D satisfies ϕ.

Proviso. For the rest of the article, we fix a schema σ and numbers d, t ∈ N with d ≥ 2. From now

on, all databases are σ -dbs and have degree at most d , unless stated otherwise. We use Cd to denote

the class of all σ -dbs with degree at most d , Ct
d

to denote the class of all σ -dbs with degree at most d
and tree-width at most t and finally we use C to denote a class of σ -dbs with degree at most d (i.e., C

is any subset of Cd ).

Property testing. Adler and Harwath [1] introduced the model of property testing for bounded
degree relational databases, which is a straightforward extension of the model for bounded degree
graphs [18]. We call this model the BDRD model for short, which we shall discuss below.

Property testing algorithms do not have access to the whole input database. Instead, they are
given access via an oracle. Let D be an input σ -db on n elements. A property testing algorithm
receives the number n as input, and it can make oracle queries1 of the form (R, i, j ), where R ∈ σ ,
i ≤ n, and j ≤ deg(D). The answer to (R, i, j ) is the jth tuple in RD containing the ith element2

of D (if such a tuple does not exist then it returns ⊥). We assume oracle queries are answered in
constant time.

Let D,D′ be two σ -dbs, both having n elements. In the BDRD model the distance between D
and D′, denoted by dist(D,D′), is the minimum number of tuples that have to be inserted or
removed from relations of D and D′ to make D and D′ isomorphic. For ϵ ∈ [0, 1], we say D
and D′ are ϵ-close if dist(D,D′) ≤ ϵdn, and D and D′ are ϵ-far otherwise. A property is simply
an isomorphism-closed class of databases. Note that every CMSO sentence ϕ defines a property
Pϕ = {D | D |= ϕ}. We call Pϕ ∩C the property defined by ϕ on C. A σ -dbD is ϵ-close to a property
P if there exists a database D′ ∈ P that is ϵ-close to D; otherwise D is ϵ-far from P.

Let P ⊆ C be a property and ϵ ∈ (0, 1] be the proximity parameter. An ϵ-tester for P on C is
a probabilistic algorithm that is given oracle access to a σ -db D ∈ C and it is given n := |D | as
auxiliary input. The algorithm does the following:

1Note that an oracle query is not a database query.
2According to the assumed linear order on D .
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(1) If D ∈ P, then the tester accepts with probability at least 2/3.
(2) If D is ϵ-far from P, then the tester rejects with probability at least 2/3.

The query complexity of a tester is the maximum number of oracle queries made. A tester has con-

stant query complexity if the query complexity does not depend on the size of the input database.
We say a property P ⊆ C is uniformly testable in time f (n) on C if for every ϵ ∈ (0, 1] there exists
an ϵ-tester for P on C that has constant query complexity and whose running time on databases
on n elements is f (n). Note that this tester must work for all n.

Neighborhoods. For a σ -db D and a,b ∈ D, the distance between a and b in D, denoted by
distD (a,b), is the length of a shortest path between a and b in G (D). Let r ∈ N. For an element
a ∈ D, we let N Dr (a) denote the set of all elements of D that are at distance at most r from a.
The r -neighborhood of a in D, denoted by NDr (a), is the tuple (D[Nr (a)],a), where a is called
the center. We omit the superscript and write Nr (a) and Nr (a) if D is clear from the context.
Two r -neighborhoods, Nr (a) and Nr (b), are isomorphic (written Nr (a) � Nr (b)) if there is an
isomorphism between D[Nr (a)] and D[Nr (b)] that maps a to b. An �-equivalence-class of r -

neighborhoods is called an r -neighborhood type (or r -type for short). We let T σ ,d
r denote the set

of all r -types with degree at most d , over schema σ . Note that for fixed d and σ , the cardinality

|T σ ,d
r | =: c(r ) is a constant, only depending on r and d . We say that an element a ∈ D has r -type

τ if NDr (a) ∈ τ . For r ∈ N, the r -histogram of a database D, denoted by hr (D), is the vector
with c(r ) components, indexed by the r -types, where the component corresponding to type τ
contains the number of elements of D of r -type τ . The r -neighborhood distribution of D, denoted
by dvr (D), is the vector hr (D)/n, where |D | = n. For a class of σ -dbs C and r ∈ N, we let
hr (C) := {hr (D) | D ∈ C}. A set is semilinear if it is a finite union of linear sets. A set M ⊆ Nc is
linear if M = {v̄0 + a1v̄1 + · · · + akv̄k | a1, . . . ,ak ∈ N}, for some v̄0, . . . , v̄k ∈ Nc . From a result
in [16] about many-sorted spectra of CMSO sentences it can be derived that the set of r -histograms
of properties defined by a CMSO sentence on Ct

d
are semilinear.

Lemma 1 ([1, 16]). For each r ∈ N and each property P ⊆ Ct
d

definable by a CMSO sentence on

Ct
d

, the set hr (P) is semilinear.

Model of computation. We use Random Access Machines (RAMs) and a uniform cost measure
when analyzing our algorithms; i.e., we assume all basic arithmetic operations including random
sampling can be done in constant time, regardless of the size of the numbers involved.

3 THE MODEL

We shall now introduce our property testing model for bounded degree relational databases, which
is an extension of the BDRD model discussed in Section 2. The notions of oracle queries, properties,
ϵ-tester, query complexity, and uniform testability remain the same, but we have an alternative
definition of distance and ϵ-closeness. In our model, which we shall call the BDRD+/− model for
short, we can add and remove elements as well as tuples and can therefore compare databases that
are on a different number of elements.

Definition 2 (Distance and ϵ-closeness). Let D,D′ ∈ Cd and ϵ ∈ [0, 1]. The distance between D
andD′ (denoted by dist+/− (D,D′)) is the minimum number of modifications we need to make to
D andD′ to make them isomorphic where a modification is either (1) inserting a new element, (2)
deleting an element (and as a result deleting any tuple that contains that element), (3) inserting a tu-
ple, or (4) deleting a tuple. We then sayD andD′ are ϵ-close if dist+/− (D,D′) ≤ ϵd min{|D |, |D ′ |}
and are ϵ-far otherwise.
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Fig. 1. The graphs Gn,m andHn,m (respectively) of Example 3.

The following example illustrates the difference between the distance measure of the BDRD and
the distance measure of the BDRD+/− model.

Example 3. Let P = {Gn,m | n,m ∈ N>1}, where Gn,m is an n by m grid graph as shown in
Figure 1. Let us consider the graphHn,m for some n,m ∈ N that is formed from Gn,m by removing
a corner vertex. In the BDRD+/− model the distance between Hn,m and Gn,m is 1 (we remove a
corner vertex from Gn,m to getHn,m ) and thereforeHn,m is at distance 1 from P in the BDRD+/−
model. In the BDRD model, if two graphs are on a different number of vertices, then the distance
between them is infinity. Therefore, if nm − 1 is a prime number, thenHn,m is at distance infinity
from P in the BDRD model.

We now show that if a property is testable in the BDRD model, then it is also testable in the
BDRD+/− model, but the converse is not true. This allows for more testable properties in the
BDRD+/− model.

Lemma 4. Let P ⊆ C. If P is uniformly testable on C in time f (n) in the BDRD model, then P is

also uniformly testable on C in time f (n) in the BDRD+/− model.

Proof. Let π be an ϵ-tester, that runs in time f (n), for P on C in the BDRD model. We claim
that π is also an ϵ-tester for P on C in the BDRD+/− model. LetD ∈ C be the input σ -db. IfD ∈ P,
then π will accept with probability at least 2/3. IfD is ϵ-far from P in the BDRD+/− model, then it
must also be ϵ-far from P in the BDRD model and therefore π will reject with probability at least
2/3. Hence, π is an ϵ-tester for P on C in the BDRD+/− model. �

Theorem 5 ([18]). In the bounded degree model, bipartiteness cannot be tested with query com-

plexity o(
√
n), where n is the number of vertices of the input graph.

Lemma 6. There exists a class C of σ -dbs and a property P ⊆ C such that P is trivially testable on

C in the BDRD+/− model but is not testable on C in the BDRD model.

