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Testing machine learning software for ethical bias has become a pressing current concern. In response, recent research has proposed a
plethora of new fairness metrics, for example, the dozens of fairness metrics in the IBM AIF360 toolkit. This raises the question: How
can any fairness tool satisfy such a diverse range of goals? While we cannot completely simplify the task of fairness testing, we can
certainly reduce the problem. This paper shows that many of those fairness metrics effectively measure the same thing. Based on
experiments using seven real-world datasets, we find that (a) 26 classification metrics can be clustered into seven groups, and (b) four
dataset metrics can be clustered into three groups. Further, each reduced set may actually predict different things. Hence, it is no
longer necessary (or even possible) to satisfy all fairness metrics. In summary, to simplify the fairness testing problem, we recommend
the following steps: (1) determine what type of fairness is desirable (and we offer a handful of such types); then (2) lookup those types
in our clusters; then (3) just test for one item per cluster.

For the purpose of reproducibility, our scripts and data are available at https://github.com/Repoanonymous/Fairness_Metrics.
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1 INTRODUCTION

A journal on software engineering methodologies needs to concern itself not just with one applications, but also general
methods that hold across multiple applications. Recently the authors faced a methodological issue where reviewers
challenged the validity of the metrics they used to assess that work. Prompted by that experience, we examined how
we the current SE research community selects metrics for assessing the fairness of algorithmic decision making.

On reading the literature, we found a a general pattern: while the literature proposes a propose a plethora of metrics1,
we could not find a principled argument (across a large space of known metrics) that it was necessary/unnecessary to
report some metric X. This raises various methodological questions:

• Should we reject papers that “only” use (e.g.) five metrics? Or should researchers always use dozens of metrics?
• When we use automatic tools to optimize for fairness, should we optimize for dozens of goals? Or is optimizing
for a smaller set sufficient?

To resolve these methodological concerns, we made the following conjecture. Given, the large space of known metrics
(such as the 30 studied in this paper), perhaps many of these metrics are measuring the same thing. As shown by the
experiments of this paper, this is indeed the case, since we can cluster these 30 metrics into around half a dozen. While
our results pertain a particular domain, there is nothing in principle stopping this methodology being applied to any
domain where researchers keep proposing new metrics without first checking if the new metric is not just “old wine in
new bottles”
1E.g. the Fairlearn [20] tool lists 16 metrics; the Fairkit-learn tool [64] comes with its own 16 metrics; IBM AIF360 toolkit [25] offers 45 fairness metrics.
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2 Majumder et al.

As to the specifics of our domain, this paper concerns itself with measures of algorithmic fairness. Increasingly,
software is being used for critical decision-making processes, such as patient release from hospitals [15, 85], credit
card applications [50], hiring [83], and admissions [19]. According to guidelines from the European Union [13] and
IEEE [16], a software cannot be used in real-life applications if it is found to be discriminatory toward an individual
based on any sensitive attribute such as gender, race, or age. Hence “fairness testing” is now an open and pressing
problem in software engineering.

As shown in Table 1, researchers have proposed a plethora of fairness metrics for measuring fairness, and that
number is growing (e.g. see all the metrics proposed in [20, 25, 64]). Given that trend, is is somewhat strange to report
that researchers in this area only use a few metrics in their papers [41, 55, 61, 66, 77, 94]. For example, in our literature
review papers from the last three years, we see only a handful of papers (13 out of 60 to the best of our knowledge)
using more than five fairness metrics to evaluate their method. This is surprising since all of them ignore more than
half the known metrics. Is that wise?

The conjecture that is tested by this paper is that too many spurious metrics which all measure very similar things. If
that were true, then it should be possible to simplify fairness assessment as follows:

Run metrics on real-world data. Find clusters of correlated metrics. Prune “insensitive clusters2”. Only use one

metric per surviving cluster.

This paper experiments with seven datasets and finds that (a) 26 classification fairness metrics can be clustered into
just seven groups; (b) four dataset metrics can be clustered into three groups and that (c) these clusters actually predict
for different things. That is, it is no longer necessary (or even possible) to satisfy all these fairness metrics. Hence, to
simplify fairness testing, we recommend (a) determining what type of fairness is desirable (and we offer a handful of
such types); then (b) looking up those types in our clusters; then (c) testing for one item per cluster.

This paper is structured around these research questions.
RQ1: Do current fairness metrics agree with each other? Our experiments show that current fairness metrics often

disagree, markedly.
RQ2: Can we group (cluster) fairness metrics based on similarity? We find sets of similar metrics using agglomerative

clustering [5].
RQ3: Are some fairness metrics more sensitive to change than others?While most are sensitive, some are not.
RQ4: Can we achieve fairness based on all the metrics at the same time? It is challenging to do so since some of them

are competing goals and some are contradictory based on definitions.
In terms of research contributions, this study is important since the art of software fairness testing is evolving rapidly.

Studies like the one are essential to documenting what methods are “best” (as opposed to those that might distract from
core issues). Accordingly:

• This paper proposes a novel metric assessment tactic that can clarify and simplify future research reports in this
field (run metrics on real-world data; find clusters of correlated metrics; prune “insensitive clusters1”; only use
one metric per surviving cluster).

• This paper tests that tactic in an extensive case study applying 30 fairness metrics and grouped them into clusters
(RQ1 & RQ2). We say this study is extensive since it is far more detailed than prior work. All our empirical results
were repeated 25 times. Our study explores multiple bias mitigation algorithms on seven datasets (than prior
work [40, 42–44, 60] was tested on far fewer metrics and far fewer datasets).

2Note: Here, by “insensitive” clusters, we mean those where changes to the data do not change the fairness scores.
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Table 1. Mathematical definitions of the classification and dataset metrics used in this research. Definitions are collected from IBM
AIF360 [25], Fairkit-learn [64] & Fairlearn [20]. For definitions of the terms used here, see Table 3.

Metric Id
(MID) Metric Name Description Ideal Value AIF360 Fairkit Fairlearn

Classification Metrics
C0 true_positive_rate_difference 𝑇𝑃𝑅𝐷=unprivileged −𝑇𝑃𝑅𝐷=privileged 0 ✓ ✓ ✓

C1 false_positive_rate_difference 𝐹𝑃𝑅𝐷=unprivileged − 𝐹𝑃𝑅𝐷=privileged 0 ✓ ✓ ✓

C2 false_negative_rate_difference 𝐹𝑁𝑅𝐷=unprivileged − 𝐹𝑁𝑅𝐷=privileged 0 ✓ ✓ ✓

C3 false_omission_rate_difference 𝐹𝑂𝑅𝐷=unprivileged − 𝐹𝑂𝑅𝐷=privileged 0 ✓ ✓

C4 false_discovery_rate_difference 𝐹𝐷𝑅𝐷=unprivileged − 𝐹𝐷𝑅𝐷=privileged 0 ✓ ✓

C5 false_positive_rate_ratio 𝐹𝑃𝑅𝐷=unprivileged/𝐹𝑃𝑅𝐷=privileged 1 ✓ ✓ ✓

C6 false_negative_rate_ratio 𝐹𝑁𝑅𝐷=unprivileged/𝐹𝑁𝑅𝐷=privileged 1 ✓ ✓ ✓

C7 false_omission_rate_ratio 𝐹𝑂𝑅𝐷=unprivileged/𝐹𝑂𝑅𝐷=privileged 1 ✓ ✓

C8 false_discovery_rate_ratio 𝐹𝐷𝑅𝐷=unprivileged/𝐹𝐷𝑅𝐷=privileged 1 ✓ ✓

C9 average_odds_difference
1
2 (false_positive_rate_difference
+ true_positive_rate_difference) 0 ✓ ✓

