
Lightweight Symphony: Towards Reducing Computer Science
Student Anxiety with Standardized Docker Environments

Kourtnee Fernalld
kfernalld2018@my.fit.edu

L3 Harris Institute for Assured Information
Melbourne, FL, USA

TJ OConnor
toconnor@fit.edu

L3 Harris Institute for Assured Information
Melbourne, FL, USA

Sneha Sudhakaran
ssudhakaran@fit.edu

Florida Institute of Technology
Electrical Engineering and Computer Science

Melbourne, FL, USA

Nasheen Nur
nurn@fit.edu

Florida Institute of Technology
Electrical Engineering and Computer Science

Melbourne, FL, USA

ABSTRACT
During the COVID-19 pandemic, remote learning (RL) transformed
the educational landscape for hands-on Computer Science courses.
This paradigm shift accelerated the transition from traditional in-
person programming labs to decentralized student-provided re-
sources. Even as students returned to in-person learning, many
continued to rely on their personal computers rather than embrac-
ing university-provided labs. However, this shift to decentralized,
heterogeneous environments introduced a variety of information
technology and instructional challenges. The recent emergence
of lightweight, container-based virtualization presents a unique
opportunity to address these challenges by offering standardized
environments on decentralized platforms. To investigate this op-
portunity, we implemented lightweight virtualization for three
undergraduate computer science courses with a total enrollment
of 188 students. To understand the challenges and successes of
implementing these environments, we surveyed 42 students before,
during, and after the three courses. Our survey responses identified
that 84% of students adopted our standardized environments, with
75% indicating it contributed to their success. We believe that shar-
ing our experience will prove valuable for instructors who wish to
explore adopting container-based virtualization to reduce student
anxiety in the modern classroom.

CCS CONCEPTS
• Social and professional topics → Model curricula; Comput-
ing education programs.

KEYWORDS
cybersecurity education, student anxiety, virtualization

This work is licensed under a Creative Commons Attribution International
4.0 License.

SIGITE ’23, October 11–14, 2023, Marietta, GA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0130-6/23/10.
https://doi.org/10.1145/3585059.3611432

ACM Reference Format:
Kourtnee Fernalld, TJ OConnor, Sneha Sudhakaran, and Nasheen Nur.
2023. Lightweight Symphony: Towards Reducing Computer Science Stu-
dent Anxiety with Standardized Docker Environments. In The 24th An-
nual Conference on Information Technology Education (SIGITE ’23), Octo-
ber 11–14, 2023, Marietta, GA, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3585059.3611432

1 INTRODUCTION
The pandemic-induced shift to remote learning has demanded new
pedagogical approaches as faculty hastily adopted hybrid and online
learning models [2, 11]. Our university adopted a hybrid learning
model, providing online and in-person classes. Video conference
tools and digital learning platforms replaced traditional lectures and
labs [26]. Without access to university computer labs, the decentral-
ized learning approach created vastly different digital environments
for students. Even as students returned to in-person learning, many
continued to rely on the unique decentralized resources they had
adopted rather than embracing university-provided labs. This para-
digm shift introduced unique challenges requiring instructors and
students to debug and troubleshoot different software, operating
systems, and hardware. As such, technical issues and troubleshoot-
ing can detract from valuable learning time and contribute to stu-
dents’ anxiety levels as they strive to keep up with coursework and
achieve their learning objectives. We hypothesize that lightweight
virtualization presents a solution to this challenge by delivering
stability through a standard environment.

In this paper, we make the following contributions:

(1) We propose and implement a lightweight, container-based,
standardized environment for three undergraduate computer
science courses, including introductory programming, oper-
ating systems, and cybersecurity.

(2) We collected survey responses from 42 students before, dur-
ing, and after the courses to explore the challenges and suc-
cesses of deploying lightweight virtualization for hands-on
undergraduate computer science education.

(3) To allow other instructors to build on our initial success, we
publish our container build scripts, images, and tutorials at
https://github.com/FITSEC/docker-images.

