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ABSTRACT
The Locally Competitive Algorithm (LCA) [17, 18] was put forward
as a model of primary visual cortex [14, 17] and has been used
extensively as a sparse coding algorithm for multivariate data. LCA
has seen implementations on neuromorphic processors, including
IBM’s TrueNorth processor [10], and Intel’s neuromorphic research
processor, Loihi, which show that it can be very efficient with re-
spect to the power resources it consumes [8]. When combined with
dictionary learning [13], the LCA algorithm encounters synaptic
instability [24], where, as a synapse’s strength grows, its activity in-
creases, further enhancing synaptic strength, leading to a runaway
condition, where synapses become saturated [3, 15]. A number
of approaches have been suggested to stabilize this phenomenon
[1, 2, 5, 7, 12]. Previous work demonstrated that, by extending the
cost function used to generate LCA updates, synaptic normalization
could be achieved, eliminating synaptic runaway [7]. It was also
shown that the resulting algorithm could be implemented in a firing
rate model [7]. Here, we implement a probabilistic approximation
to this firing rate model as a spiking LCA algorithm that includes
dictionary learning and synaptic normalization. The algorithm is
based on a synfire-gated synfire chain-based information control
network in concert with Hebbian synapses [16, 19]. We show that
this algorithm results in correct classification on numeric data taken
from the MNIST dataset.
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1 METHODS
1.1 The LCA Cost and Update Equations
The LCA is a recursive algorithm constructed from an optimization
problem where updates are computed from gradients of a cost
function.

min
a
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Here, s denotes a target signal, often an image, of interest. The
set {𝑎𝑖 : 𝑖 ∈ 1, . . . , 𝑀} denotes coefficients and the set {𝝓𝑖 : 𝑖 ∈
1, . . . , 𝑀} represents dictionary elements. Dictionary elements may
be fixed or learned. The first term in (1) represents the distance
of a linear combination of the dictionary elements from the target
signal. The second term in (1), with parameter 𝜆, represents the 𝐿1
norm of the vector a. When minimized, all but a few elements of a
are non-zero, resulting in a sparse representation of s.

In order to implement this algorithm in a neural circuit, an inter-
nal variable, u, is introduced. In the neural representation, a = 𝑇𝜆 (u),
where 𝑇𝜆 is a neural activity function, which thresholds 𝑢. Thus,
the 𝑎𝑖 are represented by spikes, whereas the 𝑢𝑖 are represented by
membrane potentials in the neural circuit.

A dynamical equation to implement the minimization in (1)
[17, 18] is

𝑢new𝑚 = 𝑢old𝑚 +
1
𝜏

(
⟨𝝓𝑚, s(𝑡)⟩ − 𝑢𝑚 (𝑡) −

∑︁
𝑛≠𝑚

⟨𝝓𝑚, 𝝓𝑛⟩𝑎𝑛 (𝑡)
)
, (2)

where ⟨𝑎, 𝑏⟩ denotes the inner product between vectors a and b.
Here, the sum in the third term on the right implements a recurrent
inhibition that enforces the sparsification of the representation of
s as a linear combination of the dictionary elements, {𝝓𝑖 } with
coefficients 𝑎𝑛 .

By itself, (2) implements LCA with no dictionary learning or
synaptic normalization. An update rule for dictionary learning
may be derived by taking the gradient of (1) with respect to the
dictionary elements [25], 𝝓𝑖 . This results in the synaptic update

Φnew = Φold + a ⊗ (s − Φa) . (3)

In this update, ⊗ denotes the outer product and the dictionary
matrix Φ = [𝝓1, 𝝓2, . . . , 𝝓𝑀 ].

To normalize the synaptically encoded dictionary elements, we
add a term to the cost that evaluates the summed distance between
column vectors encoded in a dictionarymatrix,Φ, with unit distance.
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Explicitly,

𝐶 (𝚽) = 1
2

∑︁
𝑘∈1,...,𝐾

(𝝓𝑇
𝑘
𝝓𝑘 − 1)2 . (4)

This convex cost evaluates to 0 if and only if the dictionary elements
{𝝓𝑘 } are all of unit length.