C10 average_abs_odds_difference
1
2 ( |false_positive_rate_difference |
+ |true_positive_rate_difference |) 0 ✓ ✓

C11 error_rate_difference 𝐸𝑅𝑅𝐷=unprivileged − 𝐸𝑅𝑅𝐷=privileged 0 ✓ ✓

C12 error_rate_ratio 𝐸𝑅𝑅𝐷=unprivileged/𝐸𝑅𝑅𝐷=privileged 1 ✓ ✓

C13 selection_rate 𝑃𝑟 (𝑌 = 𝑓 𝑎𝑣𝑜𝑟𝑎𝑏𝑙𝑒) 0 ✓ ✓

C14 disparate_impact 𝑃𝑟 (𝑌 = 1|𝐷 = unprivileged)/𝑃𝑟 (𝑌 = 1|𝐷 = privileged) 1 ✓ ✓ ✓

C15 statistical_parity_difference 𝑃𝑟 (𝑌 = 1|𝐷 = unprivileged) − 𝑃𝑟 (𝑌 = 1|𝐷 = privileged) 0 ✓ ✓ ✓

C16 generalized_entropy_index 1
𝑛𝛼 (𝛼−1)

∑𝑛
𝑖=1 [(

𝑏𝑖
𝜇 )

𝛼 − 1] where 𝑏𝑖 = 𝑦𝑖 − 𝑦𝑖 + 1 0 ✓

C17 between_all_groups_generalized
_entropy_index generalized_entropy_index between all groups 0 ✓

C18 between_group_generalized
_entropy_index

generalized_entropy_index
between privileged and unprivileged groups 0 ✓

C19 theil_index 1
𝑛

∑𝑛
𝑖=1

𝑏𝑖
𝜇 ln 𝑏𝑖

𝜇 0 ✓

C20 coefficient_of_variation 2 ∗
√︁
generalized_entropy_index 0 ✓

C21 between_group_theil_index theil_index between privileged and unprivileged groups 0 ✓

C22 between_group_coefficient
_of_variation coefficient_of_variation privileged and unprivileged groups 0 ✓

C23 between_all_groups_theil
_index theil_index between all groups 0 ✓

C24 between_all_groups_coefficient
_of_variation coefficient_of_variation between all groups 0 ✓

C25 differential_fairness_bias
_amplification Smoothed EDF between the classifier and the original dataset 0 ✓

Dataset Metrics
D0 consistency 1 − 1

𝑛∗𝑛_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠
∑𝑛
𝑖−1 |𝑦𝑖 −

∑
𝑗 ∈𝑁𝑛𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝑥𝑖 )

𝑗𝑦 | 1 ✓

D1 smoothed_empirical
_differential_fairness Smoothed EDF 0 ✓

D2 mean_difference 𝑃𝑟 (𝑌 = 1|𝐷 = unprivileged) − 𝑃𝑟 (𝑌 = 1|𝐷 = privileged) 0 ✓

D3 disparate_impact 𝑃𝑟 (𝑌 = 1|𝐷 = unprivileged)/𝑃𝑟 (𝑌 = 1|𝐷 = privileged) 1 ✓

• To the best of our knowledge, this study is the first one to perform such a sensitivity meta-analysis of fairness
testing and to warn that some metrics are unresponsive to data changes (RQ3).

• This study also presents a meta-analysis of metrics ability to achieve fairness after application of bias mitigation
technique (RQ4).

• In order to support replication and reproduction of our results, all our datasets and scripts are publicly available
at https://github.com/Repoanonymous/Fairness_Metrics.
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4 Majumder et al.

1.1 Preliminaries

Before beginning, we digress to make four points.
Firstly, mitigating the untoward effects of AI is a much broader problem than just exploring bias in algorithmic

decision making (as done in this paper). The general problem of fairness is that influential groups in our society might
mandate systems that (deliberately or unintentionally) disadvantage sub-groups within that society. An algorithm
might satisfy all the metrics of Table 1 and still perpetuate social inequities. For example:

• Its license feeds might be so expensive that only a small monitory of organizations can boast they are “fair”;
• The skills required to use a model’s API might be so elaborate that only an elite group of programmers can use it
even if the model is fair.

More generally, Gebru et al. [21, 35] argues that inequities arise from the core incentives that drive the organizations
building an AI model, e.g., tools funded by the Defence Department have a tendency to support damage to property
or life. She argues that “There needs to be regulation that specifically says that corporations need to show that their
technologies are not harmful before deploying them”. In terms of her work, this paper addresses the technical issue
of how to measure “harm”. As we show in Table 1 there are dozens of ways we might call software “biased” (and,
hence, harmful). But we can also show is that many of those measures are relatively uninformative. Hence, if some
organization wishes to follow the recommendations of Gebru et al., then with the methods of this paper, they can make
their case of “harmless” via a smaller and simpler report.

Secondly, Table 1 lists dozens of metrics currently seen in the SE fairness testing literature. This paper makes an
empirical argument that this list is too long since many of these metrics offer similar conclusions. One alternative to our
empirical argument is an analytical argument that metric X (e.g.) is equivalent to metric Y. Later in this paper (see §5.1),
we make the case that to reduce the space of metrics to be explored, that kind of analytical argument may actually be
misleading.

Thirdly, to be clear, while we can reduce dozens of metrics down to ten, there will still be issues of how to trade-off
within this reduced set. That said, we assert our work is valuable since debating the merits of, say, ten metrics is a
far more straightforward task than trying to resolve all the conflicts between 30. Further, and more importantly, our
methods could be used as a litmus test to prune away spurious new metrics that merely report old ideas but in a different
way.

Fourthly, even after our mitigation algorithms, some fairness metrics still can contradict each other regarding the
presence of bias. Hence, in §5.3, we offer an extensive discussion on what to do in that situation.

2 BACKGROUND

2.1 The Problem of Algorithmic Fairness

As software developers, we cannot turn a blind eye to the detrimental social effects of our software. While no single
paper can hope to fix all social inequities, this paper shows how to reduce the complexity involved in assessing one
particular kind of unfairness (algorithmic decision making bias). There is much evidence of machine learning (ML)
software showing biased behavior. For example, language processing tools are more accurate on English written by
Anglo-Saxons than written by people of other races [33]. An Amazon hiring tool was found to be biased against
women [12]. YouTube makes more mistakes while generating closed captions for videos with female voices than
males [73, 86]. A popular risk-score predicting algorithm was found to be heavily biased against African Americans
Manuscript submitted to ACM
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showing a higher error rate while predicting future criminals [8]. Gender bias is also prevalent in Google [36] and
Bing [64] translators.