15

https://orcid.org/0009-0008-6074-6062
https://orcid.org/0000-0001-9707-1830
https://orcid.org/0000-0001-7942-0902
https://orcid.org/0000-0003-3148-5111
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3585059.3611432
https://doi.org/10.1145/3585059.3611432
https://github.com/FITSEC/docker-images
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3585059.3611432&domain=pdf&date_stamp=2023-10-11

Organization: Section 2 provides background information about
virtual machine technology and explores opportunities in the edu-
cational landscape. Section 3 addresses the tools and programs each
course requires, the current method of obtaining these resources,
why these methods fall short, and our approach. The experimen-
tal setup and data collection methods are described in Section 4.
Section 5 discusses the results, the challenges faced and provides
insights for future experimentation. Section 6 investigates previous
work on lightweight virtualization and containerization in educa-
tion. Finally, Section 7 presents conclusions and a plan to advance
this research in the future.

2 BACKGROUND
The following section introduces the opportunities created by light-
weight container-based virtualization over traditional hypervisor-
based virtual machines. We then explore how this technology de-
livers a solution to the modern hybrid learning environment.

2.1 Hypervisor-Based Virtualization
In previous works, instructors have leveraged hypervisor-based
technology to deliver standardized course environments [10, 12,
15, 18, 21, 25]. In this approach, isolated virtual machines emulate
physical hardware, including processing, storage, and memory. This
virtualization allows users to run entire operating systems within a
guest host. Traditionally, classroom environments have embraced
Type-2 hypervisors (e.g., Vmware, VirtualBox) that exist between
the host operating system and the hardware [3, 14]. Despite the
benefits, hypervisor-based virtualization does introduce challenges.
Hypervisor-based virtualization requires allocating memory and
storage to replicate the RAM and hard disks of the guest operat-
ing system. For example, Ubuntu recommends reserving 8 GB of
memory and 25 GB of storage [20]. These resource constraints
complicate running multiple virtual machines simultaneously [12],
limiting student experiments and research. Further, these memory
and storage constraints present a significant challenge for student
adoption due to the negative impact on the performance of the host
operating system.

2.2 Container-Based Virtualization
Docker offers a platform for developing, deploying, and running
applications using lightweight container-based virtualization [16].
Similar to hypervisor-based virtualization, container-based virtu-
alization can emulate many operating systems and software. The
Docker build process constructs images from a Dockerfile config-
uration that describes the base operating system and the runtime
environment, including additional libraries, dependencies, system
tools, and settings. Since Docker packages all the code and depen-
dencies into an image, the resulting image can run consistently
and reliably in many computing environments. At runtime, Docker
containers provide an isolated execution environment for the image.
Containerization allows users to build and deploy less resource-
intensive applications than hypervisor-based virtualization. Further,
users can export images to repositories (e.g., Dockerhub), allowing
rapid remote deployment. The combination of these benefits intro-
duces opportunities for deployment in educational environments.

Container-based virtualization provides greater support for re-
designing and redistributing classroom environments. Consider the
scenario where an instructor must add additional software to an
image. Under hypervisor-based virtualization, the instructor must
redistribute the entire new image to the students. Under container-
based virtualization, students only need to pull the additional layers
created by the new software.

2.3 Virtualization Opportunities
The shift to remote learning (RL) during the COVID-19 pandemic
accelerated a transition in the educational learning environments
that computer-science students use to complete hands-on labs [2, 11,
19, 26]. However, decentralizing student environments complicates
instructor mirroring and issue troubleshooting. Before this shift, in-
structors conducted hands-on labs in university labs to control the
learning flow. Additionally, decentralizing student environments
presents challenges for hands-on labs with complex software re-
quirements. Anecdotally, our Introductory Programming course
required a specific legacy Java version preferred by the instructor.
Additionally, our Operating Systems Concepts course required in-
stalling the OS161 [9] operating system and several dependencies.
Finally, our Cybersecurity course required several specific tools
with complex configurations, libraries, and dependencies.