Proof. Let C be the class of all graphs with degree at most d . Let P = P1 ∪ P2 ⊆ C be the
property where P1 contains all bipartite graphs in C and P2 contains all graphs in C that have an
odd number of vertices. In the BDRD+/− model every G ∈ C is ϵ-close to P if |V (G) | ≥ 1/(ϵd )
and hence P is trivially testable on C in the BDRD+/− model (the tester accepts if |V (G) | ≥ 1/(ϵd )
and does a full check of the input otherwise). In the BDRD model, if the input graph has an even
number of vertices, then it is far from P2 and so we have to test for P1. By Theorem 5, bipartiteness
is not testable (with constant query complexity) in the BDRD model. In particular, in the proof
of Theorem 5, Goldreich and Ron show that for any even n there exists two families, G1 ⊆ C

and G2 ⊆ C, of n-vertex graphs such that every graph in G1 is bipartite and almost all graphs in
G2 are far from being bipartite but any algorithm that performs o(

√
n) queries cannot distinguish
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between a graph chosen randomly from G1 and a graph chosen randomly from G2. Therefore, P

is not testable on C in the BDRD model. �

Note that the underlying general principle of the above proof can be applied to obtain further
examples of properties that are testable in the BDRD+/− model but not testable in the BDRD model.

4 LOCALITY OF PROPERTIES

It is known that every hyperfinite property is “local” in the BDRD model (Theorem 8), where a
property is “local” if, *whenever* a σ -db D has *an* r-histogram *similar* to some σ -db (with the
same domain size) that has the property, then D must be ϵ-close to the property [1, 25]. This is
summarized in Definition 7 and Theorem 8 below. We define an equivalent definition of locality
in the BDRD+/− model (Definition 9). We prove that any property that is local in the BDRD model
is also local in the BDRD+/− model (Lemma 10) and hence every hyperfinite property is local in
the BDRD+/− model (Theorem 11). Theorem 11 is essential for the proof of Theorem 20.

Definition 7 (Locality in the BDRD Model). Let ϵ ∈ (0, 1]. A property P ⊆ C is ϵ-local on C in the
BDRD model if there exists λ := λ7 (ϵ ) ∈ (0, 1], r := r7 (ϵ ) ∈ N, and N := N7 (ϵ ) ∈ N such that for
each D ∈ P and D′ ∈ C with the same number n ≥ N of elements, if ‖hr (D) − hr (D′)‖1 ≤ λn,
then D′ is ϵ-close to P in the BDRD model.

We call the parameters r and λ the locality radius and disc proximity of P for ϵ , respectively. A
property is local in the BDRD model if it is ϵ-local in the BDRD model for every ϵ ∈ (0, 1].

Theorem 8 ([1, 25]). Let C be closed under removing tuples. If a property P ⊆ C is hyperfinite on

C, then P is local on C in the BDRD model.

We now define the notion of locality in the BDRD+/− model.

Definition 9 (Locality in the BDRD+/− Model). Let ϵ ∈ (0, 1]. A property P ⊆ C is ϵ-local on C

in the BDRD+/− model if there exists λ := λ9 (ϵ ) ∈ (0, 1], r := r9 (ϵ ) ∈ N and N := N9 (ϵ ) ∈ N
such that for each D ∈ P and D′ ∈ C, on |D | ≥ N and |D ′ | ≥ N elements respectively, if
‖ hr (D) − hr (D′)‖1 ≤ λ min{|D |, |D ′ |}, then D′ is ϵ-close to P in the BDRD+/− model.

We call the parameters r and λ the locality radius and disc proximity of P for ϵ , respectively. A
property is local in the BDRD+/− model if it is ϵ-local in the BDRD+/− model for every ϵ ∈ (0, 1].

Lemma 10. If a property P ⊆ C is local on C in the BDRD model, then P is local on C in the

BDRD+/− model.

Proof. Let ϵ ∈ (0, 1]. Let r7 (ϵ/4), λ7 (ϵ/4), and N7 (ϵ/4) be as in Definition 7 for P and ϵ/4. Let
r := r7 (ϵ/4), let N := N7 (ϵ/4), and let

λ :=
ϵλ7 (ϵ/4)

1 + dr+1
.

We will prove that P is ϵ-local on C in the BDRD+/− model with r9 (ϵ ) = r , λ9 (ϵ ) = λ, and
N9 (ϵ ) = N .

LetD ∈ P andD′ ∈ C, where |D | ≥ N and |D ′ | ≥ N . Let us assume that ‖ hr (D) − hr (D′)‖1 ≤
λ min{|D |, |D ′ |} and P is local on C in the BDRD model. We will show that D′ is ϵ-close to P.

If |D | = |D ′ |, then since λ ≤ λ7 (ϵ/4), r = r7 (ϵ/4), and N = N7 (ϵ/4), D′ is ϵ/4-close to P and
henceD′ is also ϵ-close to P. So let us assume that |D | � |D ′ |. LetD1 be the σ -db on |D | elements
formed from D′ by either removing |D ′ | − |D | elements if |D | < |D ′ | or adding |D | − |D ′ | new
elements if |D ′ | < |D |. Note that as ‖ hr (D) − hr (D′)‖1 ≤ λ min{|D |, |D ′ |} and by definition

‖ hr (D) − hr (D′)‖1 =
∑c(r )

i=1 | hr (D)[i] − hr (D′)[i]|, we have | |D | − |D ′ | | ≤ λ min{|D |, |D ′ |}.
When an element a is removed, the r -type of any element in Nr (a) will change. Since
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|Nr (a) | ≤ dr+1 (cf., e.g., Lemma 3.2 (a) of [8]) and | |D | − |D ′ | | ≤ λ min{|D |, |D ′ |}, we have
‖ hr (D′) − hr (D1)‖1 ≤ λ min{|D |, |D ′ |}dr+1. Therefore,

‖ hr (D) − hr (D1)‖1 ≤ λ min{|D |, |D ′ |}(1 + dr+1) ≤ λ7 (ϵ/4) |D |
by the choice of λ. Since P is local on C in the BDRD model, |D | = |D1 |, and D ∈ P, D1 is
ϵ/4-close to P in the BDRD model. Hence, there exists a σ -db D2 ∈ P such that |D2 | = |D |
and dist(D1,D2) ≤ ϵd |D |/4. By the definition of the two distance measures dist and dist+/−,
we have dist+/− (D1,D2) ≤ dist(D1,D2) ≤ ϵd |D |/4 and by the construction of D1 we have
dist+/− (D′,D1) ≤ λ min{|D |, |D ′ |} = λ min{|D ′ |, |D2 |}. Therefore,

dist+/− (D′,D2) ≤ ϵd |D |
4
+ λ min{|D ′ |, |D2 |} ≤ ϵd min{|D ′ |, |D2 |},

since |D | ≤ (1 + λ) min{|D |, |D ′ |} ≤ 2 min{|D |, |D ′ |} = 2 min{|D ′ |, |D2 |} (if |D | < |D ′ |, then clearly
this holds; otherwise since | |D | − |D ′ | | ≤ λ min{|D |, |D ′ |}, |D | ≤ |D ′ | + λ min{|D |, |D ′ |} = (1 +
λ) min{|D |, |D ′ |}) and λ ≤ ϵd/2. Hence, in the BDRD+/− model D′ is ϵ-close to P as required. �

By combining Theorem 8 and Lemma 10 we obtain the following theorem.

Theorem 11. Let C be closed under removing tuples. If a property P ⊆ C is hyperfinite on C, then

P is local on C in the BDRD+/− model.

5 MAIN RESULTS

We begin this section with the first of our main theorems (Theorem 12). We show that for any
property P that is ϵ-local (in the BDRD+/−model) on the input class C, if the set of r -histograms of P

is semilinear, then for every σ -dbD in P there exists a constant size σ -db in P with a neighborhood
distribution similar to that ofD, but this is not true for σ -dbs in C that are far from P. We then use
this result to prove that for such properties there exist ϵ-testers in the BDRD+/− model that run
in constant time (Theorem 19). As corollaries we obtain that hyperfinite properties whose set of
r -histograms is semilinear are constant time testable (Theorem 20) and CMSO definable properties
on σ -dbs of bounded tree-width and bounded degree are testable in constant time (Theorem 21).

Theorem 12. Let ϵ ∈ (0, 1]. Let P ⊆ C be a property that is ϵ-local on C (in the BDRD+/− model)

such that the set hr (P) is semilinear, where r := r9 (ϵ ) is the locality radius of P for ϵ . Then there exist

nmin := nmin (ϵ ),nmax := nmax (ϵ ) ∈ N, and f := f (ϵ ), μ := μ (ϵ ) ∈ (0, 1) such that for every D ∈ C

with |D | > nmax,

(1) ifD ∈ P, then there exists aD′ ∈ P such thatnmin ≤ |D ′ | ≤ nmax and ‖ dvr (D)−dvr (D′)‖1 ≤
f − μ, and

(2) if D is ϵ-far from P (in the BDRD+/− model), then for every D′ ∈ P such that nmin ≤ |D ′ | ≤
nmax, we have ‖ dvr (D) − dvr (D′)‖1 > f + μ.