Due to so many undesirable events, academic researchers and big industries have started giving immense importance
to ML software fairness. Microsoft has launched ethical principles of AI where “fairness” has been given the topmost
priority [18]. IBM has built a toolkit called AI Fairness 360 [11] containing the most noted works in the fairness domain.
In recent years, the software engineering research community has also started exploring this topic actively. ICSE’18
held a special workshop for “software fairness” [14]. ASE’19 held another workshop called EXPLAIN, where fairness
and explainability of ML models were discussed [17]. Johnson et al. have created a public GitHub repository for data
scientists to evaluate ML models based on quality and fairness metrics simultaneously [64].

As to technology developed to detect and fix these issues of fairness, we can see three groups: fairness testing,
model-based mitigation, and fairness metrics, .

Fairness Testing: The idea here is to generating discriminatory test cases and finding whether the model shows
discrimination or not. The first work on this was THEMIS, done by Galhotra et al. [59]. THEMIS generates test cases by
randomly perturbing attributes. AEQUITAS [88] improves the way of test case generation to become more efficient.
Aggarwal et al. combined local explanation and symbolic execution to generate a better black-box testing strategy [22].

Model Bias Mitigation: There are three techniques used to remove bias from model behavior. The first one is “pre-
processing” where beforemodel training, bias is removed from training data. Some popular prior work includes optimized
pre-processing [37], Fair-SMOTE [43] and reweighing [67]. The second one is “in- processing” where after model
training, the trained model is optimized for fairness. Popular prior work includes prejudice remover regularizer [70]
and meta fair classifier [39]. The last one is “post-processing” where while making predictions, model output is changed
to remove discrimination. Some noted works include reject option classification [69] and calibration [77]. There is some
work that combines two or more of these techniques, such as Fairway [44], a combination of “pre-processing” and
“in-processing”.

While the fairness testing and model bias mitigation are important areas, we note that before we can declare success
in those two areas, we first need some way to measure that success.

Accordingly, this paper focuses on the third area called:
Fairness Metrics: Early work in this area was done by Verma et al. [91] who divided 20 fairness metrics into five

groups based on the theoretical definitions. Hinnefeld et al. made a comparative analysis of four fairness metrics [62].
Wang et al. did a user study to find a relation between fairness metrics and human judgments [95]. There are also
some papers coming from industry on the topic. LinkedIn has created a toolkit called LiFT for scalable computation of
fairness metrics as part of large ML systems [90]. Recently, Amazon internally published an empirical study based on
18 fairness metrics [54].

While all that research is certainly insightful, in some sense that work has been too successful. As mentioned in the
introduction, the above work has now generated a plethora of metrics. Hence, for the rest of this paper, we check if we
can simplify the current space of metrics.

2.2 Metrics Used in this Study

In our work, we collected all the metric definitions from the IBM AI Fairness 360 GitHub repository. Table 1 lists the
metrics studied in this paper. The Fairkit and Fairlearn columns in Table 1 show the metrics that are common among
the IBM AIF360 metrics and metrics from Fairkit [64] (16 out of 16 available metrics) and Fairlearn [20] (7 out of 16
metrics) toolkit.

Manuscript submitted to ACM



6 Majumder et al.

Table 2. Details of the datasets used in this research.

Dataset #Rows #Features Protected Attribute Class Label
Privileged Unprivileged Favorable Unfavorable

Adult Census
Income [2] 48,842 14 Sex-Male

Race-White
Sex-Female

Race-Non-white High Income Low Income

Compas [7] 7,214 28 Sex-Male
Race-Caucasian

Sex-Female
Race-Not Caucasian Did not reoffend Reoffended

German Credit [3] 1,000 20 Sex-Male Sex-Female Good Credit Bad Credit
Heart Health [4] 297 14 Age-Young Age-Old Not Disease Disease

Bank Marketing [9] 45,211 16 Age-Old Age-Young Term Deposit - Yes Term Deposit - No
Student

Performance [6] 1,044 33 Sex-Male Sex-Female Good Grade Bad Grade

Titanic ML [10] 891 10 Sex-Male Sex-Female Survived Not Survived

Before explaining fairness metrics, we need to understand some terminology. Table 2 contains seven binary classifica-
tion datasets. The binary outcomes are favorable if it gives an advantage to the receiver (i.e., being hired for a job, getting
credit card approved). Each of these datasets has at least one protected attribute that divides the population into two
groups (privileged & unprivileged) that have differences in terms of benefits received. “sex”, “race”, “age” are examples of
protected attributes. The goal of group fairness is, based on the protected attribute, privileged and unprivileged groups
will be treated similarly. While individual fairness tries to provide similar outcomes to similar individuals.

A fairness metric is a quantification of unwanted bias in training data or models. Table 1 shows a sample of such
metrics. When selecting these particular metrics, we skipped over:

• Metrics for which we could not access precise definitions and implementations in IBM AIF360 toolkit [25];
• Metrics for which we could not find publications to use as baselines in this paper.

These two selection rules resulted in the 30 metrics of Table 1, which divide as follows:
Classification Metrics: These measure fairness based on classification results and are labeled in Table 1 using a

Metric Id beginning with C. Two inputs are needed to measure this: the first one is original dataset with true labels
and the second one is predicted dataset. In case of binary classification, classification metrics can be calculated from
confusion matrix. Table 3 shows a combined confusion matrix where every cell is divided based on the protected
attribute.

Dataset Metrics:While classification metrics relate to predictions made from models, dataset metrics discuss learner-
independent properties of the data. These are labeled in Table 1 using a Metric Id beginning with D. Only one input is
needed to compute this: original dataset or transformed (by some bias mitigation algorithm) dataset. It can be applied
for both group and individual fairness.

Distortion Metrics: For completeness, we note that AIF360 includes a third set of metrics called distortion metrics.
While these metrics are not seen extensively in the current literature, they would be a worthy target for future research.

In Table 1, each metric has an ideal value representing the best-case scenario. This means at ideal value according to
the metric privileged and unprivileged groups are treated equally. For most of the metrics, the ideal value is zero, while
in some cases where the metric is a ratio, the ideal value is one. If the ideal value for a metric is zero, a positive value
denotes an advantage for the unprivileged group, while a negative value denotes an advantage for the privileged group.
On the other hand, if the ideal value for a metric is one, a value < one denotes an advantage for the privileged group
and > one denotes an advantage for the unprivileged group.
Manuscript submitted to ACM
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Table 3. Mathematical definition of various confusion matrix based rates. These are used to calculate fairness metrics defined in
Table 1.

.

Actual Positive Actual Negative

Predicted
Positive

TP
PPV = TP/(TP+FP)
TPR = TP/(TP+FN)

FP
FDR = FP/(TP+FP)
FPR = FP/(FP+TN)

Predicted
Negative

FN
FOR = FN/(TN+FN)
FNR = FN/(TP+FN)

TN
NPV = TN/(TN+FN)
TNR=TN/(TN+FP)

To use these metrics, some threshold must be applied to report “fair” or “unfair”;

• For metrics with ideal value 0: the IBM AIF360 toolkit [25] uses the following definition of “fair”: ranges between
-0.1 to 0.1 as “fair” (so “unfair” means values outside that range).