The increasing heterogeneity of architectures and operating
systems introduces challenges. Student workstations may run the
Windows, Linux, and MacOS Operating Systems on AMD-64 [1]
and ARM architectures. For example, ARM-basedM1/M2MacBooks
can only perform limited hypervisor-based virtualization. The new
M1 and M2 processors use an ARM-based architecture instead of
the more commonly used AMD-64 architecture. Since hypervisor-
based virtualization virtualizes at the hardware level, ARM-based
processors cannot emulate an AMD-64 [24] architecture. VMWare
Fusion only supports limited operating systems, including ARM-
based Linux and Windows. Further, users cannot deploy ARM-
based virtual machines to AMD-64 systems and vice-versa. Docker
presents a solution for computer science-related education in the
modern hybrid educational landscape as it offers standardization.
Modern hybrid classrooms, consisting of in-person and remote
students, will likely consist of different operating systems and ar-
chitectures. For example, one student could be at home virtually
attending lessons on an M1 MacBook Air, another in person on
their Intel MacBook Pro, and a third in person on a school-provided
Dell desktop. Container-based virtualization can accommodate all
of these computers with a single cross-platform image. Docker,
an operating system-independent technology, supports Windows,
MacOS, and Linux on x86-64, ARM, MIPS, PPC64LE, and S390X
architectures [4].

3 METHODOLOGY
To address the challenges of decentralized student environments,
we implemented container-based virtualization solutions for three
undergraduate Computer Science courses with a total enrollment
of 188 students. Table 1 provides an overview of each image. We
hypothesized that deploying standardized container-based envi-
ronments could reduce student anxiety by providing a solution to

16

Table 1: Summary of Docker images that we provided to 188 students over three courses.

Course Size Base Image Software Docker Pulls
Introductions to Software Dev. 1 2.29 GB ubuntu:20.04 noVNC, java jdk, jre, text editors 105
Operating Systems Concepts 3.48 GB ubuntu:20.04 OS161 [9] and dependencies 42
Introduction to Cybersecurity 8.27 GB kalilinux/kali-rolling Over 140 Apt Packages 132

the technical and instructional challenges of decentralized learn-
ing. After consulting with the primary course instructors for each
course, we built custom Docker images. Further, we posted them
to the Dockerhub repository, making them available remotely for
all students.
Fundamentals of Software Development: To understand the
impact on first-year students, we implemented the Docker image
for our Fundamentals of Software Development course. This is a
first-year required undergraduate course for both our Computer
Science and Software Engineering majors. The course discusses
the reading, understanding, and writing of small programs in the
Java programming language. In addition to the Docker solution
we developed, students could complete hands-on labs using the
following methods.

(1) Using dedicated university labs, whose availability is limited
by competing courses and students.

(2) Using a shared learning and research server accessible to
students, faculty, and staff. This server is accessible via SSH
on campus and through a VPN off campus.

(3) Installing all packages, dependencies, and configurations on
their personal computer.

To accommodate the course requirements, we implemented a docker
image that provided Java JDK, JRE, and code editors. Further, we
constructed our image from a base image constructed by [7] that
offered a graphical desktop environment. Newer students could con-
nect to the image using a web-based Virtual Network Computing
(VNC) session to support ease of adoption. Further, we constructed
students how to map a persistent folder on their desktop to transfer
files into and out of the Docker environment.
Operating Systems : To examine the impact on third-year under-
graduate Computer Science students, we implemented a solution
for our Operating Systems Concepts class. In this course, our stu-
dents examine the design and implementation of operating systems
using the instructional operating system OS161 [9]. During past
iterations of this course, students indicated difficulty setting up
the course environment before their first assignment. Additionally,
the instructor-provided hypervisor-based virtual machine image
does not work on the newer M1 and M2 MacBooks. In addition to
the Docker solution we developed, students could complete their
hands-on labs using the following methods.

(1) Develop their virtual machine based on instructor-provided
build instructions.

(2) Download and configure an instructor-provided VMWare
image.

We expected the students enrolled in this course to have a higher
computer literacy than introductory students, so our Docker solu-
tion did not include a browser-accessed VNC session. Further, a

previous student in the course built a Docker container that we used
as a base for our image [13]. As with the previous container, we pro-
vided instructions about mapping a folder on the local filesystem
to the container.
Cybersecurity Elective: Finally, we developed a Docker container
for our Introduction to Cybersecurity course, an elective that ex-
plores a breadth of offensive cybersecurity techniques. While we
deployed minimal containers for the previous two courses, the
breadth of materials in this course required a unique approach. The
course has eight hands-on labs and a semester-long CTF compe-
tition. In addition to the Docker solution we developed, students
could complete these labs using the following methods.

(1) Using a dedicated cybersecurity lab, with 24-7 access pro-
vided by student id cards.

