
Teaching IT Software Fundamentals: Strategies and Techniques
for Inclusion of Large Language Models

Strategies and Techniques for Inclusion of Large Language Models

Sharon Gumina∗
Department of Integrated Information
Technology, College of Engineering
and Computing, University of South

Carolina
gumina@cec.sc.edu

Travis Dalton
Department of Integrated Information
Technology, College of Engineering
and Computing, University of South

Carolina
daltont@email.sc.edu

John H. Gerdes Jr.
Department of Integrated Information
Technology, College of Engineering
and Computing, University of South

Carolina
gerdes@mailbox.sc.edu

ABSTRACT
This paper argues for the inclusion of tools that utilize Artificial
Intelligence (AI) Large Language Models (LLMs) in information
technology (IT) undergraduate courses that teach the fundamentals
of software. LLM tools have become widely available and disrupt
traditional methods for teaching software concepts. Learning objec-
tives are compromised when students submit AI-generated code for
a classroom assignment without comprehending or validating the
code. Since LLM tools including OpenAI Codex, Copilot by GitHub,
and ChatGPT are being used in industry for software development,
students need to be familiar with their use without compromis-
ing student learning. Incorporating LLM tools into the curriculum
prepares students for real-world software development. However,
students still need to understand software fundamentals including
how to write and debug code. There are many challenges associ-
ated with the inclusion of AI tools into the IT curriculum that need
to be addressed and mitigated. This paper presents strategies and
techniques to integrate student use of LLM tools, assist students’
interaction with the tools, and help prepare students for careers that
increasingly use AI tools to design, develop, and maintain software.

CCS CONCEPTS
• Social and professional topics → Professional topics; Com-
puting education; Computing education programs; Information
technology; • Computing methodologies → Artificial intelli-
gence.

KEYWORDS
AI, Artificial intelligence, ChatGPT, Code generation, Copilot,
GitHub, GPT-4, Information technology, IT, Large language model,
LLM, OpenAI, Programming, Software development, Software fun-
damentals,

∗Corresponding author.

This work is licensed under a Creative Commons Attribution International
4.0 License.

SIGITE ’23, October 11–14, 2023, Marietta, GA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0130-6/23/10.
https://doi.org/10.1145/3585059.3611409

ACM Reference Format:
Sharon Gumina, Travis Dalton, and John H. Gerdes Jr.. 2023. Teaching IT
Software Fundamentals: Strategies and Techniques for Inclusion of Large
Language Models: Strategies and Techniques for Inclusion of Large Lan-
guage Models. In The 24th Annual Conference on Information Technology
Education (SIGITE ’23), October 11–14, 2023, Marietta, GA, USA. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3585059.3611409

1 INTRODUCTION
Over the years, software developers have used various tools for
code generation, versioning, analysis, debugging, and testing. Re-
cently, the widespread emergence and integration of AI LLMs into
these tools further enhances the automation of these tasks for the
developer [1]. LLMs are a subset of AI that are trained in an un-
supervised way on exceptionally large datasets [2]. LLMs use this
training to improve their processing of natural language inputs
including user prompts to produce responses including software
artifacts such as test cases, documentation, code, and more. Tasks
such as generating code, debugging, documentation, and software
testing can be facilitated by the LLM tool [1]. A recent study finds
that the model-generated code is comparable in complexity and
readability to that written by human programmers [3]. While LLM
tools do not eliminate the need for experienced programmers, they
can speed development and make the process of developing code
easier [4]. Since LLM tools are being used in industry it is both
appropriate and necessary to cover their use in the IT curriculum.

The use of LLM tools is attractive to students because students
view software development as challenging and often spend more
time debugging their applications than developing them [5]. AI
language models are sophisticated and provide various ways to
support the concepts presented in a software fundamentals course
including concept explanations, code examples, error handling, and
debugging, algorithmic thinking, pseudocode and flowchart devel-
opment, tool guidance, best practices, and resources and references
[5]. Modern Integrated Development Environments (IDEs) such
as Visual Studio Code and PyCharm include LLM extensions that
provide AI-assisted coding suggestions, contextual documentation,
and real-time feedback on programming errors. The ChatGPT tool
uses the Codex model which can quickly generate, debug, and
describe appropriate code for traditional first-year programming
assignments [5–7]. As the LLM technology matures, these tools
should be able to correctly handle even more difficult and complex
problems.