• For metrics with ideal value 1: the IBM AIF360 toolkit [25] uses the following definition of “fair”: ranges between
0.8 to 1.2 as “fair” (so “unfair” means values outside that range).

3 METHODOLOGY

3.1 Models

This paper analyzes the 30 fairness metrics in Table 1 using the seven datasets described in Table 2. In that work, we
use one baseline model and two models tuned by pre-processing and in-processing algorithms to compare with:

• Baseline:Weused a logistic regressionmodel for creating baseline results. Logistic regression is widely used in the
fairness domain as baseline model [38, 44–46, 70]. We used scikit-learn implementation with ‘l2’ regularization
(which helps to prevent over-fitting), ‘lbfgs’ solver (which is a quasi-Newton optimization algorithm), and
maximum iteration of 1000.

• Reweighing: A widely used [23, 26, 42, 65, 80] pre-processing method proposed by Kamiran et al. [67]. Here,
before model training, examples in each group, and label are given different weights to ensure fairness.

• Meta Fair Classifier: An in-processing method proposed by Celis et al. [39], which is a widely used meta
algorithm [28, 40, 60, 76]. The optimization algorithm is developed to improve 11 fairness metrics with minimal
loss in accuracy.

The last two bias mitigation algorithm implementations are taken from IBM AIF360 [27].

3.2 Agglomerative Clustering

Our metrics selection strategy, requires a clustering algorithm. Two class of such clustering algorithms are (a) parti-
tioning clustering and (b) hierarchical clustering. Here we are grouping fairness metrics based on similarity, not on
distance, and we have no prior idea about the number of clusters. Thus, in this case, the ideal choice is hierarchical
clustering. Agglomerative clustering [5] is a hierarchical bottom-up clustering approach that is widely used in the ML
community [24, 51–53, 56, 75, 79, 84, 97]. In this approach, the closest pairs of items are grouped together. These closest
of these groups are then grouped into a higher-level group. This repeats until everything falls into one group. We used
the average pairwise dissimilarity between objects in two different clusters as linkage method between groups. This
process creates a dendrogram, a hierarchical structure of the groups/clusters obtained by between-cluster distance or
dissimilarity. From this tree of groupings, we use the within-cluster similarity from the dendrogram, look for the largest

Manuscript submitted to ACM



8 Majumder et al.

Fig. 1. Agglomerative clustering of classification metrics (using Spearman rank correlation). Here x-axis shows the classification
metric Ids from Table 1 and y-axis shows the dissimilarity measure between clusters.

distance that we can travel vertically without crossing any horizontal line [1, 49, 87], and extract the clusters at the
largest change in dissimilarity (which is similar to SSE - Sum of Squared Error).

3.3 Spearman Rank Correlation

Figure 1 shows the dendrogram created for the classification metrics using the above described method. Table 4 shows
that we get seven clusters from 26 classification metrics. Following a similar process for dataset metrics we get three
clusters as shown in Table 5.

To build these clusters and dendrograms, we measure the similarity of two metrics. In this paper, by “similarity” we
mean, they are measuring the similar bias in the models/dataset. Such similar metrics will show a similar pattern of
changes in bias when models are built using different parts of the data or different bias removal algorithms are used. To
compute this similarity, we sample from our model training procedure (see §3.4.2) that computes our metrics 25 times,
each time using different train/validation/test samples of the data. Next, for each dataset, for those 25 numbers, we use
correlation to assess similarity.

Two widely used definitions of correlation [47, 51–53, 63, 78, 84, 97] are the (a) Pearson correlation (which evaluates
the linear relationship between two continuous variables) and the (b) Spearman rank correlation (which is a non-
parametric measure of rank correlation that evaluates the monotonic relationship between two continuous or ordinal
variables). We choose Spearman rank correlation, as it measures the monotonic relationship between two variables and
is less affected by outliers.

3.4 Experimental Setup

We summarize our experimental setup as follows.

3.4.1 Data Pre-processing: Three different pre-processing steps are performed before using the data [58, 74, 82] for
model building. At first, each categorical value in the dataset is converted either using a label encoder or by one hot
encoder, as most most ML algorithms can’t handle categorical values directly. Then the protected attributes are changed
into ones and zeros from their original values. Here we denote the privileged attribute as one and unprivileged as zero.
Finally, we use min-max normalization in the datasets to normalize the data before building the models.
Manuscript submitted to ACM
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3.4.2 Model Training: We used five fold cross-validation repeated five times with random seeds build training/ test
sets (as recommended by [68, 82, 89, 92]). This step is to divide the data into multiple subsets of data with various
degrees of bias. We train three models in each iteration (a) baseline model: here we use the training data to build a
logistic regression model; (b) Reweighing model: here we first train the reweighing method, then use the learned model
to transform the training data to achieve group fairness. Using the transformed data, we train a logistic regression from
scikit-learn with ‘l2’ regularization, ‘lbfgs’ solver and maximum iteration of 1000; and (c) Meta Fair Classifier model:

here to train the meta fair classifier model, we use the training data to build multiple meta fair classifier model with
different values of 𝜏 (a hyperparameter for fairness penalty in the model) and measure the bias in the model using the
validation set. Then to build the final model, we select the 𝜏 for which the model had the lowest bias in the validation
set and build the final meta fair classifier model.

3.4.3 Fairness Metric Calculation: We collect the performance of each model based on 26 classification and four
dataset metrics for each iteration of the cross-validation. So for each iteration, we use the test data for prediction and
then use the predicted values along with the ground truth to calculate the 26 classification metrics. Similarly, we collect
the four dataset metrics on the baseline and reweighing method. Meta fair classifier is not applicable in the case of
dataset metrics.

3.4.4 Measure for Fairness: Data Pre-processing, Model Training, and Fairness Metric Calculation steps are per-
formed for each of seven datasets with five fold five repeat cross-validation. Then to measure if the model built on a
dataset is fair or unfair according to a metric, we selected a threshold for each of the metrics. As mentioned in §2.2, that
threshold is the fair range. If a metric value falls in that range, we say it “fair” otherwise “unfair”.

3.4.5 Building Clusters: One of the main goals of this study is to group a set of metrics together that perform
similarly and measure similar kinds of bias. We use 26 classification metrics calculated on seven datasets with three
different methods to calculate metric to metric correlation based on Spearman rank correlation coefficient. We do the
same for the four dataset metrics as well. This provides us two correlation matrices: one 26x26 and one 4x4. After
that, to build the clusters using the agglomerative clustering, we convert the similarity matrix into a dissimilarity
matrix [51, 63] using equation 1. We use this dissimilarity matrix to create the clusters. The agglomerative clustering
process creates a dendrogram as shown in Figure 1. Now to select the number of clusters, we cut the dendrogram
at a height, where the clusters will remain unchanged with the most increase/decrease of the cutting threshold. For
classification metrics, we cut the dendrogram (Figure 1) at 0.57 as the clusters will remain unchanged between the
cutoff value 0.49 and 0.64. Finally, we get the clusters containing classification metrics measuring similar kinds of bias.
We perform the same process for dataset metrics and cut the dendrogram at a height of 0.4.