(2) Download and configure an instructor-provided VMWare
image.

Due to the breadth of the cybersecurity course material, our
cybersecurity course adopted hypervisor-based virtualization for
four years before our experiment. Initially, the instructor deployed
large VMWare images (over 40 GB) quarterly. Instructors reported
a large overhead updating and maintaining these images with new
distribution releases. By 2021, our instructors had begun experi-
menting with replacing VMWare images with Docker containers.
By our experiment in the Fall of 2022, Docker had entirely replaced
VMware as the virtualization of choice for the Cyber Operations
courses. The image created for these courses is larger due to the
tools and resources required by all the classes it covers. The initial
Docker image version for Introduction to Cybersecurity required
20.5 GB of storage. Using the official Docker documentation on
optimizing builds, we helped the instructor decrease the build size
to 8.27 GB [5].

4 EXPERIMENT
4.1 Experiment Setup
We ran our experiment for the Fall 2022 16-week semester. During
the initial class lessons and labs, we provided 188 students with
training on deploying Docker resources, mapping the local file
system, connecting to network resources, and basic troubleshooting.
We developed a set of three optional surveys for each participating
class during the 16-week semester.

4.2 Survey
The surveys contained six multiple choice questions, nine Yes/No
questions, two 5-point Likert scale questions, two 10-point Likert
scale questions, and twelve open responses questions. Our surveys
focused on the Docker environments and student anxiety. We col-
lected anonymous responses to each survey using Google Forms via

17

Table 2: Discrete question responses.

Question Response
Before

What kind of computer are you using for this class Mac (older version): 11
Mac (M1/M2 version): 9
Windows (personal computer): 28
Windows (school computer): 2
Linux (any flavor): 9
Chromebook/Chrome OS: 0

Have you heard of a virtual machine or a container Y: 56, N: 3
Have you heard of Docker Y: 20, N: 39
Have you ever used Docker Y: 6, N: 53
Which course did you plan to use the Docker environment
for (check all that apply)

Fundamentals of Software Development 1: 18
Operating Systems Concepts: 22
Introduction to Cybersecurity: 19

Programming/programming language experience (check
one)

0-1 years experience: 12
1-2 years experience: 16
2-3 years experience: 16
3 or more years experience: 15

Are you mentally prepared for the upcoming course Y: 56, N: 3
How would you rate your overall level of anxiety for the
upcoming portion of the course (scale of 1-10)

4.8 +/- 2.4738

Midterm
Did you set up the Docker environment Y: 38, N: 7
Which course did you use the Docker environment for
(check all that apply)

Fundamentals of Software Development 1: 9
Operating Systems Concepts: 21
Introduction to Cybersecurity: 15

How difficult was it to set up the Docker environment (scale
of 1-5)

2.4 +/- 1.1998

Has your anxiety about the course improved Y: 29, N: 11, No Response: 5
How would you rate your overall level of anxiety for the
upcoming portion of the course (scale of 1-10)

4.1 +/- 2.4292

Final
Do you think that the Docker environment worked well for
this course

Y: 33, N: 5, No Response: 4

Which course did you use the Docker environment for
(check all that apply)

Fundamentals of Software Development 1: 12
Operating Systems Concepts: 19
Introduction to Cybersecurity: 9
Other: 2

Do you feel like the Docker environment helped you in this
course

Y: 30, N: 10, No Response: 2

What the anxiety you felt for the course helped at all by the
preconfigured and standardized Docker environment

Y: 27, N: 12 , No Response: 3

an opt-in process. We distributed the initial survey during the first
week of the semester. It consisted of thirteen questions to establish
a student interest, resources, and anxiety baseline. We waited for
the stress of midterms to be over before we distributed the second
survey. This survey contains ten questions designed to assess how
students embraced the Docker environment, their experience so
far, and their level of anxiety in the wake of its introduction. We
conducted the final survey during the last full week of classes. We
asked students eight questions to assess the efficacy of the Docker

environment and their anxiety after the course. Table3 provides a
summary of the questions.