60

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3585059.3611409
https://doi.org/10.1145/3585059.3611409
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3585059.3611409&domain=pdf&date_stamp=2023-10-11

SIGITE ’23, October 11–14, 2023, Marietta, GA, USA Sharon Gumina et al.

Table 1: Software Fundamentals - Competencies for IT Undergraduate Degree Programs

Software Fundamentals - Competencies [8] Potential Applications for LLM Tools [7, 9]
Use multiple levels of abstraction and select appropriate data
structures to create a new program that is socially relevant and
requires teamwork. (Program development)

Clarification of requirements for data, operations, and performance
Explanation of data structures
Comparison of data structures
Suggestions for object-oriented design
Responses including examples and use cases

Evaluate how to write a program in terms of program style,
intended behavior on specific inputs, correctness of program
components, and descriptions of program functionality. (App
development practices)

Evaluation of program style

Develop algorithms to solve a computational problem and explain
how programs implement algorithms in terms of instruction
processing, program execution, and running processes. (Algorithm
development)

Algorithm generation
Explanation of instruction processing, program execution and
running processes from an algorithm or code

Collaborate in the creation of an interesting and relevant app
(mobile or web) based on user experience design, functionality, and
security analysis and build the app’s program using standard
libraries, unit testing tools, and collaborative version control. (App
development practices)

Code generation to solve a particular problem in supported
languages. Includes most popular languages such as Python, Java,
C++, C#, Swift, R, PHP, HTML/CSS, Perl

It is reasonable to assume that students will use tools such as
ChatGPT to generate solutions for their assignments. Unfortunately,
when students rely on an LLM tool and submit the generated so-
lutions without personally doing any of the validation and verifi-
cation, it circumvents the learning objectives of the assignment.
As student use of LLM tools increases, it is necessary to change
how software fundamentals are taught and assessed to achieve the
desired learning objectives. Responding to this disruptive technol-
ogy warrants discussion of strategies and techniques that might be
used to promote student learning and help mitigate over-reliance
on AI that erodes learner engagement and student knowledge of
core software principles.

2 BACKGROUND
The Association for Computing Machinery (ACM) identifies cur-
riculum guidelines for IT undergraduate degree programs [8]. In
the guidelines, essential competencies for IT undergraduate degree
programs are identified. Table 1 Software Fundamentals – Compe-
tencies for IT Undergraduate Degree Programs lists the essential IT
competencies for software fundamentals and potential applications
for LLM tool assistance [7, 9]. These competencies are impacted
by the emergence of AI language models which generate real-time
documentation, explanations, summaries, and code in response to
user prompts and queries

3 CHALLENGES OF AI IN IT EDUCATION
The United Nationals, Educational, Scientific, and Cultural Orga-
nization (UNESCO) recommends a human-centered approach for
the inclusion of AI within education. [10, 11]. A human-centered
approach emphasizes the ethical and societal dimensions of AI, and
promotes its use to prioritize key principles, including inclusivity
and equality, respect for human rights and values, transparency

and explainability, learner empowerment, and well-being, and col-
laboration and multi-stakeholder engagement [10]. In the following
sections the challenges of AI inclusion within software coursework
are mapped to the key principles of UNESCO’s human-centered
approach.

3.1 Inclusivity and Equality
Over the past year, access to LLM tools has steadily improved.
Pricing impacts inclusivity and equality in education. OpenAI, the
developer of ChatGPT, offers different pricing models and options
including a free access version, subscription plans, and pay-as-
you-go options for its products, including ChatGPT. According
to OpenAI, their GPT-4 tool surpasses ChatGPT in its reasoning
capabilities [12], but, at the time of this paper, GPT-4 is not free to
users. GitHub’s Copilot is available to programmers at a monthly
fee and available to verified students for free [13].