Proof. Let λ := λ9 (ϵ ) and N := N9 (ϵ ) be as in Definition 9 for P and ϵ , and let c := c(r ) (the
number of r -types). First note that if P is empty, then for any choice of nmin, nmax, f , and μ, both 1
and 2 in the theorem statement are true and hence we shall assume that P is non-empty. As hr (P)
is a semilinear set, we can write it as follows: hr (P) = M1 ∪M2 ∪ · · · ∪Mm , wherem ∈ N, and for
each i ∈ [m], Mi = {v̄i

0+a1v̄
i
1+ · · ·+aki

v̄i
ki

| a1, . . . ,aki
∈ N} is a linear set, where v̄i

0, . . . , v̄
i
ki

∈ Nc ,

and for each j ∈ [ki ], ‖v̄i
j ‖1 � 0. Let k := maxi ∈[m] ki + 1 and v := maxi ∈[m] (maxj ∈[0,ki ] ‖v̄i

j ‖1)

(note that v > 0 as P is non-empty). Let nmin := n0 − kv , nmax := n0 + kv , f := λ
3c

, and μ := λ
6c

,
where

n0 := max

{
9N

5
,kv

(
3ckv

f − μ + 1

)}
.
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Note that nmin > 0 by the choice of n0, f , and μ.
(Proof of 1.) Assume D ∈ P and |D | = n > nmax. Then there exists some i ∈ [m] and

aD1 , . . . ,a
D
ki

∈ N such that hr (D) = v̄i
0+a

D
1 v̄i

1+ · · ·+a
D
ki

v̄i
ki

(note that n = ‖v̄i
0‖1+

∑
j ∈[ki ] a

D
j ‖v̄i

j ‖1).

Let D′ be the σ -db with r -histogram v̄i
0 + aD

′

1 v̄i
1 + · · · + aD

′

ki

v̄i
ki

∈ Mi , where aD
′

j is the near-

est integer to aDj n0/n, and hence aDj n0/n − 1/2 ≤ aD
′

j ≤ aDj n0/n + 1/2. Note that since

v̄i
0 +a

D′
1 v̄i

1 + · · ·+a
D′
ki

v̄i
ki

∈ hr (P),D′ exists andD′ ∈ P. We need to show that nmin ≤ |D ′ | ≤ nmax

and ‖ dvr (D) − dvr (D′)‖1 ≤ f − μ.

Claim 13. |D ′ | ≥ nmin.

Proof. By the choice of aD
′

j for j ∈ [ki ],

|D ′ | = ���v̄i
0
���1
+

∑
j ∈[ki ]

aD
′

j
���v̄i

j
���1

≥ ���v̄i
0
���1
+

∑
j ∈[ki ]

�
�
aDj n0

n
− 1

2
�
�
���v̄i

j
���1

=
���v̄i

0
���1
− 1

2

∑
j ∈[ki ]

���v̄i
j
���1
+
n0

n

∑
j ∈[ki ]

aDj
���v̄i

j
���1

=
���v̄i

0
���1
− 1

2

∑
j ∈[ki ]

���v̄i
j
���1
+ n0 −

n0
���v̄i

0
���1

n

≥ ���v̄i
0
���1
− 1

2

∑
j ∈[ki ]

���v̄i
j
���1
+ n0 − ���v̄i

0
���1

≥ −kv + n0 = nmin,

as
∑

j ∈[ki ] a
D
j ‖v̄i

j ‖1 = n − ‖v̄i
0‖1 and n > nmax ≥ n0. �

Claim 14. |D ′ | ≤ nmax.

Proof. By the choice of aD
′

j for j ∈ [ki ],

|D ′ | = ���v̄i
0
���1
+

∑
j ∈[ki ]

aD
′

j
���v̄i

j
���1

≤ ���v̄i
0
���1
+

∑
j ∈[ki ]

�
�
aDj n0

n
+

1

2
�
�
���v̄i

j
���1

=
���v̄i

0
���1
+

1

2

∑
j ∈[ki ]

���v̄i
j
���1
+ n0

��
�
1 −

���v̄i
0
���1

n
��
�

≤
∑

0≤j≤ki

���v̄i
j
���1
+ n0

≤ kv + n0 = nmax,

as
∑

j ∈[ki ] a
D
j ‖v̄i

j ‖1 = n − ‖v̄i
0‖1. �

Claim 15. ‖ dvr (D) − dvr (D′)‖1 ≤ f − μ.
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Proof. By definition, ‖ dvr (D)−dvr (D′)‖1 =
∑

j ∈[c] | dvr (D)[j]−dvr (D′)[j]|. First recall that

0 < n0 − kv ≤ |D ′ | ≤ n0 + kv < n and note that for every � ∈ [ki ], a
D
�
≤ n (since ‖v̄i

�
‖1 � 0). Then

for every j ∈ [c], by the choice of aD
′

�
for � ∈ [ki ],

dvr (D)[j] − dvr (D′)[j] = v̄i
0[j]

(
1

n
− 1

|D ′ |

)
+

∑
�∈[ki ]

v̄i
�[j] �

�
aD
�

n
−
aD

′

�

|D ′ |
�
�

≤
∑
�∈[ki ]

v̄i
�[j] �

�
aD
�

n
−
aD
�
n0

n |D ′ | +
1

2|D ′ |
�
�

=
∑
�∈[ki ]

v̄i
�[j] �

�
aD
�

n

(
|D ′ | − n0

|D ′ |

)
+

1

2|D ′ |
�
�

≤
∑
�∈[ki ]

v̄i
�[j]

(
n

n

(
kv + n0 − n0

n0 − kv

)
+

1

2(n0 − kv )

)

=

(
2kv + 1

2(n0 − kv )

) ∑
�∈[ki ]

v̄i
�[j]

≤ kv (2kv + 1)

n0 − kv
.

On the other hand,

dvr (D)[j] − dvr (D′)[j] ≥ −
v̄i

0[j]

|D ′ | +
∑
�∈[ki ]

v̄i
�[j] �

�
aD
�

n

(
|D ′ | − n0

|D ′ |

)
− 1

2|D ′ |
�
�

≥ −
v̄i

0[j]

|D ′ | +
∑
�∈[ki ]

v̄i
�[j] �

�
aD
�

n

(
−kv + n0 − n0

|D ′ |

)
− 1

2|D ′ |
�
�

= −
v̄i

0[j]

|D ′ | −
∑
�∈[ki ]

v̄i
�[j] �

�
aD
�
kv

n |D ′ | +
1

2|D ′ |
�
�

≥ −
v̄i

0[j]

n0 − kv
−

∑
�∈[ki ]

v̄i
�[j]

(
nkv

n(n0 − kv )
+

1

2(n0 − kv )

)

= −
v̄i

0[j]

n0 − kv
−

(
2kv + 1

2(n0 − kv )

) ∑
�∈[ki ]

v̄i
�[j]

≥ −kv (2kv + 1)

n0 − kv
.

Hence,

| dvr (D)[j] − dvr (D′)[j]| ≤ kv (2kv + 1)

n0 − kv
≤ 3(kv )2

n0 − kv
≤ f − μ

c

by the choice of n0. Therefore,

‖ dvr (D) − dvr (D′)‖1 =
∑
j ∈[c]

| dvr (D)[j] − dvr (D′)[j]| ≤ f − μ,

as required. �
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(Proof of 2.) AssumeD is ϵ-far from P and |D | = n > nmax. For a contradiction let us assume there
does exist aσ -dbD′ ∈ P such thatnmin ≤ |D ′ | ≤ nmax and ‖ dvr (D)−dvr (D′)‖1 ≤ f +μ. AsD′ ∈ P

there exists some i ∈ [m] and aD
′

1 , . . . ,a
D′
ki

∈ N such that hr (D′) = v̄i
0+a

D′
1 v̄i

1+· · ·+a
D′
ki

v̄i
ki

. For ev-

ery j ∈ [ki ] let aD
′′

j be the nearest integer to aD
′

j n/|D ′ |. Then v̄i
0+a

D′′
1 v̄i

1+ · · ·+a
D′′
ki

v̄i
ki

∈ hr (P), and

hence there exists a σ -db in P with r -histogram v̄i
0+a

D′′
1 v̄i

1+ · · ·+a
D′′
ki

v̄i
ki

. LetD′′ be one such σ -db.