4.3 Results
Over 22% of enrolled students completed the surveys, including 59
initial responses, 45 mid-course responses, and 42 end-of-course
responses. Table 2 records the multiple-choice, yes/no, and Likert-
scale questions. Figure 1 depicts a word cloud of an open-ended
opinion-based question. Students noted the ease of use, specifically
regarding the setup of the container. Additionally, the container

18

Figure 1:Word cloud of responses from "What have you liked
most about the Docker container so far?"

was praised for the convenience it gave users by offering all the
tools needed for a given course.

5 LESSONS LEARNED
5.1 Successes

Reported Reduction in Anxiety: All three courses combined
showed an overall decrease in anxiety at the midterm and end-
of-semester levels. By the end of the semester, 69.2% of students
reported that the standardized environment specifically helped
reduce their anxiety about their course. 75% of the students reported
that they believe the course environment worked helped them, with
an even greater 86.8% of reporting the environment worked well
for their course in general. Open-ended responses identified the
convenience and usability of the Docker images. Table 3 depicts
all three courses’ initial pre vs. midpoint anxiety. We collected
self-reported anxiety levels on a scale of 1 to 10. To classify high
anxiety, we referenced the Generalized Anxiety Disorder 7 items
(GAD-7) which uses a scale of 0-21 [22]. We adjusted this value
to our scale of 1-10, and selected 7 as the value for high anxiety.
For the Introductory Programming course, the high-level anxiety
increased from 0% to 33.4%. We believe this could be due to the lack
of adoption of the environment or due to the students being new to
experiencing University-level coursework. The Operating Systems
course originally reported high-anxiety in 24.1% of students before
decreasing to 19.1%. Our Cybersecurity class initially reported that
41.2% experienced high anxiety. However, by mid-semester, it was
down to 14.2%.
Strategies for Greater Adoption:We hypothesize that minimiz-
ing the installation difficulty strongly contributed to successful
adoption of our Docker images. We identified and practiced fail-
ures deploying our images using the methodology recommended
in [19]. We spent four weeks before the semester testing our images
on different workstations, operating systems, and architectures to
identify potential issues. Students praised this cross-architecture
ability that returned usability to their M1 and M2 Macbooks. Fur-
ther, we experimented with the most efficient ways to distribute the
images to the students efficiently and effectively. After creating the
Dockerfiles for each course, we initially expected to have students

follow the instructions to build the environment on their comput-
ers. During one of the earlier rehearsals, we discovered building
the image from the Dockerfile across multiple platforms occasion-
ally presented challenges. For example, the image on the Windows
test machine did not build correctly or function. M1 Macbooks
would build ARM-based Linux distributions instead of the required
AMD64 architecture. In response, we began self-building images
and pushing the images to the DockerHub image hosting registry.
For $60 annually, Dockerhub supports 5,000 daily image pulls, five
concurrent builds, and 300 vulnerability scans [6]. We built the
images for each course on an AMD64/Linux machine and uploaded
the compiled images to the DockerHub Registry. We then provided
students with a simple one-liner command to pull the image, map a
local folder, start, and attach. We argue that this approach signifi-
cantly reduced the opportunity for errors in configuration, building,
and deploying images.
Greater adoption for higher level courses:We observed greater
adoption among our Cybersecurity and Operating Systems courses
with 100% adoption rates compared to a 78% adoption in the Soft-
ware Development course. We hypothesize that students in the
higher level courses have a lot more experience with environment
setup and troubleshooting. We further argue that these students
were more likely to use a preconfigured environment because they
understand the time constraints of configuring and installing soft-
ware. Seven open-ended responses noted that the Cybersecurity
course included several preinstalled tools and programs, allowing
them to solve several hands-on course homework and labs. Eleven
open-ended responses identified the ease of deployment for the
Operating Systems container.
Extending to Extracurricular Activities: Our university fields
a cybersecurity competition team. Due to the constant student
turnover, the team conducts routine training sessions once a week
for newer students.We observed that our cybersecurity team adopted
the Cybersecurity course container. Anecdotally, our team’s lead-
ership reported the ease of deployability introduced a significant
opportunity to save time during training sessions. Instead of helping
newer students install a Linux-based environment or a specific tool,
they would tell them to pull the Cybersecurity container containing
all the necessary tools.