𝑑 (𝑥,𝑦) = 1 − |𝑠𝑖𝑚(𝑥,𝑦) | (1)

3.4.6 Calculating Sensitivity: Research question four asks about the consistency of the metric values for three cases:
(a) raw data, b) after applying Reweighing (RW), (c) after applying Meta Fair Classifier (MFC). As we are using five
cross fold five repeats for all the datasets, we get 25 results for each dataset and report for all seven datasets:

• the median value: the 50th percentile (or 𝑄2);
• the IQR: the (75-25)th percentile (or 𝑄3 −𝑄1)
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4 RESULTS

Our results are organized based on four research questions.

RQ1: Do current fairness metrics agree with each other?

At first, we need to verify our motivation. In real life, do the fairness metrics contradict? Table 4 contains results for 26
classification metrics; Table 5 contains results for four dataset metrics. The learner here is logistic regression. The last
row contains the percentage of metrics marking the specific dataset as unfair in both tables. If we combine last rows of
Table 4 & 5 and sort them in ascending order, we get the following list:

{ 23, 34, 50, 50, 50, 54, 58, 65, 75, 75, 75, 75, 77, 100 }%

The median value here is 62%; i.e., nearly half the time the metrics make different conclusions about the same data.
This means that researchers and practitioners will be spending much effort trying to understand their systems using
disagreeing oracles (a result that motivates this entire paper).

RQ2: Can we group (cluster) fairness metrics based on similarity?

Table 4 shows that 26 classification metrics can be divided into seven clusters. Table 5 shows that four dataset metrics
can be divided into three clusters. More importantly, we note that:

• RQ1 reported intra-project disagreement on “fair“-vs-“unfair”;
• We note that there is much intra-cluster agreement for each data set in Table 4 and Table 5.

As evidence, we note that the majority fairness decision is always the same within the clusters for each dataset. In
Table 4, the row Percentage of agreement comments on the uniformity of decisions within each cluster (for each dataset).
Note that uniformity is very high (often 100%). That means metrics inside each cluster agree with each other for every
dataset. Among the seven clusters, we see six clusters (except cluster two) show 100% agreement considering median
value across seven datasets. For example, in case of cluster zero, percentage of agreement is 100% for five datasets; 75%
for one; 50% for one. Majority is 100%. That is true for clusters 1,3,4,5,6 & 7. We see similar agreement pattern inside
clusters in Table 5 also.

For reference purposes, the last column of Table 4 and Table 5 offers names for those clusters:

• Misclassification (cluster 0, 3): these metrics try to measure the difference or ratio of misclassification errors
between groups;

• Differential fairness (cluster 1): these metrics try to measure if probabilities of the outcomes are similar
regardless of the combination of protected attributes [57];

• Individual Fairness (cluster 2): It measures if two similar individuals with respect to the classification task
receive the same outcome or not;

• Confusion matrix based group fairness (cluster 4): these metrics measure difference or ratio between
groups based on confusion matrix;

• Between group individual fairness (cluster 5): measures the difference or ratio of individual fairness between
groups;

• Intermediate metrics (cluster 6): these are intermediate metrics.

From a practitioner viewpoint, this clustering is useful because:
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Table 4. Cluster based results for 26 classification metrics on seven datasets. For a metric with ideal an value of zero, anything below
-0.1 and above 0.1 is “unfair”. For a metric with an ideal value of one, anything <0.8 or >1.2 is “unfair”.

DatasetsCluster
Id MID Metrics Adult Compas German Health Bank Student Titanic

Metric
Type

0 C3 false_omission_rate_difference Unfair Fair Fair Unfair Fair Fair Unfair
0 C7 false_omission_rate_ratio Unfair Fair Fair Unfair Fair Unfair Unfair
0 C11 error_rate_difference Unfair Fair Fair Unfair Fair Fair Fair
0 C12 error_rate_ratio Unfair Fair Fair Unfair Fair Fair Fair

Percentage of agreement 100% 100% 100% 100% 100% 75% 50%

Mis-
classification

1 C10 average_abs_odds_difference Unfair Unfair Unfair Unfair Unfair Fair Unfair
1 C25 differential_fairness_bias_amplification Unfair Unfair Unfair Unfair Unfair Fair Unfair

Percentage of agreement 100% 100% 100% 100% 100% 100% 100%

Differential
Fairness

2 C16 generalized_entropy_index Fair Unfair Fair Fair Fair Fair Unfair
2 C19 theil_index Unfair Unfair Fair Unfair Unfair Fair Unfair
2 C20 coefficient_of_variation Unfair Unfair Unfair Unfair Unfair Unfair Unfair

Percentage of agreement 67% 100% 67% 67% 67% 67% 100%

Individual
Fairness

3 C4 false_discovery_rate_difference Fair Fair Fair Fair Fair Fair Unfair
3 C8 false_discovery_rate_ratio Fair Fair Fair Fair Fair Unfair Unfair

Percentage of agreement 100% 100% 100% 65% 100% 50% 100%

Mis-
classification

4 C0 true_positive_rate_difference Unfair Unfair Fair Unfair Unfair Fair Unfair
4 C1 false_positive_rate_difference Fair Unfair Unfair Unfair Unfair Fair Unfair
4 C2 false_negative_rate_difference Unfair Unfair Unfair Unfair Unfair Fair Unfair
4 C5 false_positive_rate_ratio Fair Unfair Unfair Unfair Unfair Fair Unfair
4 C6 false_negative_rate_ratio Unfair Unfair Unfair Unfair Unfair Unfair Unfair
4 C9 average_odds_difference Unfair Unfair Unfair Unfair Unfair Fair Unfair
4 C14 disparate_impact Unfair Unfair Unfair Unfair Unfair Unfair Unfair
4 C15 statistical_parity_difference Unfair Unfair Unfair Unfair Unfair Fair Unfair

Percentage of agreement 75% 100% 88% 100% 100% 75% 100%

Confusion
Matrix Based
Group Fairness

5 C17 between_all_groups_generalized_entropy_index Fair Fair Fair Fair Fair Fair Fair
5 C18 between_group_generalized_entropy_index Fair Fair Fair Fair Fair Fair Fair
5 C21 between_group_theil_index Fair Fair Fair Fair Fair Fair Fair
5 C22 between_group_coefficient_of_variation Fair Fair Fair Fair Fair Fair Unfair
5 C23 between_all_groups_theil_index Fair Fair Fair Fair Fair Fair Fair
5 C24 between_all_groups_coefficient_of_variation Fair Fair Fair Fair Fair Fair Unfair

Percentage of agreement 100% 100% 100% 100% 100% 100% 67%

Between
Group

Individual
Fairness

6 C13 selection_rate Unfair Unfair Unfair Unfair Unfair Unfair Unfair

Percentage of agreement 100% 100% 100% 100% 100% 100% 100% Intermediate
Metric

Percentage of metrics marking dataset as unfair 58% 54% 34% 65% 50% 23% 77%

Table 5. Cluster based results for four dataset metrics on seven datasets. For a metric with ideal value of zero, anything below -0.1
and above 0.1 is “unfair”. For a metric with ideal value of one, anything <0.8 or >1.2 is “unfair”.