Claim 16. D is ϵ-close to P.

Proof. First note that as ‖ dvr (D)−dvr (D′)‖1 ≤ f + μ and hr (D′) = v̄i
0+a

D′
1 v̄i

1+ · · ·+a
D′
ki

v̄i
ki

,

for every j ∈ [c]

v̄i
0[j] +

∑
�∈[ki ] a

D′
�
v̄i
�
[j]

|D ′ | − f − μ ≤ dvr (D)[j] ≤
v̄i

0[j] +
∑

�∈[ki ] a
D′
�
v̄i
�
[j]

|D ′ | + f + μ,

and therefore,

n �
�
v̄i

0[j] +
∑

�∈[ki ] a
D′
�
v̄i
�
[j]

|D ′ | − f − μ�
�
≤ hr (D)[j] ≤ n �

�
v̄i

0[j] +
∑

�∈[ki ] a
D′
�
v̄i
�
[j]

|D ′ | + f + μ�
�
.

Hence, by the choice of aD
′′

�
for � ∈ [ki ],

hr (D)[j] − hr (D′′)[j] ≤ v̄i
0[j]

(
n

|D ′ | − 1

)
+

∑
�∈[ki ]

v̄i
�[j] �

�
aD

′

�
n

|D ′ | − a
D′′
�

�
�
+ f n + μn

≤ v̄i
0[j]

n

|D ′ | +
∑
�∈[ki ]

v̄i
�[j] �

�
aD

′

�
n

|D ′ | −
�
�
aD

′

�
n

|D ′ | −
1

2
�
�
�
�
+ f n + μn

= v̄i
0[j]

n

|D ′ | +
1

2

∑
�∈[ki ]

v̄i
�[j] + f n + μn.

Similarly, by the choice of aD
′′

�
for � ∈ [ki ] and as n > |D ′ |,

hr (D)[j] − hr (D′′)[j] ≥ v̄i
0[j]

(
n

|D ′ | − 1

)
+

∑
�∈[ki ]

v̄i
�[j] �

�
aD

′

�
n

|D ′ | − a
D′′
�

�
�
− f n − μn

≥ −v̄i
0[j]

n

|D ′ | +
∑
�∈[ki ]

v̄i
�[j] �

�
aD

′

�
n

|D ′ | −
�
�
aD

′

�
n

|D ′ | +
1

2
�
�
�
�
− f n − μn

= −v̄i
0[j]

n

|D ′ | −
1

2

∑
�∈[ki ]

v̄i
�[j] − f n − μn.

Therefore,

| hr (D)[j] − hr (D′′)[j]| ≤ v̄i
0[j]

n

|D ′ | +
1

2

∑
�∈[ki ]

v̄i
�[j] + f n + μn

≤ n

|D ′ |
∑

0≤�≤ki

v̄i
�[j] + f n + μn

≤ nkv

|D ′ | + f n + μn
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= n

(
kv

|D ′ | +
λ

3c
+

λ

6c

)

≤ n

(
λ

18c
+

λ

3c
+

λ

6c

)

=
5λn

9c

by the choice of f and μ and as

|D ′ | ≥ nmin ≥
3c (kv )2

f − μ =
18(ckv )2

λ
≥ 18ckv

λ
.

As P is ϵ-local on C, if |D ′′ | ≥ N and ‖ hr (D) −hr (D′′)‖1 ≤ λ min{n, |D ′′ |}, thenD is ϵ-close to P.
If | hr (D)[j] − hr (D′′)[j]| ≤ λ

c
min{n, |D ′′ |}, then ‖ hr (D) − hr (D′′)‖1 ≤ λ min{n, |D ′′ |}. Clearly,

5λn
9c
< λn

c
. We also have

|D ′′ | = ���v̄i
0
���1
+

∑
�∈[ki ]

aD
′′

�
���v̄i

�
���1

≥ ���v̄i
0
���1
+

∑
�∈[ki ]

�
�
aD

′

�
n

|D ′ | −
1

2
�
�
���v̄i

�
���1

=
���v̄i

0
���1
− 1

2

∑
�∈[ki ]

���v̄i
�
���1
+

n

|D ′ |
∑
�∈[ki ]

aD
′

�
���v̄i

�
���1

≥ −kv + n

|D ′ |
(
|D ′ | − ���v̄i

0
���1

)

≥ − n

18
+

17

18
n

>
5n

9

as

|D ′ | ≥ 18ckv

λ
≥ 18v ≥ 18‖v̄i

0‖1 and kv ≤ (ckv )2

λ
=
nmin

18
≤ n

18
.

Therefore, 5λn
9c
≤ λ |D′′ |

c
and hence ‖ hr (D) − hr (D′′)‖1 ≤ λ min{n, |D ′′ |}. Furthermore, by the

choice of nmax, 5n
9 ≥ N and hence |D ′′ | ≥ N . Therefore, D is ϵ-close to P. �

Claim 16 gives us a contradiction and therefore for every D′ ∈ P such that nmin ≤ |D ′ | ≤ nmax,
we have ‖ dvr (D) − dvr (D′)‖1 > f + μ as required. �

As mentioned in the introduction, Alon [24, Proposition 19.10] proved that on bounded degree
graphs, for any graph G, radius r , and ϵ > 0 there always exists a graphH whose size is indepen-
dent of |V (G) | and whose r -neighborhood distribution vector satisfies ‖ dvr (G) − dvr (H )‖1 ≤ ϵ .
However, the proof is only existential and does not provide an explicit bound on the size of H .
As a corollary to the proof of Theorem 12, we immediately obtain explicit bounds for classes of
graphs and relational databases of bounded degree whose histogram vectors form a semilinear set.

Corollary 17. Let ϵ ∈ (0, 1], r ∈ N, andD be a σ -db that belongs to a class of σ -dbs C such that

the set hr (C) is semilinear, i.e., hr (C) = M1 ∪M2 ∪ · · · ∪Mm , where m ∈ N, and for each i ∈ [m],

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 25. Publication date: May 2023.



Faster Property Testers in a Variation of the Bounded Degree Model 25:15

Mi = {v̄i
0 +a1v̄

i
1 + · · ·+aki

v̄i
ki

| a1, . . . ,aki
∈ N} is a linear set where v̄i

0, . . . , v̄
i
ki

∈ Nc(r ) . Then there

exists a σ -db D0 such that

‖ dvr (D) − dvr (D0)‖1 ≤ ϵ and |D0 | ≤ kv

(
18c2kv

ϵ
+ 2

)
,

where c := c(r ), k := maxi ∈[m] ki + 1, and v := maxi ∈[m] (maxj ∈[0,ki ] ‖v̄i
j ‖1).

Proof. The class C is ϵ-local on C in the BDRD+/−model with λ9 (ϵ ) = ϵ , r9 (ϵ ) = r , and N9 (ϵ ) =
0 (note that we can choose any values for λ9 (ϵ ), r9 (ϵ ), and N9 (ϵ ) by definition). By Theorem 12
there exist nmin := nmin (ϵ ),nmax := nmax (ϵ ) ∈ N, and f := f (ϵ ), μ := μ (ϵ ) ∈ (0, 1) such that if |D | >
nmax, there exists aD0 ∈ C such that nmin ≤ |D0 | ≤ nmax and ‖ dvr (D) −dvr (D0)‖1 ≤ f − μ. From
the proof of Theorem 12, nmax := max{9N9 (ϵ )/5,kv (3ckv/( f −μ )+1)}+kv = kv (3ckv/( f −μ )+2),
f := ϵ/3c , and μ := ϵ/6c . Hence,

‖ dvr (D) − dvr (D0)‖1 ≤ f − μ = ϵ

6c
≤ ϵ and |D0 | ≤ kv

(
3ckv

f − μ + 2

)
= kv

(
18c2kv

ϵ
+ 2

)
,

as required. If |D | ≤ nmax, then D0 = D satisfies the corollary statement. �

Our aim is to construct constant time testers for local properties whose set of r -histograms are
semilinear. If we can approximate the r -neighborhood distribution of a σ -db, then by Theorem 12
we only need to check whether this distribution is close or not to the r -neighborhood distribution
of some small constant size σ -db. We let EstimateFrequenciesr,s be the algorithm that, given oracle
access to an input σ -db D, samples s many elements uniformly and independently from D and
computes their r -type. The algorithm then returns the r -neighborhood distribution vector of the
sample.