We make use of gradient descent to minimize the cost, whose
derivative with respect to the vector 𝝓𝑘 is

𝜕𝐶

𝜕𝝓𝑘
= ( |𝝓𝑘 |2 − 1)𝝓𝑘 . (5)

Thus, with update

𝝓new
𝑘

= 𝝓old
𝑘
− 𝜂 𝜕𝐶

𝜕𝝓𝑘
, (6)

𝝓𝑘 will converge to unit length asymptotically with unit probability.

Figure 1: Functional connectivity of the LCA circuit. Neuronal
population names are shown on the left, and their activity is repre-
sented at their activation time. Columns correspond to gating times
during the circuit operation. The figure shows LCA with dictionary
learning, where learning happens at the last phase of the circuit
operation. Connections between populations can be one-to-one,
where the presynaptic neuron is connected to its single homologous
postsynaptic neuron. Alternatively, connections can be one-to-all,
where each presynaptic neuron is connected to all of the neurons
in the postsynaptic population. Synapses can be excitatory or in-
hibitory. A legend of connection types is indicated on the lower
right side of the figure. The firing threshold type is indicated on the
upper right side of the neuronal population. Synaptic update of the
dictionary happens at the potentiation (green) and depression (red)
phases. The gating chain causes the potentiation of the neuronal
population voltages and hence firing activity at the indicated gating
times; thus, information travels only if excitatory gating activates
a population. The postsynaptic outcome of information depends
on the connection type between populations. Below each gating
column, the computed information in 𝑈 and 𝑅 populations is de-
noted mathematically.

1.2 Neural Considerations for Implementing
LCA

In order to implement the updates in this algorithm in a neural
circuit, we consider a spiking model of a synfire-gated synfire chain

Figure 2: Functional connectivity of the normalization circuit.
This diagram is depicted analogously to Fig. 1, where layer activities
are shown as a function of time. See description in Fig. 1.

[16, 20–23, 27]. Here, information is gated via potentiating spikes
from a presynaptic neuron to a postsynaptic neuron, implementing
the synaptic transform, Φ,

𝑢post
gate
←−−− 𝑇𝜆 (Φ bpre) , (7)

where bpre is a vector of presynaptic spikes from a presynaptic
neuron and 𝑢post is a postsynaptic current.

The gate itself is implemented synaptically by connecting a neu-
ron in the synfire chain with a postsynaptic neuron in b. Voltages
(or, similarly, thresholds) are set such that neither the gating neuron
nor the presynaptic (information-carrying) neuron will cause the
postsynaptic neuron to fire. However, if the spikes are concurrent,
then the information-carrying spike is potentiated by the gating
spike, and the information propagates downstream.

It is important to note that in some parts of our neural circuit,
instead of 𝑇𝜆 , the usual activity function with a fixed threshold,
we will use 𝑇 rand

𝜆
. 𝑇 rand
𝜆

is a random threshold activity function
(implemented on Intel’s neuromorphic research processor, Loihi, for
instance). We use this activity function in order to generate spikes
with a firing rate proportional to 𝝓𝑖 in the following way: we gate
the value 1 into an element of apre, i.e., apre = [0, . . . , 0, 1, 0, . . . , 0] ≡
1𝑖 . With a random threshold,

𝑓post = ⟨𝑇 rand
𝜆
(Φ bpre)⟩ ≈ 𝝓𝑖 . (8)

Above, ⟨⟩𝑇 indicates a time average and 1𝑖 indicates the value 1 in
the 𝑖’th element of apre.

By using this gated transform capability, in concert with a single
rank-one Hebbian update,

Φ← Φ + bpre ⊗ bpost , (9)

we can probabilistically implement a synaptic update,

Φ← Φ + ⟨b𝑡pre ⊗ b𝑡post⟩𝑇 . (10)
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1.3 Spiking Neural Circuit Implementation of
LCA with Dictionary Learning and
Normalization

In Fig. 1, we depict the functional connectivity of the combined
LCA and dictionary learning circuits.

