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An algorithm is proposed that creates mutual exclu- 
sion in a computer network whose nodes communicate 
only by messages and do not share memory. The algo- 
rithm sends only 2*(N - 1) messages, where N is the 
number of nodes in the network per critical section 
invocation. This number of messages is at a minimum if 
parallel, distributed, symmetric control is used; hence, 
the algorithm is optimal in this respect. The time needed 
to achieve mutual exclusion is also minimal under some 
general assumptions. 

As in Lamport's "bakery algorithm," unbounded se- 
quence numbers are used to provide first-come first- 
served priority into the critical section. It is shown that 
the number can be contained in a fixed amount of memory 
by storing it as the residue of a modulus. The number of 
messages required to implement the exclusion can be 
reduced by using sequential node-by-node processing, by 
using broadcast message techniques, or by sending infor- 
mation through timing channels. The "readers and 
writers" problem is solved by a simple modification of 
the algorithm and the modifications necessary to make 
the algorithm robust are described. 
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1. Introduction 

An algorithm is proposed that creates mutual exclu- 
sion in a computer network whose nodes communicate 
only by messages and do not share memory. It is assumed 
that there is an error-free underlying communications 
network in which transit times may vary and messages 
may not be delivered in the order sent. Nodes are 
assumed to operate correctly; the consequences of node 
failure are discussed later. The algorithm is symmetrical, 
exhibits fully distributed control, and is insensitive to the 
relative speeds of nodes and communication links. 

The algorithm uses only 2* (N - 1) messages between 
nodes, where N is the number of nodes and is optimal in 
the sense that a symmetrical, distributed algorithm can- 
not use fewer messages if requests are processed by each 
node concurrently. In addition, the time required to 
obtain the mutual exclusion is minimal if it is assumed 
that the nodes do not have access to timing-derived 
information and that they act symmetrically. 

While many writers have considered implementation 
of mutual exclusion [2,3,4,5,6,7,8,9], the only earlier al- 
gorithm for mutual exclusion in a computer network was 
proposed by Lamport [10,11]. It requires approximately 
3* (N - 1) messages to be exchanged per critical section 
invocation. The algorithm presented here requires fewer 
messages (2* (N - 1)). 

2. Algorithm 

2.1 Description 
A node enters its critical section after all other nodes 

have been notified of the request and have sent a reply 
granting their permission. A node making an attempt to 
invoke mutual exclusion sends a REQUEST message to 
all other nodes. Upon receipt of the REQUEST message, 
the other node either sends a REPLY immediately or 
defers a response until after it leaves its own critical 
section. 

The algorithm is based on the fact that a node 
receiving a REQUEST message can immediately deter- 
mine whether the requesting node or itself should be 
allowed to enter its critical section first. The node origi- 
nating the REQUEST message is never told the result of 
the comparison. A REPLY message is returned imme- 
diately if the originator of the REQUEST message has 
priority; otherwise, the REPLY is delayed. 

The priority order decision is made by comparing a 
sequence number present in each REQUEST message. 
If the sequence numbers are equal, the node numbers 
are compared to determine which will enter first. 

2.2 Specification 
The network consists of N nodes. Each node executes 

an identical algorithm but refers to its own unique node 
number as ME. 1 

ME is a pun on "mutual exclusion." 
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Fig. 1. Three-node mutual exclusion example. (See Sect. 2.3.) 
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Each node has 
mutual exclusion: 

(l) 

(2) 

(3) 

three processes to implement the 

One is awakened when mutual exclusion is invoked 
on behalf of this node. 
Another receives and processes REQUEST mes- 
sages. 
The last receives and processes REPLY messages. 

The three processes run asynchronously but operate 
on a set of  common variables. A semaphore is used to 
serialize access to the common variables when necessary. 
I f  a node can generate multiple internal requests for 
mutual exclusion, it must have a method for serializing 
those requests. 

The algorithm is expressed below in an Algol-like 
language. 