Lemma 18 ([1]). Let D ∈ Cd be a σ -db on n elements, μ ∈ (0, 1), and r ∈ N. If s ≥ c(r )2/μ2 ·
ln(20 c(r )), with probability at least 9/10 the vector v̄ returned by the algorithm

EstimateFrequenciesr,s on input D satisfies ‖v̄ − dvr (D)‖1 ≤ μ.

Theorem 19. Let ϵ ∈ (0, 1] and let P ⊆ C be a property that is ϵ-local on C (in the BDRD+/−
model). If for each r ∈ N the set hr (P) is semilinear, then there exists an ϵ-tester for P on C in the

BDRD+/− model that has constant running time and constant query complexity.

Proof. Let r := r9 (ϵ ) be the locality radius of P for ϵ ; let nmin := nmin (ϵ ), nmax := nmax (ϵ ),
f := f (ϵ ), and μ := μ (ϵ ) be as in Theorem 12; and let s = c(r )2/μ2 · ln(20 c(r )). Assume that the
set hr (P) is semilinear. Given oracle access to a σ -db D ∈ C and |D | = n as an input, the ϵ-tester
proceeds as follows:

(1) If n ≤ nmax, do a full check of D and decide if D ∈ P.
(2) Run EstimateFrequenciesr,s and let v̄ be the resulting vector.
(3) If there exists a D′ ∈ P where nmin ≤ |D ′ | ≤ nmax and ‖v̄ − dvr (D′)‖1 ≤ f , then accept;

otherwise reject.

The running time and query complexity of the above tester are constant as nmax is a constant
(it only depends on P, d, and ϵ) and EstimateFrequenciesr,s runs in constant time and makes a
constant number of queries.

For correctness, first assume D ∈ P. By Theorem 12 there exists a σ -db D′ ∈ P such that
nmin ≤ |D ′ | ≤ nmax and ‖ dvr (D) − dvr (D′)‖1 ≤ f − μ. By Lemma 18 with probability at least
9/10, ‖v̄ − dvr (D)‖1 ≤ μ and therefore ‖v̄ − dvr (D′)‖1 ≤ f . Hence, with probability at least 9/10
the tester will accept.
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Now assume D is ϵ-far from P. By Theorem 12 for every D′ ∈ P with nmin ≤ |D ′ | ≤ nmax, we
have ‖ dvr (D)−dvr (D′)‖1 > f +μ. By Lemma 18 with probability at least 9/10, ‖v̄−dvr (D)‖1 ≤ μ,
and therefore for every D′ ∈ P with nmin ≤ |D ′ | ≤ nmax, ‖v̄ − dvr (D′)‖1 > f . Hence, with
probability at least 9/10 the tester will reject. �

Combining Theorems 11 and 19, we obtain the following as a corollary.

Theorem 20. Let C be closed under removing tuples and let P ⊆ C be a property that is hyperfinite

on C. If for each r ∈ N the set hr (P) is semilinear, then P is uniformly testable on C in constant time

in the BDRD+/− model.

Combining the above theorem (Theorem 20), Lemma 1, and the fact that Ct
d

is hyperfinite [4, 19]

(and so any property is hyperfinite on Ct
d

), we obtain the following as a corollary.

Theorem 21. Every property P definable by a CMSO sentence on Ct
d

is uniformly testable on Ct
d

with constant time complexity in the BDRD+/− model.

6 EVERY HYPERFINITE PROPERTY THAT IS CLOSE TO HAVING SEMILINEAR

NEIGHBORHOOD HISTOGRAMS IS CONSTANT TIME TESTABLE

We begin this section by defining the notion of δ -indistinguishability, which is based on the defini-
tion of indistinguishability in the dense graph model given in [2]. We then prove that any hyperfi-
nite property that, for every δ ∈ (0, 1], is δ -indistinguishable from a property whose r -histograms
are semilinear is constant time testable in the BDRD+/− model (Theorem 25).

Definition 22 (δ -indistinguishable). Let δ ∈ (0, 1]. Two properties P and Q are called
δ -indistinguishable if there exists N := N22 (δ ) ∈ N that satisfies the following. For every σ -db
D ∈ P with |D | = n ≥ N elements there exists a σ -db D′ ∈ Q such that dist+/− (D,D′) ≤
δd min{n, |D ′ |}; and for every σ -db D ∈ Q with |D | = n ≥ N elements there exists a σ -db D′ ∈ P

such that dist+/− (D,D′) ≤ δd min{n, |D ′ |}.

The following two lemmas will be useful in the proof of Theorem 25.

Lemma 23. LetD andD′ be two dbs and let δ ∈ (0, 1]. If dist+/− (D,D′) ≤ δd min{|D |, |D ′ |}, then

for any r ∈ N, ‖ dvr (D) − dvr (D′)‖1 ≤ 3δcdr+2 and ‖ hr (D) − hr (D′)‖1 ≤ 2δdr+2 min{|D |, |D ′ |},
where c := c (r ).

Proof. Let δ ∈ (0, 1] and let r ∈ N. Let us assume that dist+/− (D,D′) ≤ δd min{|D |, |D ′ |}.
The distance betweenD andD′ is the minimum number of modifications needed to makeD and
D′ isomorphic. The four different types of modifications allowed are (1) inserting a new element,
(2) deleting an element, (3) inserting a new tuple, and (4) deleting a tuple. If a new element is
added to D or D′, then no existing elements’ r -type is changed. If an element is deleted from D
or D′, then the r -type of any element at distance at most r from the deleted element could have
changed. If a tuple ā is inserted or deleted from D or D′, then the r -type of any element that
is at distance at most r from every element in ā could have changed. Hence, since the number
of elements in the r -neighborhood of an element is at most dr+1 (cf., e.g., Lemma 3.2 (a) of [8]),
every modification toD orD′ could change the r -type of at most dr+1 many elements. Therefore,
‖ hr (D) − hr (D′)‖1 ≤ 2δdr+2 min{|D |, |D ′ |}, as required.

By definition,

‖ dvr (D) − dvr (D′)‖1 =
c∑

i=1

					
hr (D)[i]

|D | − hr (D′)[i]
|D ′ |

					.

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 25. Publication date: May 2023.



Faster Property Testers in a Variation of the Bounded Degree Model 25:17

Let i ∈ [c]; then, since ‖ hr (D) − hr (D′)‖1 ≤ 2δdr+2 min{|D |, |D ′ |},

hr (D)[i]

|D | − hr (D′)[i]
|D ′ | ≤ hr (D′)[i]

|D | +
2δdr+2 min{|D |, |D ′ |}

|D | − hr (D′)[i]
|D ′ |

≤ hr (D′)[i]
(

1

|D | −
1

|D ′ |

)
+ 2δdr+2.

Then, since |D ′ | ≤ |D |(1+δd ) (as dist+/− (D,D′) ≤ δd min{|D |, |D ′ |}), we have |D | ≥ |D ′ |/(1+δd )
and hence

hr (D′)[i]
(

1

|D | −
1

|D ′ |

)
+ 2δdr+2 ≤ hr (D′)[i]δd

|D ′ | + 2δdr+2.

Similarly,

hr (D)[i]

|D | − hr (D′)[i]
|D ′ | ≥ hr (D′)[i]

|D | − 2δdr+2 min{|D |, |D ′ |}
|D | − hr (D′)[i]

|D ′ |

≥ hr (D′)[i]
(

1

|D | −
1

|D ′ |

)
− 2δdr+2

≥ − hr (D′)[i]δd
|D ′ | − 2δdr+2

since |D ′ | ≥ |D |(1 − δd ) and hence |D | ≤ |D ′ |/(1 − δd ). Hence,

‖ dvr (D) − dvr (D′)‖1 ≤
c∑

i=1

(
hr (D′)[i]δd
|D ′ | + 2δdr+2

)

= δd + 2δcdr+2

≤ 3δcdr+2,

as required. �

Lemma 24. Let D1,D2,D3 ∈ N and let x ∈ R such that x ≥ 0. If |D1 − D2 | ≤ x min{D1,D2}, then

(1 − x ) min{D1,D3} ≤ min{D2,D3} ≤ (1 + x ) min{D1,D3}.