At the beginning of each iteration, the image input of the LCA
circuit is encoded in 𝑆 , and activity, 𝑎 = 𝑇𝜆 (𝑈 ), is gated into the
circuit via gating population 𝑔0. This activity is then gated via the
𝑔1 gating population through the synaptic matrix, Φ, to 𝑈 ′ via a
random threshold, causing the𝑈 ′ neural register to spike with prob-
ability, Pr(𝑈 ′) = Φ𝑎. The activity in𝑈 is simultaneously propagated
to the memory population,𝑚, via a standard threshold such that it
contains 𝑎.𝑈 ′ is then gated via 𝑔2 to𝑈𝑚 with a random threshold
and 𝑈 is gated with delay through one-to-one inhibitory synapses
such that 𝑈𝑚 now spikes with probability Pr(𝑈𝑚) = (ΦΦ𝑇 − 𝐼 )𝑎.
This spiking activity is then gated back to the register 𝑈 , which, at
this point, contains a new iterate of 𝑢 (see Eq. 2).

In the next phase of the circuit, updates to the dictionary are
made. The activity in𝑈 is propagated through the synaptic connec-
tivity, Φ, and the input image is simultaneously propagated to 𝑅,
giving 𝑃 (𝑅) = 𝑆 − Φ𝑎 in the postsynaptic population. At the same
time, the contents of the memory register,𝑚 = 𝑎, are gated with
delay to 𝑈 such that 𝑈 = 𝑎. This causes a Hebbian update since
both 𝑎 and 𝑆 − Φ𝑎 are simultaneously in the pre- and postsynaptic
populations on either side of the synapses containing the dictionary,
Φ. Similar updates are performed in the subsequent step, but the
update is now to the negative weights of Φ. Additionally, the other
sets of synapses encoding Φ (e.g., between 𝑆 and 𝑈 ) in the circuit
must be updated (not shown) in a similar way.

Finally,𝑈 is gated with delay to itself, where a memory register
to hold the contents of𝑈 is not shown.

We note here that since we cannot encode negative numbers in
spikes (spikes cannot be tagged as representing negative informa-
tion), the registers in the LCA neural circuit actually represent pairs
of values, with one of each pair representing ‘positive’ spikes, and
the other member representing ‘negative’ spikes. In Fig. 2, since
the normalization circuit is somewhat simpler, we explicitly show
how this is done.

The functional connectivity and operation of the normalization
circuit are depicted in Fig. 2. The circuit is iterated as many times as
there are dictionary elements, i.e., separate updates are necessary
to normalize each dictionary element in the synaptic connectivity,
Φ. This circuit is interleaved with the LCA and dictionary learning
circuits are shown in Fig. 1.

Propagation of information through the normalization circuit
starts at the𝑈+ population, into which is gated the indicator vector
1𝑖 . This element selects the dictionary element to be probabilistically
normalized subsequently by the circuit. By gating 1𝑖 through the
synapses that encode the positive elements of the dictionary, Φ+,
into𝑅+, where𝑅+ has a random threshold, we find that Pr(𝑅+) = 𝜙+

𝑖
,

and thus, the 𝑅+ register will, on average, encode the 𝑖’th dictionary
element, 𝜙𝑖 . Using the same logic, 1𝑖 is gated through Φ− encoding
Pr(𝑅−) = 𝜙−

𝑖
in 𝑅− . The information in the 𝑅+,− register is then

gated through the transposed dictionary, depositing |𝜙+
𝑖
|2 + |𝜙−

𝑖
|2 −

1 = |𝜙𝑖 |2 − 1 in the 𝑖’th element of the𝑈+ register. Note that 𝑆𝑃 is a
neuron that outputs a constant value (here indicated as the number

1), which is subtracted from the input to𝑈+, determining the vector
length to which each dictionary element is normalized.

The activity in 𝑅+,− is gated back to these same populations (this
can be done with delays or with memory registers). At this point,
|𝜙+
𝑖
|2 + |𝜙−

𝑖
|2 − 1 has been gated to and probabilistically encoded in

the 𝑖’th element of the𝑈+ register, while simultaneously the vectors
𝜙+
𝑖
and 𝜙−

𝑖
are encoded in 𝑅+,− . Via a Hebbian update, the synaptic

weights are updated, with average increments of ( |𝜙+
𝑖
|2 + |𝜙−

𝑖
|2 −

1)𝜙+
𝑖
and ( |𝜙+

𝑖
|2 + |𝜙−

𝑖
|2 − 1)𝜙−

𝑖
between𝑈+ and 𝑅+,− , respectively.