3.2 Respect for Human Rights and Values
The learner’s data and privacy are linked to respect for human
rights and values, particularly in the context of data protection and
privacy rights. Due to the rapid emergence of AI language models,
they may not fully safeguard the learner’s data and privacy as they
interact with the LLM tool. Students may forget to safeguard their
personal information while using these tools. It is important that
users of AI-powered systems do not share personal information
about themselves or others. Data that contains personally identifi-
able information (PII) and personal health information (PHI) should
not be shared with an AI tool. AI systems may perpetuate bias or
discrimination in their responses and recommendations [14].

3.3 Transparency and Explainability
ChatGPT lacks the context in which students are learning software
fundamentals. AI-generated explanations of a software concept

61

Teaching IT Software Fundamentals: SIGITE ’23, October 11–14, 2023, Marietta, GA, USA

may be given at a more advanced level, and hinder student learning
[5, 14]. AI language models are trained on code repositories that
may not be suitable for student learning. For example, in response to
an introductory coding problem, the AI’s generated code might use
advanced concepts such as pointers, or recursion. Also, the styles
and approaches to coding may not fit with the style and approach
of the course [5, 7]. Students who are unfamiliar with the tool may
have difficulty understanding different forms of AI code suggestions
which would hinder the learner’s ability to understand how the
code works and why it was selected [5]. One study determined that
AI-generated code was more difficult for users to debug than code
they had written [15].

Publicly available code often requires any user to cite the original
source, but code sources are not transparent in code generated by
an AI language model [5]. While the LLM model might provide
documentation of the code explaining its functionality, there is a
lack of transparency in the training data used in its explanation.

3.4 Accountability and Responsibility
Research findings suggest that students can easily generate work-
ing code in a programming language of their choice using ChatGPT
[16], but this code may not meet assignment requirements [6]. Stu-
dents may not feel responsible for validating and verifying that the
code runs properly, is logically correct, and meets the assignment’s
rubric. When code is automatically generated by an LLM tool used
by students, learners may not feel personally accountable for the
quality of the generated code.

ChatGPT generates its answers by synthesizing its training data
and often produces responses similar to existing sources which
may lead to plagiarism [14]. Similar responses submitted by stu-
dents when they use AI language models may undermine student
accountability and responsibility. There are concerns about online
assessment security and cheating which erodes academic integrity
[14].

3.5 Learner Empowerment and Well-Being
The focus of this principle is developing the student’s skill and
knowledge to the point that they can generate correct code. The
LLM tool should be utilized as a programming aid that assists the
student’s development of a software application. The student must
understand software development principles, be able to read and
understand the logic of the code generated by the tool and have
the skills to make needed adjustments.

One challenge to learner empowerment and well-being is over-
reliance on AI models for lab and assignment completion. Lack
of contextual understanding within AI models may lead to gen-
erated responses that do not meet the assignment requirements
[6, 17]. Solutions generated with LLM tools may contain logic or
syntax errors [5, 6]. One study determined that ChatGPT generated
correct answers to 55.6% of questions and was not able to assess
the correctness of its responses [6]. Generated code may contain
vulnerabilities and/or bias introduced by the AI model training data
[5]. Learner over-reliance on tools such as ChatGPT may cause
a decline in student creativity, critical thinking, reasoning, and
problem-solving skills [18], and students may not be motivated to
analyze and solve the problem on their own [14].

3.6 Collaboration and Multi-Stakeholder
Engagement

Student use of LLM tools enhances their understanding of human-
to-machine interaction but does not substitute for human-to-human
interaction. Software development, especially large-scale software
development, requires teamwork – the interactions between differ-
ent people including the users, project managers, system analysts,
system developers, programmers, and testers. A course in soft-
ware fundamentals needs to include learning outcomes associated
with the collaborative nature of software development and edu-
cate students on how multi-stakeholder engagement influences the
development process.

4 BENEFITS
AI LLM tools pose challenges for an existing IT curriculum. Despite
these challenges, the models are widely used [19], and banning
their usage is not a practical approach when courses are available
asynchronously and online in higher education. These tools are
also being used in industry [1], so it is important that students
are familiar with them. A more practical approach is to embrace
these technologies, thereby providing opportunities for teaching
and learning software fundamentals with the assistance of AI.