Datasets
Cluster Id MID Metrics Adult Compas German Health Bank Student Titanic

Metric
Type

0 D0 consistency Fair Unfair Fair Unfair Fair Unfair Fair Individual Fairness
1 D1 smoothed_empirical_differential_fairness Unfair Unfair Unfair Unfair Unfair Unfair Unfair Differential Fairness
2 D2 mean_difference Unfair Unfair Unfair Fair Unfair Fair Unfair
2 D3 disparate_impact Unfair Unfair Unfair Fair Unfair Fair Unfair

Confusion
Matrix Based
Group Fairness

Percentage of metrics marking dataset as unfair 75% 100% 75% 50% 75% 50% 75%

• The clustering reduces the confusion of having too many metrics and not knowing their similarity.
• As the metrics inside the same cluster measure same kind of bias and behave in the same manner; we can choose
just one metric from each cluster. Thus we measure a few metrics but can cover a much more comprehensive
range of fairness notions.

• If we see agreement among all the metrics inside a cluster for a particular dataset, then one metric can be chosen
as representative of the whole cluster.
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• In case of intra-cluster conflicts, choosing only one metric can be risky. In these cases, practitioners need to do a
proper risk assessment before selecting metrics. That said, if there is intra-cluster conflict among metrics, we can
choose one from the ‘fair’ group and one from the ‘unfair’ group to mitigate that risk.

As part of this study, we further analyzed each cluster mathematically to verify if our cluster of metrics and their
mathematical definitions coincide. A detailed analysis of these clusters and their mathematical analysis has been
discussed in §5.1.

RQ3: Are some fairness metrics more sensitive to change than others?

An ideal metric is responsive to the dataset it examines. An “insensitive” metric is one that delivers the same
conclusions, no matter what data is being examined. An “insensitive” cluster is one containing mostly insensitive
metrics. Such insensitive clusters could be ignored since they are not informative.

We measure sensitivity by looking at the variability of our metrics scores using the intra-quartile range (IQR=𝑄3−𝑄1).
For each data set, we found the IQR across all clusters. Next, we highlight the sensitive results; i.e. those with an IQR
greater that 𝑑*standard deviation. The remaining, unhighlighted results are the insensitive metrics.

As to what value of 𝑑 to use in this analysis, we take the advice of a widely cited paper by Sawilowsky [81] (this
2009 paper has 1100 citations). That paper asserts that “small” and “medium” effects can be measured using 𝑑 = 0.2

Table 6. This table shows sensitivity of the classification metrics on the three different models used in this study (a) Baseline; (b)
Reweighing(RW); and (c) Meta Fair Classifier(MFC). The table shows the median and IQR values of three datasets. Here the cells in
IQR columns are marked with “red” those that change by more than a small amount (35th percentile of the standard deviation of the
IQR values). The insensitive metrics are those that usually have white IQR values.

Compas Health German
Baseline RW MFC Baseline RW MFC Baseline RW MFCMID

Med IQR Med IQR Med IQR Med IQR Med IQR Med IQR Med IQR Med IQR Med IQR
C3 -0.067 0.079 -0.113 0.015 -0.061 0.035 -0.14 0.032 -0.211 0.068 -0.151 0.137 0 0.5 -0.5 0.667 0 0.592
C7 0.817 0.211 0.691 0.029 0.824 0.099 0.357 0.091 0.158 0.333 0.408 0.356 2.3 0.72 0 0.5 1 0.53
C11 -0.033 0.043 -0.016 0.039 -0.042 0.026 -0.108 0.01 -0.133 0.013 -0.098 0.111 0.059 0.074 0.059 0.114 0.049 0.062
C12 0.912 0.112 0.958 0.112 0.887 0.071 0.508 0.174 0.339 0.026 0.494 0.51 1.18 0.274 1.18 0.418 1.166 0.215
C10 0.252 0.058 0.029 0.02 0.181 0.035 0.162 0.103 0.106 0.087 0.161 0.064 0.221 0.167 0.043 0.048 0.031 0.121
C25 0.531 0.354 -0.22 0.141 0.359 0.148 0.193 0.249 -0.094 0.422 0.113 0.428 2.399 3.29 1.162 0.49 1.578 2.087
C16 0.193 0.001 0.189 0.012 0.192 0.007 0.091 0.004 0.087 0.017 0.091 0.025 0.076 0.011 0.071 0.011 0.066 0.011
C19 0.268 0.003 0.263 0.017 0.269 0.009 0.132 0.021 0.14 0.051 0.139 0.033 0.083 0.02 0.073 0.017 0.064 0.02
C20 0.878 0.003 0.87 0.027 0.876 0.016 0.602 0.015 0.589 0.058 0.602 0.082 0.553 0.041 0.532 0.041 0.513 0.043
C4 0.04 0.034 0.138 0.051 0.037 0.058 -0.091 0.133 -0.009 0.202 -0.016 0.152 0.059 0.135 0.059 0.114 0.045 0.064
C8 1.109 0.089 1.376 0.143 1.098 0.156 0 0.944 0.964 1.571 0.925 1.292 2.6 0.542 1.18 0.459 1.156 0.233
C0 -0.273 0.087 -0.004 0.052 -0.212 0.048 -0.106 0.139 0.13 0.227 -0.117 0.405 -0.077 0.092 0 0.038 -0.017 0.062
C1 -0.186 0.052 -0.014 0.02 -0.17 0.031 -0.214 0.053 -0.13 0.174 -0.109 0.114 -0.3 0.233 0 0.029 -0.053 0.176
C2 0.273 0.087 0.004 0.052 0.212 0.048 0.106 0.139 -0.13 0.227 0.117 0.405 0.077 0.092 0 0.038 0.017 0.062
C5 0.408 0.037 0.956 0.069 0.471 0.068 0 0.219 0.25 0.654 0.191 0.347 0.7 0.228 1 0.029 0.947 0.176
C6 1.71 0.242 1.009 0.124 1.514 0.133 1.467 0.5 0.429 1.222 1.453 2.056 3.4 0.56 0 5.459 11.532 3.4
C9 -0.252 0.058 -0.018 0.059 -0.181 0.035 -0.162 0.103 -0.06 0.158 -0.139 0.165 -0.221 0.167 0 0.043 -0.031 0.121
C14 0.432 0.073 0.89 0.133 0.541 0.062 0.314 0.14 0.435 0.322 0.387 0.274 0.836 0.12 1 0.045 0.971 0.105
C15 -0.264 0.05 -0.049 0.059 -0.205 0.03 -0.356 0.079 -0.289 0.179 -0.298 0.18 -0.164 0.122 0 0.043 -0.029 0.104
C17 0.002 0.002 0.001 0.002 0.001 0.001 0.001 0.003 0.002 0.001 0.001 0.001 0.001 0.002 0.002 0.001 0.001 0.001
C18 0.002 0.002 0.001 0.002 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.002 0.002 0.001 0.001 0.001
C21 0.002 0.002 0.001 0.003 0.001 0.001 0.003 0.001 0.002 0.001 0.001 0.001 0.003 0.002 0.003 0.001 0.002 0.001
C22 0.088 0.049 0.052 0.006 0.057 0.019 0.036 0.037 0.017 0.054 0.045 0.03 0.029 0.063 0.03 0.05 0.036 0.038
C23 0.002 0.002 0.001 0 0.001 0.001 0.003 0.003 0.006 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.004 0.001
C24 0.088 0.049 0.052 0.006 0.057 0.019 0.036 0.037 0.017 0.054 0.045 0.03 0.029 0.063 0.03 0.05 0.036 0.038
C13 0.405 0.025 0.436 0.016 0.41 0.017 0.407 0.05 0.39 0.133 0.411 0.056 0.945 0.015 0.975 0.03 0.99 0.047
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Table 7. This table is similar to Table 6, showing the sensitivity of the dataset metrics on (a) Baseline; (b) Reweighing (RW).