The dictionary elements between𝑈− and 𝑅+,− are also updated
with connections not shown for clarity.

This normalization circuit is iterated with 𝑖 = 1, . . . , 𝑀 , where 𝑛
is the number of vectors making up the dictionary.

0 Timesteps 30,000

Learned Dictionary

Training Digits

A

B

C

D

First of Five Dictionary Elements, u(t)

All Five Dictionary Elements, u(t)

Initial Learning and Normalization
0 120,000Timesteps

Initial learning and normalization ConvergenceFine tuning of learning and normalization

E

Figure 3: Unsupervised classification with LCA, dictionary
learning, and dictionary normalization during training with
repeated presentations of five digits. A) The internal voltage, 𝑢,
as a function of the timestep, 𝑡 , over 120, 000 training steps. Note
that only the training cycles where 𝑢 responded to input were
included for clarity. All timesteps are shown in B) for all five digits.
In A), we note three epochs during training, an initial learning and
normalization period, fine-tuning once rough dictionary elements
have been learned, then convergence to stereotypical responses.
C) A closeup of the initial epoch of 30, 000 timesteps during which
initial learning and dictionary normalization are dominant. D) The
dataset on which training is performed. These digits are repeatedly
sent to the neural circuit. E) The digits learned by the combined
LCA, dictionary learning, and normalization algorithm.
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1.4 Results
In order to test our probabilistic approach to implementing LCA
(with dictionary learning and normalization) in neural circuits con-
trolled with synfire-gated synfire chains, we trained on five num-
bers from the MNIST database [9]. Neural circuit simulation was
performed with Matlab.

Training with this simple training set allowed us to see how the
circuit response converged to stable, sparse classifications of the
digits. More complex behavior would arise if we used the whole
MNIST dataset and increased the dictionary size, but troubleshoot-
ing our approach would be more difficult.

In Fig. 3A, we show the time course of the membrane potential,
𝑢, of one of the sets of 5 neurons in𝑈 during unsupervised learning.
At the beginning of the time course, the membrane potential rose as
the dictionary element was modified due to the input data. As the
digit that this neuron begins to encode was repeatedly presented, its
membrane potential rose due to dictionary learning and overshot
a value above which the normalization term in the cost became
dominant. This caused the response to decrease and stabilize.

Over the course of the training, the response became increasingly
finely tuned to its digit, completely stabilized, and this digit (a one)
was recognized with high probability.

Fig. 3B shows the response of all five dictionary elements that
were used for training. Note that all of these neurons stabilized at
roughly the same time, and by the end of training, the responses
were all stable.

Fig. 3C depicts the early learning and normalization phase of all
𝑈 neurons, each responding to an individual digit.

The training data is shown in Fig. 3D, and the learned dictionary
elements are shown in Fig. 3C.

2 CONCLUSIONS AND OUTLOOK
This paper presented a successful means of constructing spiking
neural circuits to implement the Locally Competitive Algorithm
with dictionary learning and dictionary normalization.

Our approach made use of synfire-gated synfire chains to control
the propagation of information within the neural system as a whole
and also to control Hebbian synaptic updates. Without this control,
which allowed us to implement synaptic normalization, synaptic
weights could easily encounter runaway conditions and saturate,
destabilizing dictionary learning.

An important mechanism we introduced was using random
thresholds to translate information encoded in synapses into fir-
ing rates [7] that could be used for Hebbian updates to synapses
encoding the LCA dictionary.

Previous neuromorphic implementations of LCA have demon-
strated significant power reductions with the LCA algorithm on a
range of hardware substrates [4], including memristive [26], fully
analog [6], CMOS [8, 11]. However, few of these [24] attack the
dictionary learning problem on-chip.

Further work remains to understand how learning will perform
in the spiking LCA algorithm that we present here when it is ex-
posed to more complex datasets. Also, further studies will need to
be performed to investigate how the algorithm will scale. Addition-
ally, this spiking algorithm will need to be tested on neuromorphic

hardware such as Intel’s Loihi chip and memristive systems. This
research is currently underway.