4.1 Real-World Relevance
AI language models, including ChatGPT, are technologies disrupt-
ing real-world software development. Including these AI tools in
software coursework exposes students to emerging software tech-
nologies and better prepares them for a dynamic workplace [15, 20].
No-code/low-code platforms used in software development offer
a ‘what you see is what you get (WYSIWYG) environment with a
drag-and-drop functionality. These platforms increasingly include
AI models such as AI Builder in Microsoft Power Apps [21].

4.2 More focus on Software Theory and
Problem-Solving

A key component of IT software coursework includes programming
which is not easy for most students to learn [5, 18]. AI models such
as GitHub’s Copilot assist novice programmers with code sugges-
tions, examples, and explanations that reduce the cognitive load
on students learning to program [18]. In one study, students using
AI models for their programming assignments were successful if
they provided accurate prompt descriptions and validated the code
before submission [18]. AI models may reduce task completion
time on programming assignments with reduced learner stress and
discouragement [18]. Reduced task completion time writing and
debugging applications allows educators to focus more on software
theory and problem-solving rather than the syntax of a particular
language.

4.3 Self-Directed Learning
Self-directed learning empowers students and provides autonomy
as they learn and complete assignments. Students may approach
interactionwith anAImodel in amyriad of self-directed approaches.
The student may interact with AI language models by prompting
the tool for question answers, code generation, code debugging,

62

SIGITE ’23, October 11–14, 2023, Marietta, GA, USA Sharon Gumina et al.

and code explanations [22]. Learners design the questions for the
language model. Students may discover that their prompts need to
be augmented or decomposed into multiple sub-prompts [23].

Early in the process, a student may use a tool such as Copilot
or ChatGPT to explore options for developing code. Later in the
process, a student may paste code that contains syntax errors and
prompt the AI model to identify the errors and correct them [15].
Learner interaction with an AI model during software debugging
has tremendous potential to reduce frustration and task completion
time.

4.4 Exposure to AI
Exposure to AI tools allows students and educators to obtain new
competencies and ways of addressing human-computer interaction.
Simply asking a query of an AI language model does not guaran-
tee a correct answer. Language model users need to be aware of
context limitations when they use these models. Queries may need
to be decomposed and information on the context provided to the
AI model to receive quality responses. Any response needs to be
validated and tested for correctness due to the limitations of the AI
training data [19].

5 STRATEGIES AND TECHNIQUES
Educators may include strategies and techniques that incorporate
group projects, hands-on activities, and demonstrations to foster
the benefits of LLM models and mitigate the pitfalls. AI language
tools can create quick solutions that contribute to student learning
if they are used appropriately. Learners can achieve better results
if they query effectively, validate, and verify the results, and reflect
on the outcomes. Below are suggested strategies and techniques
that can help to effectively integrate AI LLM tools into a software
fundamentals class.

5.1 Develop a Policy for the Inclusion of AI
Presenting a policy for AI model usage is important in both the
course syllabus and assignments. This sets the guidelines for the
use of LLM technologies in the course. This paper suggests the
addition of phrases such as the following:

• It is the student’s responsibility to examine and evaluate the
information generated by AI tools for relevance and accuracy.
It is the student’s responsibility to validate generated code
to verify that it is free of errors, including syntactic and
semantic errors

• It is the student’s responsibility to verify that the software
meets rubric requirements for items such as file types, in-
put/output, data types, program style, and documentation

• If an AI tool is used in an assignment, the student should
explicitly acknowledge the use of the tool and describe how
it was used for the assignment.

• If an AI tool is used in an assignment, the audit trail of
queries/prompts and responses should be included as part
of the assignment.

• It is the student’s responsibility to safeguard their personal
information and the personal information of others when
they use an AI tool.

• Students should be able to comprehend and reflect on any
AI-generated information as part of their assignment.