5.2 Challenges

Managed Environment Challenges: Our university operates a
Windows Domain environment, with university labs containing
restricted Windows 11 workstations. Instructors do not have per-
mission to add or configure software to the workstations. Instead,
they must submit tickets to the IT help desk. This restriction pre-
sented a significant challenge as we tried to extend our Docker
containers to our university labs. Our IT encountered technical
issues installing Docker and the required Windows Subsystem for
Linux (WSL.) Our IT staff’s lack of familiarity with container-based
virtualization complicated these issues. It took four weeks to deploy
Docker and WSL to our classroom environments.
Understanding the Audience:We struggled with the early and
overall adoption of the Docker environment with first-year stu-
dents. Computer Science and Software Engineering students must

19

Table 3: We surveyed students about their anxiety for the upcoming course on a scale of 1-10 at two points during the semester.
Our results show an overall decrease in anxiety from the beginning to the semester midpoint for each class.

Course Initial Anxiety (Respondents) Midpoint Anxiety (Respondents)
Introductions to Software Development 1 4.2222 +/- 2.8191 4.3333 +/- 2.958
Operating Systems Concepts 5.8333 +/- 2.4070 4.6428 +/- 2.2397
Introduction to Cybersecurity 5.1724 +/- 2.3914 3.75 +/- 2.4251

take the Fundamentals of Software Development I course as part
of their introductory programming requirements. These students
often need more experience with computing. We developed and
distributed instructions for installing Docker and deploying the
course environment. However, the first-year students reported dif-
ficulty following the instructions. In response, we rewrote and
redistributed the instructions. Unfortunately, we observed that stu-
dents often needed to re-engage with the updated instructions and
adopt the Docker container as their programming environment of
choice. In future course offerings, we intend to conduct rehearsals
with first-year students to ensure ease of understanding of the
installation, configuration, and deployment.
Instructor Buy-In Increases Adoption: Convincing students to
adopt new technology voluntarily, even for their benefit, presents
challenges. Learning new things can be daunting, and learning a
complicated technology can increase that anxiety. A GSA intro-
duced the Docker environment during the lab portion of the Funda-
mentals of Software Development 1 course. The instructor briefly
mentioned it during the lecture but should have emphasized it more.
The beginner students that make up this course may choose a more
familiar environment over a more beneficial one. Students taking
the Introduction to Cybersecurity course saw a mixed adoption
rate. The instructor introduced the standardized environment to the
class. The instructor encouraged its use, informing students that
help was only available for troubleshooting issues within the educa-
tional environment. Despite introducing the Docker environment,
many students opted to configure their personal Linux environ-
ments. We saw the highest adoption rate of students surveyed at
100% in the Operating Systems Concepts course. The instructor for
this course heavily pushed the standardized environment to replace
the previous methods for environmental setup. Using the Docker
environment was particularly helpful to students with the M1 and
M2 MacBooks to avoid configuring a VM on an ARM architecture.

6 RELATEDWORK
Previous works have explored the use of container-based virtual-
ization to provide students with a standardized environment [10,
12, 15, 21, 25]. Tobarra et al. previously argued for integrating re-
mote virtual labs into the classroom in [25]. The authors used a
Docker container-based virtualization to develop remote virtual
lab environments. However, this presents a challenge as students
would have to rely on remote resources’ dependability and access to
consistent and reliable internet. This approach presents significant
connectivity hurdles. In less accessible environments, providing
students with local resources on their computers might be a so-
lution to the problem [10]. In response, we argue for delivering
lightweight containers to run on student workstations regardless

of connectivity. Our previous work has argued the value of Docker
virtualization for a cybersecurity concentration [17–19, 23]. Jiang
and Song examined container-based virtualization in classrooms
and laboratories in [10]. The paper explains the advantages and
disadvantages of container- and hypervisor-based virtualization.
The authors address four different courses that experienced difficul-
ties based on working environments. Their investigation focused
on leveraging pre-built Docker Hub images only. We argue that
Docker’s relative ease allows instructors to create custom-made
images specifically tailored for their courses. Alternatively, [15]
transitioned their campus cluster of Linux systems to the cloud.
After the launch of Codespaces on Github in 2021 [8], they began
using it to distribute standardized coding environments to students.
Codespaces, however, is a cloud-based version of Visual Studio
Code backed by Docker containers. While this approach may sat-
isfy introductory programming courses, it does not scale to meet
the needs of more complex coursework like operating systems,
databases, networking, cybersecurity, or machine learning.