SHARED DATABASE 
CONSTANT 

me, ! This node's unique number 
N; ! The number of  nodes in the network 

INTEGER Our_SequenceNumber ,  
! The sequence number chosen by a request 
! originating at this node 

H i g h e s t S e q u e n c e N u m b e r  initial (0), 
! The highest sequence number seen in any 
! REQUEST message sent or received 

Outstanding_Reply_Count; 
! The number of  REPLY messages still 
! expected 

BOOLEAN Requesting Critical_Section initial (FALSE), 
! TRUE when this node is requesting access 
! to its critical section 

Reply_Deferred [I:N] initial (FALSE); 
! Reply_Deferred [j] is TRUE when this node 
! is deferring a REPLY t o j ' s  REQUEST message 

BINARY SEMAPHORE 
Shared vars initial (1); 

! Interlock access to the above shared 
! variables when necessary 

PROCESS WHICH INVOKES MUTUAL EXCLUSION FOR 
THIS NODE 
Comment Request Entry to our Critical Section; 

P (Shared_vats) 
Comment Choose a sequence number; 
RequestingCritical_Section := TRUE; 
Our_Sequence_Number := Highest_Sequence_Number + l; 

V (Shared_vars); 
Outstanding_ReplyCount  := N - l; 
F O R j  := I STEP l UNTIL N DO I F j  # me THEN 

Send_Message(REQUEST(Our_Sequence_Number, me),j); 
Comment sent a REQUEST message containing our sequence num- 
ber and our node number to all other nodes; 

Comment Now wait for a REPLY from each of  the other nodes; 
WAITFOR (Outstanding_Reply_Count = 0); 

Comment Critical Section Processing can be performed at this point; 

Comment Release the Critical Section; 
RequestingCritical_Section := FALSE; 
FOR j := l STEP 1 UNTIL N DO 

IF Reply_Deferred[j] THEN 
BEGIN 

Reply_Deferred[j] := FALSE; 
Send_Message (REPLY, j); 
Comment send a REPLY to node j; 

END; 

PROCESS WHICH RECEIVES REQUEST (k, j )  MESSAGES 
Comment k is the sequence number begin requested, 

j is the node number making the request; 

BOOLEAN Defer it ; 
! TRUE when we cannot reply immediately 

Highest_Sequence_Number :~ 

Maximum (Highest_Sequence_Number, k); 
P (Shared_vars); 

Defer it := 
Requesting_Critical_Section 
AND ((k > Our_sequence_Number) 

OR (k = Our_Sequence_Number ANDj > me)); 
V (Shared_vars); 
Comment Defer_it will be TRUE if  we have priority over 

node j ' s  request; 
IF Defer it THEN Reply_Deferred[j] := TRUE ELSE 

Send_Message (REPLY, j) ;  

PROCESS WHICH RECEIVES REPLY MESSAGES 
Outstanding_Reply_Count := Outstanding_Reply_Count - 1; 

The REPLY processing can be represented by a decision 
table: 

Condition and action entries 

Receiving node is also request- 
ing the resource 

Received message's sequence 
number compared to ours 

Received message's node number 
compared to ours 

Send REPLY back 

Defer the REQUEST 

Rule number 

1 2 3 4 

N Y Y Y 

I 
- < > = 

I 
I 
1 

x x i x 
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> 
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2.3 Example 
Imagine a three-node network using this algorithm. 

Initially the highest sequence number at each node is 
zero. Solid lines show REQUEST messages; the number 
is the sequence number of the request. The dashed lines 
show REPLY messages. 

In Figure 1 (a), node 3 is the first to attempt to invoke 
mutual exclusion. It chooses sequence number l and 
sends REQUEST messages to nodes 1 and 2. 

Before either message can arrive, node 2 wishes to 
enter its critical section. It also chooses sequence number 
1 and sends REQUEST messages to the other nodes 
(Figure l(b)). 