5.2 Ensure Equal Access to The Tools
Ensuring equal access to LLM tools requires that adequate resources
are provided to all the students. For example, software development
tools currently installed on lab machines can be updated with an
AI tool extension such as adding GitHub Copilot software to Visual
Studio Code. The syllabus should describe the technology require-
ments and resources available for the use of these AI model tools.

5.3 Explain and Demonstrate the Benefits and
Pitfalls of AI models in Software
Development

There are strategies that can be designed into a course to better
educate learners on the benefits and pitfalls of using AI for their
assignments. Learners should understand that an AI response might
be incorrect due to limited context understanding or suboptimal
prompting. One study identified incorrect solutions generated by
Copilot due to the tool’s lack of contextual understanding [7]. This
lack of contextual understanding stemmed from the details of the
assignment which included parsing a text file that was custom to the
assignment. AI Tools such as Copilot can be a frustrating experience
because they often do not understand learner instructions to fix or
improve the generated code unless the user prompts are extremely
specific [24].

One strategy might be the inclusion of a series of class labs where
students use LLM tools to foster ideas and explore a particular
concept such as encapsulation. These results of the exploration can
be discussed in the class and suggestions gathered for how to better
interact with the LLM tool.

Designing assignments that explore the limitations of the LLM
tools can educate learners about the pitfalls of using AI. Assign-
ments, such as creating a static website that requires multiple file
types such as HTML files, CSS files, and JavaScript files, challenge
students to link the files successfully. This assignment can be used
to demonstrate the limitations of AI models when the assignment
becomes more complex.

Successful techniques for interacting with LLM tools may be
demonstrated by the Instructor during class activities and exercises
to better prepare students for their use. Demonstrations can be
conducted in class or attached as a video demo as assignments are
made available.

5.4 Require a 3-Step Approach to Assignments
One of the cited studies recommends a three-step approach to de-
veloping programming applications in conjunction with an AI tool.
These steps include system decomposition, functional program-
ming, and program refinement [23].

• System Decomposition breaks the problem into a sequen-
tial list of tasks. This breakdown is done repeatedly until
the algorithm is decomposed into sub-tasks using control
structures such as iteration and decision making. System de-
composition is more useful for AI prompting and produces
increased quality of code [23].

63

Teaching IT Software Fundamentals: SIGITE ’23, October 11–14, 2023, Marietta, GA, USA

• Functional Programming determines the function at-
tributes including name, argument list, and description. Func-
tional programming is a widely accepted programming par-
adigm where programs can be broken down into functions.

• Program Refinement includes the execution and testing
of the programming application to determine the syntax
and semantic errors. AI language models are more prone to
semantic errors [23] so learners should validate the results
of the program using the debugger.

5.5 Include Projects with Unique Contexts and
Personalization

Over-reliance of the learner on tools can result in a decrease in
their creativity and problem-solving skills [18]. One of the IT com-
petencies identified by ACM for IT software fundamentals includes
student collaboration in the creation of an interesting and relevant
mobile or web app [8]. Including projects with unique contexts
and learner personalization fosters student creativity and problem-
solving. For example, an assignment that requires a Python program
that draws a triangle from three integer inputs is easily generated
by a tool such as ChatGPT. This type of assignment does not foster
creativity because the generated code may be the same for students.
Including a group project where students design the program re-
quirements and develop the appropriate algorithm, data structures,
modules, and user interface gives them opportunities to explore
tasks required in developing software, not the least of which is
teamwork. They make decisions that are unique to their project
and foster creativity.

5.6 Require Validation and Verification of Code
There are multiple methods of validation and verification of code
that can be used in a course. Students that use LLM-generated code
should place the generated code into an IDE, such as Visual Studio
Code, and use the integrated debugger to toggle a breakpoint on
the first line of the main routine and step through the code to make
sure that all the code is utilized and is semantically and syntactically
correct.

In a web systems course, students can use the debugger within VS
Code or external tools such as the W3C Markup Validation Service
to validate code, such as HTML and CSS. By doing so, students
assume responsibility for the code and recognize that it may have
deficiencies such as logic errors, syntax errors or other important
issues such as accessibility and others.