ACKNOWLEDGMENTS
Thisworkwas initially supported by the LANLASCBeyondMoore’s
Law project (A.T.S.) and by the US Department of Energy National
Nuclear Security Administration’s Office of Defense Nuclear Non-
proliferation Research & Development (DNN R&D) at Los Alamos
National Laboratory under contract 89233218CNA000001. (D.C.A,
A.T.S.). LANL approval designation: LA-UR-22-33004

REFERENCES
[1] LF Abbott. 2003. Balancing homeostasis and learning in neural circuits. Zoology

106, 4 (2003), 365–371.
[2] Larry F Abbott and Sacha B Nelson. 2000. Synaptic plasticity: taming the beast.

Nature neuroscience 3, 11 (2000), 1178–1183.
[3] Christian Balkenius, Jan Morén, et al. 1998. Computational models of classical

conditioning: a comparative study. (1998).
[4] Arindam Basu, Lei Deng, Charlotte Frenkel, and Xueyong Zhang. 2022. Spiking

neural network integrated circuits: A review of trends and future directions. In
2022 IEEE Custom Integrated Circuits Conference (CICC). IEEE, 1–8.

[5] Elie L Bienenstock, Leon N Cooper, and Paul W Munro. 1982. Theory for the de-
velopment of neuron selectivity: orientation specificity and binocular interaction
in visual cortex. Journal of Neuroscience 2, 1 (1982), 32–48.

[6] Fred N Buhler, Peter Brown, Jiabo Li, Thomas Chen, Zhengya Zhang, and
Michael P Flynn. 2017. A 3.43 TOPS/W 48.9 pJ/pixel 50.1 nJ/classification 512 ana-
log neuron sparse coding neural network with on-chip learning and classification
in 40nm CMOS. In 2017 Symposium on VLSI Circuits. IEEE, C30–C31.

[7] Diego Chavez Arana, Alpha Renner, and Andrew Sornborger. 2022. A Neuromor-
phic Normalization Algorithm for Stabilizing Synaptic Weights with Application
to Dictionary Learning in LCA. In Neuro-Inspired Computational Elements Con-
ference. 58–60.

[8] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham N. Chinya, Yongqiang
Cao, Sri Harsha Choday, Georgios D. Dimou, Prasad Joshi, Nabil Imam, Shweta
Jain, Yuyun Liao, Chit-Kwan Lin, Andrew Lines, Ruokun Liu, DeepakMathaikutty,
Steven McCoy, Arnab Paul, Jonathan Tse, Guruguhanathan Venkataramanan,
Yi-Hsin Weng, Andreas Wild, Yoonseok Yang, and Hong Wang. 2018. Loihi: A
Neuromorphic Manycore Processor with On-Chip Learning. IEEE Micro 38, 1
(2018), 82–99. https://doi.org/10.1109/MM.2018.112130359

[9] Li Deng. 2012. The mnist database of handwritten digit images for machine
learning research [best of the web]. IEEE Signal Processing Magazine 29, 6 (2012),
141–142.

[10] Kaitlin L Fair, Daniel R Mendat, Andreas G Andreou, Christopher J Rozell, Justin
Romberg, and David V Anderson. 2019. Sparse coding using the locally competi-
tive algorithm on the TrueNorth neurosynaptic system. Frontiers in neuroscience
13 (2019), 754.

[11] Charlotte Frenkel, Martin Lefebvre, Jean-Didier Legat, and David Bol. 2018. A
0.086-mm 212.7-pj/sop 64k-synapse 256-neuron online-learning digital spiking
neuromorphic processor in 28-nm CMOS. IEEE transactions on biomedical circuits
and systems 13, 1 (2018), 145–158.

[12] Erkki Oja. 1982. Simplified neuron model as a principal component analyzer.
Journal of mathematical biology 15, 3 (1982), 267–273.

[13] Bruno A Olshausen and David J Field. 1996. Emergence of simple-cell receptive
field properties by learning a sparse code for natural images. Nature 381, 6583
(1996), 607–609.