In Figure l(c) node 2's messages have arrived. At 
node l, which has not yet made a request itself, a REPLY 
is immediately generated. At node 3, 2's request is found 
to have an identical sequence number to 3's request; 
node 2 wins on the node number tie-breaking rule. A 
REPLY is sent. But at node 2, 3's request is found to 
have an identical sequence number but loses the tie- 
breaker. A reply is deferred. 

Figure l(d) shows node l making a request to enter 
its critical section. It uses sequence number 2 since it has 
received a REQUEST message with a sequence number 
of 1 (from node 2). Owing to an anomaly in the com- 
munications system, the REQUEST message to node 2 
overtakes the REPLY that is on its way there. No reply 
message is sent since the message's sequence number is 
higher than node 2's sequence number. 
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In Figure l(e), node 2 can now enter its critical 
section since it has received both of the necessary replies. 
Node l's REQUEST has also arrived at node 3 but has 
been deferred since the request's sequence number is 
higher than that selected by node 3. 

When node 2 has finished its critical section process- 
ing, it sends REPLY messages back to both nodes 1 and 
3 (Figure l(f)). 

In Figure l(g), nodes 1 and 3 have received their 
REPLY messages from node 2 but not yet from each 
other. Node 3's request has arrived at node 1. Since it 
bears a smaller sequence number, a REPLY is immedi- 
ately generated. 

Figure l(h) shows node 3 entering its critical section 
after it received both replies. 

In Figure l(i), node 3 has finished its critical section 
processing and is returning the deferred REPLY message 
to node 1. 

Finally in Figure l(j), node 1 begins critical section 
processing. At the conclusion of  its critical section, node 
1 does nothing since it knows of no other node wishing 
to invoke mutual exclusion. 

2.4 Discussion 

The sequence numbers are similar to the numbers 
used by Lamport's "bakery algorithm." [9] The node 
with the lowest number is the next one to enter the 
critical section. Ties are broken by comparing node 
numbers. A REPLY is generated when its sender agrees 
to allow the node sending a REQUEST to enter its 
critical section first. 

The sequence numbers prevent high numbered nodes 
from being "shut-out" by lower numbered nodes. Once 
node A's REQUEST messages have been processed by 
all other nodes, no other node may enter its critical 
section twice before node A has entered its critical sec- 
tion. 

The sequence numbers and node numbers form a 
virtual ordering among requesting nodes. No one of the 
nodes has any more information than a list of some or 
all of  the other nodes following it in the virtual order. 
Yet the system as a whole defines a unique virtual 
ordering based on a first-come-first-served discipline. 

3. Assertions 

3.1 Mutual Exclusion 

Mutual exclusion is achieved when no pair of nodes 
is ever simultaneously in its critical section. For any pair 
of  nodes, one must leave its critical section before the 
other may enter. 

ASSERTION. Mutual exclusion is achieved. 

PROOF. Assume the contrary, that at some time two 
nodes (A and B) are both in their critical sections at the 

12 

same time. Examine the message traffic associated with 
the current cycle of the algorithm that occurred in each 
node just prior to this condition. Each node sent a 
REQUEST to the other and received a REPLY. 

CASE 1: Node A sent a REPLY to Node B's RE- 
QUEST before choosing its own sequence number. 
Therefore A will choose a sequence number higher than 
B's sequence number. When B received A's REQUEST 
with a higher number, it must have found its own 
Requesting_Critical_Section = TRUE since this is set to 
be TRUE before sending REQUEST and A had 
received this request before sending its own REQUEST. 
The algorithm then directs B to defer the REQUEST 
and not reply until it has left its critical section. Then 
node A could not yet be in its critical section contrary to 
assumption. 

CASE 2: Node B sent a REPLY to A's REQUEST 
before choosing its own sequence number. This is the 
mirror image of Case 1. 