Proof. Let us assume that |D1 − D2 | ≤ x min{D1,D2}. To prove that min{D2,D3} ≤ (1 +
x ) min{D1,D3}, we shall consider the cases where out of D1, D2, and D3, (1) D1 is the smallest,
(2) D2 is the smallest, and (3) D3 is the smallest. In cases (2) and (3), since (1 + x ) ≥ 1, the in-
equality holds. For case (1), min{D2,D3} ≤ D2 ≤ D1 + x min{D1,D2} = (1 + x ) min{D1,D3} since
|D1 − D2 | ≤ x min{D1,D2} and D1 is the smallest.

To prove that (1− x ) min{D1,D3} ≤ min{D2,D3}, we shall again consider the above three cases.
In cases (1) and (3), since 1 − x ≤ 1, the inequality holds. For case (2), min{D2,D3} = D2 ≥
(1 − x )D1 ≥ (1 − x ) min{D1,D3} since |D1 − D2 | ≤ x min{D1,D2} ≤ xD1. �

We now prove our main result of this section.

Theorem 25. Let C be closed under removing tuples and let P ⊆ C be a property that is hyperfinite

on C. If for every δ ∈ (0, 1] there exists a property Qδ ⊆ C such that

(1) P and Qδ are δ -indistinguishable, and

(2) for every r ∈ N, hr (Qδ ) is semilinear,

then P is uniformly testable on C in constant time.
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Proof. Let ϵ ∈ (0, 1]. We shall prove that there exists an ϵ-tester for P on C that runs in constant
time and has constant query complexity. By Theorem 11, P is local on C in the BDRD+/− model. Let
NP := N9 (ϵ/4), λP := λ9 (ϵ/4), and rP := r9 (ϵ/4) be as in Definition 9 for P and ϵ/4. Let c := c (rP).
Let δ = min{ϵ/6d, λP/40c2dr+2} and let Qδ ⊆ C be a property that is δ -indistinguishable from P

and for every r ∈ N, hr (Qδ ) is semilinear.
Let r := rP, λ := λP/2 and N := (NP+1) (N22 (δ )+1) (1+ϵd/4),whereN22 (δ ) is as in Definition 22

for P and Qδ .

Claim 26. The property Qδ is ϵ/2-local on C in the BDRD+/−model with r9 (ϵ/2) = r , λ9 (ϵ/2) = λ,
and N9 (ϵ/2) = N .

Proof. Let DQ ∈ Qδ and let DC ∈ C such that |DQ | ≥ N and |DC | ≥ N . Let us assume that
‖ hr (DQ) − hr (DC)‖1 ≤ λ min{|DQ |, |DC |}. We need to prove that DC is ϵ/2-close to Qδ .

Since P and Qδ are δ -indistinguishable and N ≥ N22 (δ ), there exists DP ∈ P such that
dist+/− (DP,DQ) ≤ δd min{|DP |, |DQ |}. By Lemma 23, ‖ hr (DP) − hr (DQ)‖ ≤ 2δdr+2 min{|DP |,
|DQ |}. Hence,

‖ hr (DP) − hr (DC)‖ ≤ λ min{|DQ |, |DC |} + 2δdr+2 min{|DP |, |DQ |}.

We have | |DP | − |DQ | | ≤ δd min{|DP |, |DQ |} (as dist+/− (DP,DQ) ≤ δd min{|DP |, |DQ |}) and
we have | |DC | − |DQ | | ≤ λ min{|DC |, |DQ |} (as ‖ hr (DQ) − hr (DC)‖1 ≤ λ min{|DQ |, |DC |}). By
Lemma 24, min{|DQ |, |DC |} ≤ (1+δd ) min{|DP |, |DC |} (whereD1 = |DP |,D2 = |DQ |, andD3 = |DC |)
and min{|DP |, |DQ |} ≤ (1 + λ) min{|DP |, |DC |} (where D1 = |DC|, D2 = |DQ |, and D3 = |DP |).

Therefore,

‖ hr (DP) − hr (DC)‖ ≤ λ(1 + δd ) min{|DP |, |DC |} + 2δdr+2 (1 + λ) min{|DP |, |DC |}
≤ (λ + 5δdr+2) min{|DP |, |DC |}
≤ λP min{|DP |, |DC |}

by the choice of λ and δ . Since dist+/− (DP,DQ) ≤ δd min{|DP |, |DQ |}, we have |DP | ≥ |DQ | −
δd min{|DP |, |DQ |} ≥ |DQ | − δd |DP |. Hence,

|DP | ≥
|DQ |

1 + δd
≥ N

1 + ϵd/4
≥ NP

by the choice of δ and N . Therefore, since P is local on C, r = rP, and |DP | ≥ NP, DC is ϵ/4-close
to P.

Since DC is ϵ/4-close to P, there exists D′P ∈ P such that dist+/− (DC,D′P) ≤
ϵd min{|DC |, |D ′P |}/4 (which implies | |DC | − |D ′P | | ≤ ϵd min{|DC |, |D ′P |}/4). Since |D ′

P
| ≥ |DC | −

ϵd min{|DC |, |D ′P |}/4 ≥ |DC | − ϵd |D ′P |/4, we have

|D ′P | ≥
|DC |

(1 + ϵd/4)
≥ N

(1 + ϵd/4)
≥ N22 (δ )

by the choice of N . Therefore, there exists D′Q ∈ Qδ such that dist+/− (D′P,D′Q) ≤
δd min{|D ′

P
|, |D ′

Q
|} (which implies | |D ′

Q
| − |D ′

P
| | ≤ δd min{|D ′

Q
|, |D ′

P
|}) . Hence,

dist+/− (DC,D′Q) ≤
ϵd min{|DC |, |D ′P |}

4
+ δd min{|D ′P |, |D

′
Q |}

≤
ϵd (1 + δd ) min{|DC |, |D ′Q |}

4
+ δd

(
1 +

ϵd

4

)
min{|DC |, |D ′Q |}

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 25. Publication date: May 2023.



Faster Property Testers in a Variation of the Bounded Degree Model 25:19

=

(
ϵd

4
+
ϵδd2

2
+ δd

)
min{|DC |, |D ′Q |}

≤
(
ϵd

4
+
ϵ2d

12
+
ϵ

6

)
min{|DC |, |D ′Q |}

≤
(
ϵd

4
+
ϵd

12
+
ϵd

6

)
min{|DC |, |D ′Q |}

=
ϵd

2
min{|DC |, |D ′Q |}

by Lemma 24 and the choice of δ . Therefore, DC is ϵ/2-close to Qδ as required. �

By Claim 26 and Theorem 19 there exists an ϵ/2-tester for Qδ on C that runs in constant time
and has constant query complexity. Let μ := μ (ϵ/2), f := f (ϵ/2), nmin := nmin (ϵ/2), and nmax :=
nmax (ϵ/2) be as in Theorem 12 for Qδ and ϵ/2. Note that by Claim 26 the locality radius and disc
proximity of Qδ for ϵ/2 is rP and λP/2, respectively; therefore, by Theorem 12, μ = λP/12c . Let
πϵ/2 be the ϵ/2-tester for Qδ on C from the proof of Theorem 19, but in πϵ/2 let us increase the
number of elements sampled in the second step to s = c2 /(μ − 3cδdr+2)2 · ln(20 c). Note that
μ − 3cδdr+2 ∈ (0, 1) by the choice of δ . Then, given oracle access to a σ -db D ∈ C and |D | = n as
an input, the ϵ-tester for P on C proceeds as follows:

(1) If n < N22 (δ ) (1 + ϵd/2), do a full check of D and decide if D ∈ P.
(2) Run πϵ/2 on D and accept if πϵ/2 accepts and reject otherwise.

Clearly the above tester runs in constant time and has constant query complexity.
For correctness, first assume that D ∈ P and |D | = n > nmax and n ≥ N22 (δ ) (1 + ϵd/2).

As P and Qδ are δ -indistinguishable, there exists a σ -db D′ ∈ Qδ such that dist+/− (D,D′) ≤
δd min{n, |D ′ |}. By Lemma 23, ‖ dvr (D)−dvr (D′)‖ ≤ 3cδdr+2. By Theorem 12 there exists a σ -db
D0 ∈ Qδ such that nmin ≤ |D0 | ≤ nmax and ‖ dvr (D′) − dvr (D0)‖1 ≤ f − μ. Hence, ‖ dvr (D) −
dvr (D0)‖1 ≤ f − μ + 3cδdr+2. By Lemma 18 and the choice of s with probability at least 9/10,
‖v̄ − dvr (D)‖1 ≤ μ − 3cδdr+2 and therefore ‖v̄ − dvr (D0)‖1 ≤ f . Hence, with probability at least
9/10 the tester will accept.