[14] Bruno A Olshausen and David J Field. 2004. Sparse coding of sensory inputs.
Current opinion in neurobiology 14, 4 (2004), 481–487.

[15] Bernd Porr and Florentin Wörgötter. 2007. Learning with “relevance”: using
a third factor to stabilize Hebbian learning. Neural computation 19, 10 (2007),
2694–2719.

[16] Alpha Renner, Forrest Sheldon, Anatoly Zlotnik, Louis Tao, and Andrew Sorn-
borger. 2021. The Backpropagation Algorithm Implemented on Spiking Neuro-
morphic Hardware. arXiv preprint arXiv:2106.07030 (2021).

[17] Christopher J Rozell, DonH Johnson, RichardGBaraniuk, and BrunoAOlshausen.
2008. Neurally plausible sparse coding via thresholding and local competition.
Neural Comput 20, 10 (2008), 2526–2563.

[18] Christopher J Rozell, DonH Johnson, RichardGBaraniuk, and BrunoAOlshausen.
2008. Sparse coding via thresholding and local competition in neural circuits.
Neural computation 20, 10 (2008), 2526–2563.

[19] Yuxiu Shao, Andrew T Sornborger, and Louis Tao. 2016. A pulse-gated, predictive
neural circuit. In 2016 50th Asilomar Conference on Signals, Systems and Computers.
IEEE, 1051–1055.

50

https://doi.org/10.1109/MM.2018.112130359


Spiking LCA in a Neural Circuit with Dictionary Learning and Synaptic Normalization NICE 2023, April 11–14, 2023, San Antonio, TX, USA

[20] Andrew Sornborger, Louis Tao, Jordan Snyder, and Anatoly Zlotnik. 2019. A Pulse-
gated, Neural Implementation of the Backpropagation Algorithm. In Proceedings
of the 7th Annual Neuro-inspired Computational Elements Workshop. ACM, 10.

[21] A.T. Sornborger, Z. Wang, and L. Tao. 2015. A mechanism for graded, dynamically
routable current propagation in pulse-gated synfire chains and implications for
information coding. J. Comput. Neurosci. (August 2015). https://doi.org/10.1007/
s10827-015-0570-8

[22] C. Wang, Z.C. Xiao, Z. Wang, A.T. Sornborger, and L. Tao. 2015. A Fokker-Planck
approach to graded information propagation in pulse-gated feedforward neuronal
networks. ArXiv 1512.00520 (Dec 2015).

[23] Z. Wang, A.T. Sornborger, and L. Tao. 2016. Graded, dynamically routable infor-
mation processing with synfire-gated synfire chains. PLoS Comp Biol 12 (2016), 6.
https://doi.org/10.1371/journal.pcbi.1004979

[24] Yijing Watkins, Edward Kim, Andrew Sornborger, and Garrett T Kenyon. 2020.
Using Sinusoidally-Modulated Noise as a Surrogate for Slow-Wave Sleep to

Accomplish Stable Unsupervised Dictionary Learning in a Spike-Based Sparse
Coding Model. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops. 360–361.

[25] Yijing Watkins, Austin Thresher, Peter F Schultz, Andreas Wild, Andrew Sorn-
borger, and Garrett T Kenyon. 2019. Unsupervised dictionary learning via a
spiking locally competitive algorithm. In Proceedings of the International Confer-
ence on Neuromorphic Systems. 1–5.

[26] WaltWoods and Christof Teuscher. 2018. Fast and accurate sparse coding of visual
stimuli with a simple, ultralow-energy spiking architecture. IEEE transactions on
neural networks and learning systems 30, 7 (2018), 2173–2187.

[27] Z.C. Xiao, B.X. Wang, A.T. Sornborger, and L. Tao. 2018. Mutual information and
information gating in synfire chains. Entropy 20 (2018), 102. https://doi.org/10.
3390/e20020102

51

https://doi.org/10.1007/s10827-015-0570-8
https://doi.org/10.1007/s10827-015-0570-8
https://doi.org/10.1371/journal.pcbi.1004979
https://doi.org/10.3390/e20020102
https://doi.org/10.3390/e20020102