CASE 3: Both nodes sent a REPLY to the other's 
REQUEST after choosing their own sequence num- 
bers. Both nodes must have found their own Re- 
questing__Critical_Section to be TRUE when receiving 
the other's REQUEST message. Both nodes will com- 
pare the sequence number and node number in the 
REQUEST message to their own sequence and node 
numbers. The comparisons will develop opposite senses 
at each node and exactly one will defer the REQUEST 
until it has left its own critical section contradicting the 
assumption. 

Therefore, in all cases the algorithm will prevent both 
nodes from entering their critical sections simultaneously 
and mutual exclusion is achieved. 

3.2 Deadlock 
The system of  nodes is said to be deadlocked when 

no node is in its critical section and no requesting node 
can ever proceed to its own critical section. 

ASSERTION. Deadlock is impossible. 

PROOF. Assume the contrary, that deadlock is possi- 
ble. Then all requesting nodes must be unable to proceed 
to their critical sections because one or more REPLYs 
are outstanding. After a sufficient period of time, the 
only reason that the REPLY could not have been re- 
ceived is that the REQUEST is deferred by another node 
which itself is waiting for REPLYs and cannot proceed. 
Therefore, there must exist a circuit of nodes, each of  
which has sent a REQUEST to its successor but has not 
received a REPLY. 

Since each node in the loop has deferred the RE- 
QUEST sent to it, it must be requesting the critical 
section itself and have found that the sequence number/  
node number pair in that REQUEST was greater than 
its own. However, this cannot hold for all nodes in the 
supposed circuit, and thus the assertion must be true. 
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3.3 Starvation 
Starvation occurs when one node must wait indefi- 

nitely to enter its critical section even though other nodes 
are entering and exiting their own critical sections. 

ASSERTXON. Starvation is impossible. 
PROOF. Assume the contrary, that starvation is pos- 

sible. Nodes receiving REQUEST messages will process 
them within finite time since the process which handles 
them does not block. After processing the REQUEST 
sent by the starving node, a receiving node cannot issue 
any new requests of its own with the same or lower 
sequence number. After some period of time the se- 
quence number of the starving node will be the lowest of 
any requesting node. Any REQUESTs received by the 
starving node will be deferred, preventing any other 
node from entering its critical section. By the previous 
assertion, deadlock cannot occur and some process must 
be able to enter its critical section. Since it cannot be any 
other process, the starving process must be the one to 
enter its critical section. 

out of a node must double as the message into some 
other node. 

If the algorithm presented here is modified so that 
messages are sent from node to node sequentially, it 
achieves the theoretical minimum number of messages 
in this case also. Parallel operation is necessarily sacri- 
ficed. The modifications required are considered in Sec- 
tion 6.3. 

5. Delay in Granting Critical Sections 

The algorithm also grants mutual exclusion with 
minimum delay if some general assumptions are made. 

5.1 Definition of Delay 
The delay involved in granting the critical section 

resource is the stretch of time beginning with the request- 
ing node asking for the critical section and ending when 
that node enters its critical section. The execution time 
of the instructions in the algorithm is assumed to be 
negligible compared to the message transmission times. 

4. Message Traffic 

This algorithm requires one message to (REQUEST) 
and one message from (REPLY) each other node for 
each entry to a critical section. If the network consists of 
N nodes, 2*(N - l) messages are exchanged. It will be 
shown that this number is the minimum required when 
nodes act independently and concurrently. Hence, the 
algorithm is optimal with regard to the number of mes- 
sages exchanged. 

4.1 Concurrent Processing 
For a symmetrical, fully distributed algorithm there 

must be at least one message into and one message out 
of each node. If no message enters/leaves some node, 
that node must not have been necessary to the algorithm; 
then the algorithm is not symmetrical or is not fully 
distributed. Furthermore, to allow the algorithm to op- 
erate concurrently at all nodes, the messages entering 
nodes must not wait for the message generated at the 
conclusion of processing at other nodes. This would 
indicate that two separate messages per node are re- 
quired. The requesting node does not need to send and 
receive messages to itself, however, and so a total of 
2*(N - 1) messages are needed. This number must be 
a minimum for any parallel, symmetric, distributed al- 
gorithm. 