Compas Health German
Baseline RW MFC Baseline RW MFC Baseline RW MFCMID

Med IQR Med IQR Med IQR Med IQR Med IQR Med IQR Med IQR Med IQR Med IQR
D1 0.568 0.021 0.568 0.021 - - 0.804 0.02 0.804 0.02 - - 0.632 0.008 0.632 0.008 - -
D2 0.252 0.043 0 0 - - 0.868 0.322 0.001 0 - - 0.298 0.105 0.002 0 - -
D3 -0.105 0.016 0 0 - - -0.313 0.067 0 0 - - -0.097 0.033 0 0 - -
D4 0.777 0.033 1 0 - - 0.411 0.137 1 0 - - 0.865 0.043 1 0 - -

and 𝑑 = 0.5 (respectively). We will analyze this data by splitting the difference looking for differences larger than
𝑑 = (0.5 + 0.2)/2 = 0.35.

Turning now to Table 6 and Table 7 we see that most clusters have highlight IQR results. However, in Table 6, we
see the clusters formed by metrics C16, C18, C20 (individual fairness) and C17, C18, C21, C22, C23, C24 (between group
individual fairness) are insensitive. This, in turn, means that we should not criticize a fairness analysis that ignores
these metrics.

RQ4: Can we achieve fairness based on all the metrics at the same time?

Different fairness metrics measure different kinds of bias. If any of the metrics complain about the fairness of the
test results, then we can not trust the model blindly, and it should go through further scrutiny and improvement. Bias
mitigation algorithms try to make unfair models fairer. Here we are verifying even after applying bias mitigation
algorithms; can we achieve fairness based on all the metrics or not? We have chosen two highly cited algorithms from
IBM AIF360: Reweighing (RW) by Kamiran et al. [67] and Meta Fair Classifier (MFR) by Celis et al [39].

Table 8 shows those results collected for seven datasets after using RW and MFC algorithms. For every dataset
(row-wise), we show the number of metrics changed towards or away from its ideal value. In that table:

• FU denotes the metrics that changed towards ideal value;
• UF denotes the metrics that moved away from the ideal value,
• NC means the metrics which did not change.

Note that majority of the metrics move towards “fair”, but there are some metrics that move towards “unfair”. For
Reweighing, some metrics show “no change”, but we have verified they always remain in the fair range.

Table 8. This table shows the number of classification metrics that move towards or away from the ideal value when either Reweighing
or Meta Fair Classifier is used to remove bias in the models. Here “UF” shows the number of metrics that moved towards the ideal
metric value, while “FU” shows the opposite. Finally “NC” shows the number of metrics that did not change at all.

Reweighing
(RW)

f Meta Fair
fClassifier (MFC)Dataset UF FU NC UF FU NC

Adult 13 13 0 11 15 0
Compas 15 7 4 16 6 4
Health 17 5 4 17 7 1
German 19 6 1 19 7 0
bank 16 6 4 15 7 4
Titanic 11 15 0 17 9 0
Student 15 7 4 12 10 4
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The main takeaway here is no longer necessary (or even possible) to satisfy all these fairness metrics. While our
analysis can reduce dozens of metrics down to ten, there will still be issues of how to trade-off within this reduced set.
Even after applying bias mitigation approaches, some metrics still conflict with others. This finding is similar to the
claim made by others:

• Berk et al. [29] offer an “Impossibility Theorem” that says there is no way to satisfy all kinds of fairness together.
• As Yuriy Brun said at his keynote at ICSSP’2020 “we need to work the system in a biased way sometimes” [34].

5 DISCUSSION

We have described all of our results. Here we are summarizing the results in a comprehensible way to reach a stable
conclusion. The main idea of this work is to reduce the complexity of measuring fairness. That said, it is imperative we
narrate our conclusions in a very easy way. We discuss here three major concerns that arise from §4 and try to simplify
fairness measurement to our best.

5.1 Why Not Group Metrics via their Analytical Structure?

This paper has offered an empirical analysis that many of the metrics in Table 4 are synonymous since, when clustered,
they fell together into just a few similar groups. In this section, we check if the same conclusions can be achieved from
a more analytical analysis that looked at the structure of the equations for the fairness metrics.

Sometimes, a group generated by formula’s analytical structure is similar to the clusters we generated above. For
example:

• In cluster three (from Table 4), all metrics are based on FDR, which suggests that both from an empirical and
analytical point of view, they should be similar.

• Also, In cluster zero, we see that all those metrics are based on FOR and error rate. Intuitively, this seems sensible
since here metrics try to measure amount of misclassification.

That said, as shown by the following three examples, there are many examples where an equation’s analytical
structure does not predict for its empirical cluster.

• EXAMPLE #1: If we look at cluster five, all six metrics inside this cluster are related to “between group individual
fairness”. This metric is based on the same benefit function:

𝑦 = 𝑦 − 𝑦 + 1 (2)

(For more details on that. see Table 1 metric id C16). We note that cluster two is also based on Equation 2, but the
metrics inside this cluster represent individual fairness for each group separately. That means
Although all metrics inside cluster two and cluster five are based on the same benefit function, they measure

different definitions of fairness.
That is, a formal analysis of the analysis might combine these clusters, whereas a data-oriented empirical analysis
would argue for their separation.

• EXAMPLE #2: In cluster four from Table 1, the metrics C0, C1, C2, C5, C6 and C9 dependent on TPR, FPR and
FNR. Recall that FPR and FNR report type one and type two errors ( misclassification on fairness); Now TPR can
be expressed as 1 - FPR, which means the change in TPR will mirror changes in FPR. In contrast, in this cluster,
the other two metrics C14 and C15 are based on selection rate (ratio of number of predicted positive and number
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of instances). Although there is not much similarity in the formula between these two and other metrics in this
cluster, we can see they perform similarly when measuring fairness. That is:
An analytical analysis does not always reflect the measurement of fairness in the real world scenario.

Verma et al. [93] in their paper notice a similar phenomenon where they observe that: Equal Predictive parity
(a measure they explore) should also have equal FDR ... but when measured from an empirical point of view, they

showed they are not the same.

• EXAMPLE #3: In cluster one, metrics C10 and C25 have very different mathematical formulas. C10 is based
on FPR while C25 is based on smoothed EDF– the Empirical differential fairness. EDF is calculated based on
Dirichlet smoothed base rates for each intersecting group in the dataset, which is based on count of predicted
positive. Here as well, we see that
Two formulas with a different analytical structure can have a similar performance w.r.t. fairness.