5.7 Require Student Demonstration and
Explanation

Student reflection is critical in understanding the software they
have developed including the data structures selected, the program
style, the control structures, and how the program solves a com-
putation problem. Requiring learners to demonstrate and explain
the software they have developed allows them to reflect on what
they have learned. One option is for the students to record a video
showing their running code. These demonstrations and explana-
tions can be used in the assessment to determine if the student has
full comprehension of the software they have created. Full compre-
hension is required in a student demonstration and explanation of

the resulting software. This explanation might include the intended
behavior, specific inputs, program components, and functionality.

6 CONCLUSION
This paper advocates for the integration of AI LLM tools into soft-
ware fundamental courses for the simple reason that they are being
used in industry, and that they will only become more powerful
with time. Employers will expect that students not only know how
to code, but also that they know how to effectively use various
tools, including AI LLM tools, so it is important to cover these tools
in the IT curriculum.

While AI tools can generate code, they cannot yet replace an
experienced software developer. They do represent a useful tool
that can facilitate code development, but the user of any tool needs
to know how to use the tool and its limitations. Since the generated
code may not meet the requirements, the user must be able to
fall back on fundamental concepts and experiential knowledge to
validate and verify the generated code.

The use of AI is disrupting how IT software fundamental courses
are taught. This paper advocates for the proactive consideration and
use of strategies and techniques to encourage student learning in
an evolving software development environment where LLM tools
are easily accessed by both students and educators.

REFERENCES
[1] Haoye Tian, Weiqi Lu, Tsz On Li, Xunzhu Tang, Shing-Chi Cheung, Jacques

Klein, and Tegawendé Bissyandé. 2023. Is ChatGPT the Ultimate Programming
Assistant–How far is it? arXiv:2304.11938. Retrieved from https://arxiv.org/abs/
2304.11938

[2] Abeba Birhane, Atoosa Kasirzadeh, David Leslie, and Sandra Wachter. 2023.
Science in the age of large language models. Nature Reviews Physics, 5 (April
2023), 277-280. DOI: https://doi.org/10.1038/s42254-023-00581-4

[3] Naser Al Madi. 2022, October. How Readable is Model-generated Code? Exam-
ining Readability and Visual Inspection of GitHub Copilot. In 37th IEEE/ACM
International Conference on Automated Software Engineering (ASE ‘22), Oc-
tober 10 – 14, 2022, Rochester, Michigan. ACM Inc., New York, NY, 1-5. https:
//doi.org/10.1145/3551349.3560438

[4] Jules White, Sam Hays, Quchen Fu, Jesse Spencer-Smith, and Douglas C. Schmidt.
2023. Chatgpt prompt patterns for improving code quality, refactoring, re-
quirements elicitation, and software design. arXiv:2303.07839. Retrieved from
https://arxiv.org/abs/2303.07839

[5] Brett A. Becker, Paul Denny, James Finnie-Ansley, Andrew Luxton-Reilly, James
Prather, and Eddie Antonio Santos. (2023, March). Programming Is Hard-Or
at Least It Used to Be: Educational Opportunities and Challenges of AI Code
Generation. In Proceedings of the 54th ACM Technical Symposium on Computer
Science Education (SIGCSE 2023), March 15-18, 2023, Toronto ON Canada. ACM
Inc., New York, NY, 500-506. https://doi.org/10.1145/3545945.3569759

[6] Sajed Jalil, Suzzana Rafi, Thomas D. LaToza, Kevin Moran, and Wing Lam. 2023.
Chatgpt and software testing education: Promises & perils. arXiv:2302.03287.
Retrieved from https://arxiv.org/abs/2302.03287

[7] Ben Puryear and Gina Sprint. 2022. Github copilot in the classroom: learning to
code with AI assistance. Journal of Computing Sciences in Colleges, 38(1), (Nov 1,
2022), 37-47. Retrieved from https://dl.acm.org/doi/abs/10.5555/3575618.3575622

[8] Computing Curriculum. 2020 Paradigms for Global Computing Education. (June
2021). Retrieved May 28, 2023 from https://dl.acm.org/doi/book/10.1145/3467967

[9] Som Biswas. 2023. Role of ChatGPT in Computer Programming.: ChatGPT in
Computer Programming. Mesopotamian Journal of Computer Science (February
2023), 8-16. DOI: https://doi.org/10.58496/MJCSC/2023/002

[10] Fengchun Miao, Wayne Holmes, Ronghuai Huang and Hui Zhang. 2021. AI and
education: A guidance for policymakers. UNESCO Publishing.