7 CONCLUSION
This paper presented our experiences introducing lightweight vir-
tualization into the classroom. We hypothesized that this approach
would reduce student anxiety by delivering stability through a stan-
dard environment. We explored this hypothesis by designing and
implementing standardized Docker environments for three under-
graduate computer science courses. Students reported positively
about our approach. Out of 42 Students, 75% reported that Docker
contributed to their success during the course. Our initial experi-
ments identify that further research is necessary to understand the
benefits of integrating lightweight virtualization in the classroom.
Our work underscores the importance of developing adaptable ed-
ucational environments to reduce anxiety and enhance learning
outcomes when applied to decentralized learning. We share our
materials and experiences for reproducibility, offering insight for
instructors who wish to embrace lightweight virtualization in the
classroom.

ACKNOWLEDGMENTS
This material is based upon work supported in whole or in part
with funding from the Office of Naval Research (ONR) contract
#N00014-21-1-2732. Any opinions, findings, conclusions, or recom-
mendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the ONR and/or any
agency or entity of the United States Government.

REFERENCES
[1] Akinlolu Adekotujo, Adedoyin Odumabo, Ademola Adedokun, and Olukayode

Aiyeniko. 2020. A Comparative Study of Operating Systems: Case of Windows,

20

UNIX, Linux, Mac, Android and iOS. International Journal of Computer Applica-
tions 176 (2020), 16–23.

[2] Sanaa Ashour, Ghaleb A El-Refae, and Eman A Zaitoun. 2021. Post-pandemic
higher education: Perspectives from university leaders and educational experts
in the United Arab Emirates. Higher Education for the Future 8, 2 (2021), 219–238.

[3] Manish Bhatt, Irfan Ahmed, and Zhiqiang Lin. 2018. Using virtual machine
introspection for operating systems security education. In Proceedings of the 49th
ACM Technical Symposium on Computer Science Education. ACM, Minneapolis,
MN, 396–401.

[4] Docker Inc. 2023. Docker Docs: Multi-platform images. https://docs.docker.com/
build/building/multi-platform/. Accessed: May 9, 2023.

[5] Docker Inc. 2023. Optimizing builds with cache management. https://docs.docker.
com/build/cache/. Accessed: June 8, 2023.

[6] Docker Inc. 2023. Pricing and Subscriptions. https://www.docker.com/pricing/.
Accessed: June 8, 2023.

[7] Frederic Boulanger. 2016. docker-ubuntu-novnc. https://github.com/Frederic-
Boulanger-UPS/docker-ubuntu-novnc. Accessed: August 17, 2022.

[8] Github. 2023. Github: Start coding instantly with Codespaces. https://github.
com/features/codespaces. Accessed: May 9, 2023.

[9] David A Holland, Ada T Lim, and Margo I Seltzer. 2002. A new instructional
operating system. ACM SIGCSE Bulletin 34, 1 (2002), 111–115.

[10] Keyuan Jiang and Qunhao Song. 2015. A preliminary investigation of container-
based virtualization in information technology education. In Proceedings of the
16th Annual Conference on Information Technology Education. ACM, Chicago,IL,
149–152.

[11] Nicole Johnson, George Veletsianos, and Jeff Seaman. 2020. US Faculty and
Administrators’ Experiences and Approaches in the Early Weeks of the COVID-
19 Pandemic. Online Learning 24, 2 (2020), 6–21.

[12] Tae-Hoon Kim, Keyuan Jiang, and Vivek Singh Rajput. 2016. Adoption of
container-based virtualization in IT education. In ASEE Annual Conference &
Exposition. ASEE, New Orleans, LA, 1–13.

[13] Louie Orcinolo. 2022. os161 docker. https://github.com/condor0010/os161_docker.
Accessed: August 17, 2022.

[14] Dale L Lunsford. 2009. Virtualization technologies in information systems edu-
cation. Journal of Information Systems Education 20, 3 (2009), 339.

[15] David J Malan. 2022. Standardizing Students’ Programming Environments
with Docker Containers: Using Visual Studio Code in the Cloud with GitHub

Codespaces. In Proceedings of the 27th ACM Conference on Innovation and Tech-
nology in Computer Science Education Vol. 2. ACM, Dublin, Ireland, 599–600.