To summarize the above, we quote Alfred Korzybski, who warned:

A map is not the territory.

While the analytical structure of the formula offers intuitions about the nature of fairness, those intuitions had better
be checked via empirical analysis.

5.2 Is our Empirical Analysis Useful?

We have established the requirement of empirical analysis and we have also done that analysis. We need to find out
whether this analysis would be helpful in real-life applications or not. Here we describe various scenarios of fairness
contradiction and how our study helps to remove that.

Imagine a college admission decision scenario, where the system might be seen as biased against group B if applicants
from group A are accepted more than group B. Here group A and group B are divided based on different values of a
protected attribute. The college applies a bias mitigation approach to solve this problem using a group fairness metric
by changing group A’s or B’s scoring threshold. Now, if a member of group A is rejected, while a member of group B
has been accepted with an equal or lower score, then the system might be seen as biased against that individual. The
main takeaway from this story is that there is a conflict between “individual fairness” and “group fairness” [31].

The concept of fairness is very much application-specific and choosing the appropriate metric is the sole responsibility
of the policymaker. An ideal scenario will be building a machine learning model which does not show any kind of bias.
However, that is too good to be true. Brun et al. found out that if a model is adjusted to be fair based on one protected
attribute (e.g., sex), in some cases model becomes more biased based on another protected attribute (e.g., race) [14].
Kleinberg and other researchers argue that different notions of fairness are incompatible with each other and hence it is
impossible to satisfy all kinds of fairness simultaneously [72]. Here one thing to remember while doing prediction is
that fairness is not the only concern. Prediction performance is the most important goal. Berk et al. found out that
accuracy and fairness are competing goals [30]. This trade-off makes the job even more complicated since damaging
model performance while making it fair may be unacceptable.

As researchers, we know that satisfying all kinds of fairness together is not possible. A policymaker has to choose
which fairness definitions are most important for the particular domain and ignore the rest. Our work of dividing
fairness tries to make the choice easier, as choosing metrics from a group of 10 options is much simpler than choosing
from 30 choices. Using our results of Table 4 and Table 5, in a specific domain, if group fairness is more important than
individual fairness, then cluster four will be given more priority than clusters two and five (Table 4). Once a cluster is
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given priority, one or two metrics can be chosen to represent the whole cluster. That means our whole work boils down
to minimizing the number of metrics to look at and covering a wide range of fairness. We believe future researchers
and industry practitioners will use our work as a guide and that will be the fulfillment of this study.

5.3 What to do when the metrics contradict each other?

We have seen that there are scenarios where fairness metrics contradict each other. According to some metrics, the
prediction is fair, where some other metrics disagree. Fairness metrics find out how critical the errors of a prediction
model are. It is the decision of the policymaker or the domain expert to choose appropriate fairness metrics based on
what kind of bias is more important for the specific domain. For example, consider the following two scenarios:

• Suppose we are predicting if a patient has cancer or not, depending on the symptoms. Here predicting a benign
case as malignant is not very dangerous but predicting a malignant case as benign is extremely dangerous. A
wrong diagnosis for an actual cancer patient will delay the treatment, and the patient may die. That means false
negative is more important here.

• Suppose we are predicting if future performance of a student based on previous records. Here if we predict a
good student as bad, that is not that fatal. However, if a student who really needs special attention and help
from teachers, is given a good rating then it will be misery for that student. That means false positive is more
important here.

If we know which metrics look at what kind of error, it will be easier for the decision-maker to choose. That said, based
on the guidance we have provided, in case of contradiction among metrics, one metric over another will be given
priority.

6 THREATS TO VALIDITY & FUTUREWORK

This paper explores machine learning methods for software engineering. One issue with any paper like this is a few
selection and evaluation biases along with construct and external validity based on the choice of models, datasets, and
methods. In the future, we plan to address the apparent threats to validity that this paper has not fully addressed.

Construct Validity: Here, we have used popular hierarchical clustering called agglomerative approach, as the
number of clusters were not known beforehand. In future, we need to experiment with other clustering techniques to
check for conclusion stability. This analysis used logistic regression (LR), as much prior work on fairness has also used
LR [25, 44]. Nevertheless, in future work, we need to explore some other classification models including DL models.
Also, the metric clusters found in Table 4 and Table 5 are created using the results of our choice ML models, dissimilarity
measures, and cutting point in the dendrogram. Thus, choosing one metric from each cluster may contain some risk,
and researchers need to be careful while making informed choices about metric selection.

Evaluation Bias: We have used 30 metrics taken from IBM AIF360 [25]. We have also covered most of the metrics
from Fairkit-learn [64] and Fairlearn [20]. There are other metrics and definitions of fairness, thus the results of this
study may not generalize to all available metrics. But the 30 metrics covered in this study are widely used in the fairness
domain [32, 48, 58, 71, 96].

External Validity: We have used seven datasets. In the fairness domain, one big challenge is the availability of
adequate datasets. It would be insightful to re-run this study on new datasets and also on other domains.

Sampling Bias: In this work we used thresholds recommended by IBM AIF360 (“fair” means -0.1,0.1 or 0.8,1.2 for
different kinds of metric). Future work should explore the sensitivity of our conclusions to changes in those thresholds.
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Another issue with sampling bias is that our analysis is based on the data of Table 2. We recommend that when new
data becomes available, we test the conclusions of this paper against that new data. That would not be an arduous task
(and to simplify that task, we have placed all our scripts online in order).

7 CONCLUSION

Fairness is a rapidly evolving domain and the number of fairness metrics is increasing exponentially. While performing
our literature review we saw the current practice in this domain is to relying on a handful of metrics and ignoring the
rest. But which metrics can be ignored? Which are essential?

To answer these questions, this paper has experimented with the following metrics selection tactic: When applied, the
paper reported that this tactic could reduce dozens of metrics to just a handful. We found:

• RQ1 showed that all the metrics do not agree with each other when labeling a model as fair or unfair.
• RQ2 showed that metrics can be clustered together based on how they measure bias. Each of the resultant clusters
measures different types of bias and selecting one metric from each cluster should be representative enough to
measure increase or decrease in bias in other metrics in the same cluster.

• RQ3 showed that we could ignore at least two of those clusters, since they were not “sensitive”. Recall that by
“insensitive” clusters, we mean those where changes to the data did not change the fairness scores.

• RQ4 showed this reduced set actually predicts for different things. That said, it is no longer necessary (or even
possible) to satisfy all these fairness metrics.

From these results, we argue that:

• There are many spurious fairness metrics; i.e. metrics that measure very similar things.
• To simplify fairness testing, just (a) determine what type of fairness is desirable (for a list of types, see Table 4
and Table 5 ); then (b) look up those types in our clusters; then (c) just test for one item per cluster.

• While this approach does not completely remove all issues with fairness testing, it does reduce a very complex
problem of (say) 30 metrics to a much smaller and manageable set.

• Also, the methods of this paper could be used as a litmus test to prune away spurious new metrics that merely
report the same thing as existing metrics.
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