[11] Renate Andersen, Anders I. Mørch, and Kristina Torine Litherland. 2022. Collab-
orative learning with block-based programming: investigating human-centered
artificial intelligence in education. Behaviour & Information Technology, 41, 9
(July 2022), 1830-1847. DOI: https://doi.org/10.1080/0144929X.2022.2083981

[12] OpenAI. GPT-4 is OpenAI’s most advanced system, producing safer and more
useful responses. Retrieved May 28, 2023, from https://openai.com/product/gpt-4

[13] Github. GitHub Copilot is generally available to all developers. Retrieved May 28,
2023, from https://github.blog/2022-06-21-github-copilot-is-generally-available-

64

arXiv:2304.11938
https://arxiv.org/abs/2304.11938
https://arxiv.org/abs/2304.11938
https://doi.org/10.1038/s42254-023-00581-4
https://doi.org/10.1145/3551349.3560438
https://doi.org/10.1145/3551349.3560438
arXiv:2303.07839
https://arxiv.org/abs/2303.07839
https://doi.org/10.1145/3545945.3569759
arXiv:2302.03287
https://arxiv.org/abs/2302.03287
https://dl.acm.org/doi/abs/10.5555/3575618.3575622
https://dl.acm.org/doi/book/10.1145/3467967
https://doi.org/10.58496/MJCSC/2023/002
https://doi.org/10.1080/0144929X.2022.2083981
https://openai.com/product/gpt-4
https://github.blog/2022-06-21-github-copilot-is-generally-available-to-all-developers/
https://github.blog/2022-06-21-github-copilot-is-generally-available-to-all-developers/

SIGITE ’23, October 11–14, 2023, Marietta, GA, USA Sharon Gumina et al.

to-all-developers/
[14] Mohammadreza Farrokhnia, Seyyed Kazem Banihashem, Omid Noroozi, and

Arjen Wals. 2023. A SWOT analysis of ChatGPT: Implications for educational
practice and research. Innovations in Education and Teaching International,
(April 2023), 1-15. DOI: https://doi.org/10.1080/14703297.2023.2195846

[15] Shraddha Barke, Michael B. James, and Nadia Polikarpova. 2023. Grounded
copilot: How programmers interact with code-generating models. Proceedings
of the ACM on Programming Languages, 7(OOPSLA1), 85-111. DOI: https://doi.
org/10.1145/3586030

[16] Basil Qureshi. 2023. Exploring the use of chatgpt as a tool for learning and
assessment in undergraduate computer science curriculum: Opportunities and
challenges. arXiv:2304.11214. Retrieved from https://arxiv.org/abs/2304.11214

[17] David Baidoo-Anu, and Leticia Owusu Ansah. 2023. Education in the era of gener-
ative artificial intelligence (AI): Understanding the potential benefits of ChatGPT
in promoting teaching and learning. Available at SSRN 4337484. Retrieved from
https://papers.ssrn.com/sol3/papers.cfm?abstract_id$=$4337484

[18] Majeed Kazemitabaar, Justin Chow, Carl Ka To Ma, Barbara J. Ericson, David
Weintrop, and Tovi Grossman. 2023. Studying the effect of AI Code Generators
on Supporting Novice Learners in Introductory Programming. In Proceedings
of the 2023 CHI Conference on Human Factors in Computing Systems (CHI
’23), April 23-28, 2023, Hamburg Germany. ACM Inc., New York, NY, 1-23. https:
//doi.org/10.1145/3544548.3580919