[16] Dirk Merkel. 2013. Docker: Lightweight Linux Containers for Consistent Devel-
opment and Deployment. https://www.docker.com/.

[17] TJ OConnor. 2022. HELO DarkSide: Breaking Free From Katas and Embracing
the Adversarial Mindset in Cybersecurity Education. In Special Interest Group on
Computer Science Education (SIGCSE). ACM, Providence, RI, 710–716.

[18] TJ OConnor, Carl Mann, Tiffanie Petersen, Isaiah Thomas, and Chris Stricklan.
2022. Toward an Automatic Exploit Generation Competition for an Undergradu-
ate Binary Reverse Engineering Course. In Innovation and Technology in Computer
Science Education (ITiCSE). ACM, Dublin, Ireland, 442–448.

[19] TJ OConnor and Chris Stricklan. 2021. Teaching a Hands-On Mobile and Wire-
less Cybersecurity Course. In Innovation and Technology in Computer Science
Education (ITiCSE). ACM, Virtual Event, 296–302.

[20] Oliver Smith. 2021. How to run an Ubuntu Desktop virtual machine using
VirtualBox 7. https://discourse.ubuntu.com/t/how-to-run-an-ubuntu-desktop-
virtual-machine-using-virtualbox-7/25137. Accessed: June 8, 2023.

[21] Prateek Sharma, Lucas Chaufournier, Prashant Shenoy, and YC Tay. 2016. Con-
tainers and virtual machines at scale: A comparative study. In Proceedings of the
17th international middleware conference. ACM, Trento, Italy, 1–13.

[22] Robert L Spitzer, Kurt Kroenke, Janet BW Williams, and Bernd Löwe. 2006. A
brief measure for assessing generalized anxiety disorder: the GAD-7. Archives of
internal medicine 166, 10 (2006), 1092–1097.

[23] Chris Stricklan and TJ OConnor. 2021. Towards Binary Diversified Challenges
For A Hands-On Reverse Engineering Course. In Innovation and Technology in
Computer Science Education (ITiCSE). ACM, Virtual Event, 102–107.

[24] Songpon Teerakanok, Ittipon Rassameeroj, Assadarat Khurat, and Vasaka Visoot-
tiviseth. 2022. Lessons Learned from Penetration Testing Hands-on Training
during COVID-19 Pandemic. In 2022 6th International Conference on Information
Technology (InCIT). IEEE, Lisbon, Portuga, 368–373.

[25] Llanos Tobarra, Antonio Robles-Gomez, Rafael Pastor, Roberto Hernandez, An-
dres Duque, and Jesus Cano. 2020. Students’ acceptance and tracking of a new
container-based virtual laboratory. Applied Sciences 10, 3 (2020), 1091.

[26] Jordan R Wlodarczyk, Erik M Wolfswinkel, and Joseph N Carey. 2020. Coro-
navirus 2019 video conferencing: preserving resident education with online
meeting platforms. Plastic and Reconstructive Surgery 146, 1 (2020), 110e–111e.

21

https://docs.docker.com/build/building/multi-platform/
https://docs.docker.com/build/building/multi-platform/
https://docs.docker.com/build/cache/
https://docs.docker.com/build/cache/
https://www.docker.com/pricing/
https://github.com/Frederic-Boulanger-UPS/docker-ubuntu-novnc
https://github.com/Frederic-Boulanger-UPS/docker-ubuntu-novnc
https://github.com/features/codespaces
https://github.com/features/codespaces
https://github.com/condor0010/os161_docker
https://www.docker.com/
https://discourse.ubuntu.com/t/how-to-run-an-ubuntu-desktop-virtual-machine-using-virtualbox-7/25137
https://discourse.ubuntu.com/t/how-to-run-an-ubuntu-desktop-virtual-machine-using-virtualbox-7/25137

	Abstract
	1 Introduction
	2 Background
	2.1 Hypervisor-Based Virtualization
	2.2 Container-Based Virtualization
	2.3 Virtualization Opportunities

	3 Methodology
	4 Experiment
	4.1 Experiment Setup
	4.2 Survey
	4.3 Results

	5 Lessons Learned
	5.1 Successes
	5.2 Challenges

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