Now assume D is ϵ-far from P and |D | ≥ N22 (δ ) (1 + ϵd/2). We will show that D is ϵ/2-
far from Qδ . Let DQ ∈ Qδ . If | |DQ | − |D | | > ϵd min{|DQ |, |D |}/2, then D is ϵ/2-far from DQ.
So let us assume that | |DQ | − |D | | ≤ ϵd min{|DQ |, |D |}/2. This implies that |D |/(1 + ϵd/2) ≤
|DQ | ≤ |D |(1 + ϵd/2). Hence, since |D | ≥ N22 (δ ) (1 + ϵd/2), |DQ | ≥ N22 (δ ). Therefore,
there exists a σ -db DP ∈ P such that dist+/− (DP,DQ) ≤ δd min{|DP |, |DQ |} (and therefore
| |DQ | − |DP | | ≤ δd min{|DP |, |DQ |}). Since D is ϵ-far from P, dist+/− (D,DP) > ϵd min{|D |, |DP |}
and so dist+/− (D,DQ) > ϵd min{|D |, |DP |} − δd min{|DP |, |DQ |}. By Lemma 24 (with D1 = |DQ |,
D2 = |DP |, and D3 = |D |), min{|D |, |DP |} ≥ (1−δd ) min{|D |, |DQ |}. Furthermore, we can show that
min{|DP |, |DQ |} ≤ (1+ ϵd/2) min{|D |, |DQ |}. To see this consider the case when |D | is the smallest
out of |D |, |DQ |, and |DP |; then

min{|DP |, |DQ |} ≤ |DQ | ≤ |D |(1 + ϵd/2) = (1 + ϵd/2) min{|D |, |DQ |}.

If |DQ | or |DP | are the smallest, then the inequality clearly holds. Therefore,

dist+/− (D,DQ) > ϵd min{|D |, |DP |} − δd min{|DP |, |DQ |}

≥
(
ϵd (1 − δd ) − δd

(
1 +

ϵd

2

))
min{|D |, |DQ |}
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≥
(
ϵd − ϵ

6
− ϵ2d

4

)
min{|D |, |DQ |}

≥
(
ϵd − ϵd

6
− ϵd

4

)
min{|D |, |DQ |}

≥ ϵd

2
min{|D |, |DQ |}

by the choice of δ . Hence,D is ϵ/2-far from everyDQ ∈ Qδ and soD is ϵ/2-far from Qδ . As πϵ/2

is an ϵ/2-tester for Qδ on C, with probability at least 2/3 the tester will reject. �

7 CONSTANT TIME TESTABILITY OF HYPERFINITE HEREDITARY PROPERTIES

A db (or graph) property is called hereditary if it is closed under removing elements (or vertices).
To the best of our knowledge, in the bounded degree graph model, it has not been shown explicitly
that hyperfinite hereditary properties are uniformly (in n) testable in constant time. Benjamini et
al. [7] prove that every monotone hyperfinite property is uniformly testable in constant time (in
the bounded degree graph model). Their tester starts by testing for hyperfiniteness (which they
show can be done in constant time). Newman and Sohler [25] prove that every hyperfinite property
is non-uniformly (in n) testable. We are interested in obtaining testers that are uniform in n and

run in constant time. Furthermore, Hassidim et al. [19] show that it is possible to approximate the
distance to non-degenerate hereditary properties for hyperfinite graphs in constant time.

With methods similar to [7] and [12] it can be shown that every hereditary hyperfinite property
is uniformly testable in constant time in the BDRD model and we will sketch this below.

Theorem 27. Every hyperfinite hereditary property is uniformly testable on C in constant time in

the BDRD model.

By Lemma 4 and Theorem 27 we immediately get that every hyperfinite hereditary property is
uniformly testable in constant time in the BDRD+/− model.

Theorem 28. Every hyperfinite hereditary property P ⊆ C is uniformly testable on C in constant

time in the BDRD+/− model.

In this section we will sketch a proof of Theorem 27 that follows closely to the proof given in [7].
We will then give an alternative proof of Theorem 28. In our alternative proof we show that every
hereditary hyperfinite property is close to having semilinear neighborhood histograms and hence
by Theorem 25 is uniformly testable in constant time in the BDRD+/− model.

7.1 A Proof of Theorem 27

First we start with some definitions that are based on those used in [7].
Let b ∈ N and let Ψ(b) be the set of all non-isomorphic connected σ -dbs of size at most b. For

each S ⊆ Ψ(b), letD (S ) be the disjoint union of the σ -dbs in S . Let P be some hereditary property.
Then let ΦP (S ) be the smallest integer д such that the σ -db obtained by taking д disjoint copies of
D (S ) is not in P. If no such integer exists (i.e., every σ -db that only contains connected components
isomorphic to those in S is in P), then ΦP (S ) = ∞.

Definition 29. For a fixed hereditary property P and b ∈ N, let Πb
P
= {S ⊆ Ψ(b) | ΦP (S ) < ∞}.

We then define the function ΦP : N �→ N as follows:

ΦP (b) =
⎧⎪⎪⎨⎪⎪⎩

0 if Πb
P
= ∅

max
S ⊆Πb

P

ΦP (S ) otherwise.
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Note that the function ΦP (b) is well defined as the set Ψ(b) is finite. We will illustrate Defini-
tion 29 in the following example.

Example 30. Let P be the property containing all bounded degree chordal graphs (a graph is
chordal if every cycle of length four or greater has a chord, where a chord of a cycle is an edge
that is not in the edge set of the cycle but has endpoints in the cycle). A graph G is chordal if and
only if G does not contain a cycle of length four or greater as an induced subgraph. Therefore, the
set of minimal forbidden induced subgraphs of P is the set of cycles of length four or greater; i.e.,
every forbidden induced subgraph has one connected component. For any b ∈ N and S ⊆ Ψ(b),
if one of the graphs in S contains a cycle of length four or greater as an induced subgraph, then
ΦP (S ) = 1; otherwise ΦP (S ) = ∞. Hence, if b > 3, then ΦP (b) = 1; otherwise ΦP (b) = 0.

Sketch of the proof of Theorem 27. Let ϵ ∈ (0, 1] and let P be a hyperfinite hereditary property on C.
Let ϵ0 = ϵ0 (ϵ ) be a carefully chosen constant and let k be such that any db in P is (ϵ0,k )-hyperfinite.
Let us start by describing the ϵ-tester. LetD be the input db. The tester starts by deciding correctly
with high probability whether D is (ϵ0,k )-hyperfinite or not (ϵ/2,k )-hyperfinite (ϵ0 is chosen in
such a way that D cannot be both (ϵ0,k )-hyperfinite and not (ϵ/2,k )-hyperfinite by the choice
of ϵ0). This can be done in constant time and with constant query complexity in the BDRD model
(extending methods in [7]). This is an ϵ-tester for the property of being (ϵ0,k )-hyperfinite since if
D is ϵ-far from being (ϵ0,k )-hyperfinite, it is not (ϵ/2,k )-hyperfinite. If D is declared to be not
(ϵ0,k )-hyperfinite, then the tester rejects. IfD is declared to be (ϵ/2,k )-hyperfinite, then the tester
samples a constant numberm =m(ϵ ) of elements fromD and for each element the tester explores
its k-neighborhood. If the induced sub-database of D on the union of the k-neighborhoods of the
sampled elements is not in P, then the tester rejects. Otherwise, the tester accepts. This can be
done with constant running time and constant query complexity.

Now to prove correctness (which follows closely to that in [7]), let us assume thatD ∈ P. By the
choice of k ,D is (ϵ0,k )-hyperfinite and so with high probability will be accepted in the first step of
the tester. Then, since P is hereditary, the second step of the tester will accept with probability 1.