[19] Ahmed Tlili, Boulus Shehata,Michael AgyemangAdarkwah, Aras Bozkurt, Daniel
T. Hickey, Ronghua Huang, and Brighter Agyemang. 2023. What if the devil is my
guardian angel: ChatGPT as a case study of using chatbots in education. Smart

Learning Environments, 10, 1, (February 2023), 15. DOI: https://doi.org/10.1186/
s40561-023-00237-x

[20] Burak Yetistiren, Isik Ozsoy, and Eray Tuzun, E. 2022. Assessing the quality
of GitHub copilot’s code generation. In Proceedings of the 18th International
Conference on Predictive Models and Data Analytics in Software Engineering
(PROMISE 2022), November 17, 2022, Singapore Singapore. ACM Inc., New York,
NY, 62-71. https://doi.org/10.1145/3558489.3559072

[21] William Villegas-Ch, Joselin García-Ortiz, and Santiago Sánchez-Viteri. 2021.
Identification of the factors that influence university learning with low-code/no-
code artificial intelligence techniques. Electronics, 10, 10 (May 2021), 1192. DOI:
https://doi.org/10.3390/electronics10101192

[22] Alin Zamfiroiu, Denisa Vasile, and Daniel Savu. 2023. ChatGPT–A Systematic
Review of Published Research Papers. Informatica Economica, 27, 1 (2023), 5-16.
DOI: https://doi.org/ 10.24818/issn14531305/27.1.2023.01

[23] Hao Bai. 2022. A Practical Three-phase Approach To Fully Automated Program-
ming Using System Decomposition And Coding Copilots. In Proceedings of the
2022 5th International Conference on Machine Learning and Machine Intelli-
gence (MLMI ’22), September 23-25, 2022, Hangzhou China. ACM Inc., New York,
NY, 183-189. https://doi.org/10.1145/3568199.3568228

[24] Michel Wermelinger. 2023. Using GitHub Copilot to Solve Simple Programming
Problems. In Proceedings of the 54th ACM Technical Symposium on Computing
Science Education (SIGCSE 2023), March 15-18, 2023, Toronto Canada. ACM Inc.,
New York, NY, 172.178. https://doi.org/10.1145/3545945.3569830

,

65

https://github.blog/2022-06-21-github-copilot-is-generally-available-to-all-developers/
https://doi.org/10.1080/14703297.2023.2195846
https://doi.org/10.1145/3586030
https://doi.org/10.1145/3586030
arXiv:2304.11214
https://arxiv.org/abs/2304.11214
https://papers.ssrn.com/sol3/papers.cfm?abstract_id$=$4337484
https://doi.org/10.1145/3544548.3580919
https://doi.org/10.1145/3544548.3580919
https://doi.org/10.1186/s40561-023-00237-x
https://doi.org/10.1186/s40561-023-00237-x
https://doi.org/10.1145/3558489.3559072
https://doi.org/10.3390/electronics10101192
https://doi.org/
https://doi.org/10.1145/3568199.3568228
https://doi.org/10.1145/3545945.3569830

	Abstract
	1 INTRODUCTION
	2 BACKGROUND
	3 CHALLENGES OF AI IN IT EDUCATION
	3.1 Inclusivity and Equality
	3.2 Respect for Human Rights and Values
	3.3 Transparency and Explainability
	3.4 Accountability and Responsibility
	3.5 Learner Empowerment and Well-Being
	3.6 Collaboration and Multi-Stakeholder Engagement

	4 BENEFITS
	4.1 Real-World Relevance
	4.2 More focus on Software Theory and Problem-Solving
	4.3 Self-Directed Learning
	4.4 Exposure to AI

	5 STRATEGIES AND TECHNIQUES
	5.1 Develop a Policy for the Inclusion of AI
	5.2 Ensure Equal Access to The Tools
	5.3 Explain and Demonstrate the Benefits and Pitfalls of AI models in Software Development
	5.4 Require a 3-Step Approach to Assignments
	5.5 Include Projects with Unique Contexts and Personalization
	5.6 Require Validation and Verification of Code
	5.7 Require Student Demonstration and Explanation

	6 CONCLUSION
	References