Let us now assume that D is ϵ-far from P. Let us assume that D is (ϵ/2,k )-hyperfinite (oth-
erwise the tester would reject with high probability). Let D′ be the db that is formed from D by
removing the minimum number of tuples required (at most ϵn/2 tuples) such that every connected
component inD′ is of size at most k . Note thatD′ is at least ϵ/2-far from P. Let S ⊆ Ψ(k ) be such
that each A ∈ Ψ(k ) is in S if and only if there are at least ϵn/4k |Ψ(k ) | connected components in
D′ isomorphic to A. We then let D′′ be the db formed from D′ as follows. For every A ∈ Ψ(k ),
if A � S , then remove every tuple in D′ that is in a connected component isomorphic to A. It is
easy to see that the total number of tuples removed is at most ϵdn/4 and therefore D′′ is ϵ/4-far
from P. Since D′′ � P and P is hereditary, ΦP (S ) ≤ ΦP (k ) < ∞. Since each A ∈ S appears at
least ϵn/4k |Ψ(k ) | times in D′′ and D ′′ = D, we can choose m, the number of elements the tester
samples, carefully to ensure that with high probability for each A ∈ S the tester samples at least
ΦP (S ) elements from connected components in D′′ that are isomorphic to A. Furthermore, if we
assume n is greater than some function of ϵ, then with high probability each sampled element is
from a distinct connected component (in D′′) and their k + 1-neighborhoods don’t intersect (in
D). Let a1, . . . am be the elements sampled in the tester. Let D0 be the induced sub-database of D
on the union of the k-neighborhoods of a1, . . . am and let D′′0 be the union of the connected com-
ponents ofD′′ that contain an element ai . With high probability, by definition,D′′0 � P. Let a ∈ D.
It is easy to see that the connected component in D′′ containing a is an induced sub-database of
the k-neighborhood of a in D (sinceD′ was formed with the minimum required number of tuple
deletions). Therefore, if none of the k + 1-neighborhoods of a1, . . . am in D intersect (which hap-
pens with high probability), D′′0 is an induced sub-database of D0. Finally, since P is hereditary
and with high probability D′′0 � P, with high probability D0 � P and the tester rejects.

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 25. Publication date: May 2023.



25:22 I. Adler and P. Fahey

7.2 An Alternative Proof of Theorem 28

We will show that for every hyperfinite hereditary property P and δ ∈ (0, 1] there exists a property
Q that has a semilinear set of r -histograms and is δ -indistinguishable from P.

Lemma 31. Let P ⊆ C be a hyperfinite hereditary property and let δ ∈ (0, 1]. Let ρ be the function

such that P is ρ-hyperfinite on C and let

b := ρ

(
δd

2(1 + δd )

)
.

Let Q ⊆ P be the property such that for everyD ∈ P,D ∈ Q if and only if all connected components in

D are of size at most b and for eachA ∈ Ψ(b),D has either 0 or at least ΦP (b) connected components

isomorphic to A. Then

(1) P and Q are δ -indistinguishable, and

(2) for every r ∈ N, hr (Q) is semilinear.

Proof. Let us start by proving 1 of the lemma statement. Let

N :=
2(1 + δd ) · ΦP (b) · |Ψ(b) | · b

δd
.

We will show that P and Q are δ -indistinguishable with N22 (δ ) = N . If D ∈ Q, then D ∈ P as
Q ⊆ P. Hence, to prove P and Q are δ -indistinguishable, we only need to show that for every
D ∈ P with |D | = n ≥ N there exists a σ -db D′ ∈ Q such that dist+/− (D,D′) ≤ δd min{n, |D ′ |}.
Let D ∈ P with |D | = n > N . As P is ρ-hyperfinite on C, by removing at most δdn

2(1+δd ) tuples from

D, we can obtain a σ -db D1 ∈ C that has connected components of size at most b (by the choice
of b). For every tuple ā that was removed fromD to formD1, pick one element from ā and remove
it (and as a result any tuple containing that element) from D. Let D2 be the resulting σ -db. Note
that as P is hereditary, D2 ∈ P. Furthermore, D2 has connected components of size at most b (as

D2 is a sub-database of D1) and as at most δdn
2(1+δd ) elements were removed from D to form D2,

dist+/− (D,D2) ≤ δdn

2(1 + δd )
and |D2 | ≥

(
1 − δd

2(1 + δd )

)
n =

n(2 + δd )

2(1 + δd )
.

Now for everyA ∈ Ψ(b), ifD2 contains less than ΦP (b) many connected components isomorphic
to A, remove all such connected components from D2. Let D′ be the resulting σ -db. As P is
hereditary, D′ ∈ P, and by the construction of D′, all connected components in D′ are of size at
most b and for eachA ∈ Ψ(b),D′ has either 0 or at least ΦP (b) connected components isomorphic
toA. Therefore,D′ ∈ Q. At most ΦP (b) · |Ψ(b) | many connected components were removed from
D2 to form D′ and hence,

|D ′ | ≥ |D2 | − ΦP (b) · |Ψ(b) | · b ≥ n(2 + δd )

2(1 + δd )
− ΦP (b) · |Ψ(b) | · b

and dist+/− (D2,D′) ≤ ΦP (b) · |Ψ(b) | · b. Therefore,

dist+/− (D,D′) ≤ δdn

2(1 + δd )
+ ΦP (b) · |Ψ(b) | · b

≤ δdn

2(1 + δd )
+ ΦP (b) · |Ψ(b) | · b + δdn

2
− (1 + δd ) · ΦP (b) · |Ψ(b) | · b

=
δdn(2 + δd )

2(1 + δd )
− δd · ΦP (b) · |Ψ(b) | · b

≤ δd |D ′ |,
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as n ≥ N and so δdn
2 − (1 + δd ) · ΦP (b) · |Ψ(b) | · b ≥ 0. When constructing D′ from D, we

only removed elements and hence |D ′ | ≤ |D |. Therefore, dist+/− (D,D′) ≤ δd min{|D |, |D ′ |}. This
completes the proof that P and Q are δ -indistinguishable.

We will now prove 2 of the lemma statement. Let r ∈ N and for every S ⊆ Ψ(b) let QS ⊆ Q be
the set of σ -dbs such that for every D ∈ Q, D ∈ QS if and only if D contains at least ΦP (b) many
connected components isomorphic to every A ∈ S but does not contain a connected component
isomorphic to a σ -db in Ψ(b) \ S . Note that

Q =
⋃

S ⊆Ψ(b )

QS .

We will prove that for every S ⊆ Ψ(b), if ΦP (S ) < ∞, then QS is empty, and if ΦP (S ) = ∞, then
hr (QS ) is a linear set. Since Q is the union of the sets QS , this will imply that hr (Q) is a semilinear
set.

First, let us prove that for every S ⊆ Ψ(b), if ΦP (S ) < ∞, then QS is empty. For a contradiction
assume that for some S ⊆ Ψ(b), ΦP (S ) < ∞ and there exists a σ -db D ∈ QS . Let D′ be the σ -db
that for eachA ∈ S contains exactly ΦP (b) connected components isomorphic to A and contains
no other connected components. By the definition of ΦP (b) and as ΦP (S ) < ∞, D′ � P. However,
D′ is an induced sub-database ofD, and since P is hereditary andD ∈ P (as QS ⊆ P), this implies
D′ ∈ P, which is a contradiction. Hence, for every S ⊆ Ψ(b), if ΦP (S ) < ∞, then QS is empty.

We will now prove that for every S ⊆ Ψ(b), if ΦP (S ) = ∞, then hr (QS ) is a linear set. Let
S = {D1,D2, . . . ,D� } ⊆ Ψ(b), let v̄ =

∑
1≤i≤� ΦP (b) hr (Di ), and let

M = {v̄ + a1 hr (D1) + a2 hr (D2) + · · · + a� hr (D� ) | a1, . . . ,a� ∈ N}.
Clearly M is a linear set and we claim that M = hr (QS ). Let ū = v̄ +u1 hr (D1) +u2 hr (D2) + · · · +
u� hr (D� ) ∈ M for some u1, . . . ,u� ∈ N and let D be the σ -db with exactly ΦP (b) + u1 connected
components isomorphic toD1, ΦP (b)+u2 connected components isomorphic toD2, . . . ,ΦP (b)+u�
connected components isomorphic toD� , and no other connected components. Clearly ū = hr (D).
Then as P is hereditary and ΦP (S ) = ∞, D ∈ P, and so by the definition of QS , D ∈ QS . On the
other hand, let D ∈ QS ; then by definition for some u1, . . . ,u� ∈ N, D contains exactly ΦP (b) +
u1 connected components isomorphic to D1, ΦP (b) + u2 connected components isomorphic to
D2, . . . ,ΦP (b)+u� connected components isomorphic toD� , and no other connected components.
The r -histogram vector of D is then v̄ + u1 hr (D1) + u2 hr (D2) + · · · + u� hr (D� ) and hence
hr (D) ∈ M . Therefore, M = hr (QS ).

We have proven that for every S ⊆ Ψ(b), hr (QS ) is either empty or a linear set and hence hr (Q)
is semilinear. �

Combining Theorem 25 and Lemma 31, we obtain Theorem 28 as a corollary.
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