4.2 Serial Processing 
If the nodes do not act independently of each other, 

it is possible to reduce the number of messages by using 
serial node-by-node processing. The first condition dis- 
cussed earlier (one message into and out of each node) 
still holds so a minimum of N messages are required. No 
parallelism can exist in such a structure since a message 

13 

5.2 Assumptions 
The following assumptions prevent the use of central 

control or extra information derived from timing: 

Assumption 1. No information is available bounding 
transmission time delays or giving actual transit times. 
Because of this assumption, it takes one round-trip time 
to determine the state of another node. By adopting this 
assumption, sending information through timing chan- 
nels becomes impossible. 

Assumption 2. No node possesses the critical section 
resource when it has not been requested. This assumption 
prevents a node or series of nodes from acting as a 
central control because it retained the critical section 
r e sou rce .  

Assumption 3. Nodes do not anticipate requests. 

5.3 Bounds 
Three conditions that put a lower bound on delay 

times are developed and the mutual exclusion algorithm 
is shown to achieve these bounds. 

5.3.1 Bound 1: Minimum delay time per request. 
Before a node enters its critical section, it must make 
sure that no other node is entering. To do this it must 
determine the current status of any other node that could 
take precedence if there is a time overlap and both nodes 
are said to be requesting concurrently [10]. By assump- 
tion 1 this will take at least one round-trip transmission 
time. By assumptions 2 and 3 this process cannot start 
before the request arrives. Therefore, no request can be 
serviced in less than one round-trip time. 

5.3.2 Bound 2: Minimum delay time with conflict. 
When two nodes are requesting concurrently, they do 
not know which of them made their request first because 
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of  the absence of  timing information. A tie-breaking 
scheme, representing a total ordering among requesting 
nodes, must be used. Since the tie-breaking rule does not 
know which node actually made the earlier request, half  
of  the time a critical section grant cannot be made until 
after the node making the later request has received its 
round-trip replies. Conflict may also occur with more 
than two nodes. One of  them must be selected by the tie- 
breaker to be granted access to its critical section first. 

5.3.3 Bound 3: System throughput. Once a node has 
released the critical section resource, no other node can 
enter its critical section in less than a one-way trip 
transmission time. This is the minimum amount of  time 
needed to notify other nodes that critical section pro- 
cessing has been completed and to transmit the new 
values of  network-wide information. 

5.4 Compliance 
The algorithm achieves these bounds: 

CASE A: If  when a critical section is released at least 
one node is eligible to enter its critical section based on 
Bounds 1 and 2 within a one-way trip time in the future, 
the algorithm will achieve the more ambitious Bound 3. 

If  the next node to enter its critical section is eligible 
under Bounds 1 and 2 within a one-way trip time in the 
future, then at least one one-way trip time has elapsed 
already since that node made its request. Since it is next, 
only the node currently releasing the critical section 
could be delaying a REPLY message and this REPLY 
will be triggered by the release of  the critical section. 
This final reply will reach the next node in a one-way 
trip time satisfying Bound 3. 

CASE B: Case A does not hold. The algorithm 
achieves Bound 1 or Bound 2 depending upon interfer- 
ence. The node with lowest sequence number /node num- 
ber pair among requesting nodes will have none of  its 
requests queued by other nodes and, hence, will enter its 
critical section in the minimum amount of  time given by 
Bounds 1 and 2. 

In short, the algorithm achieves Bound B whenever 
it can do so without violating Bounds 1 and 2. The 
algorithm therefore has minimal delay times under as- 
sumptions 1, 2, and 3. 

The delay time envelope when plotted against arrival 
rate is discussed further in [ 12]. 

When a particular network has closely bounded mes- 
sage delay times and either synchronized docks or 
knowledge of  transit times, this timing information can 
be used to reduce delay times still further [13]. 

6. Modifications 

Several interesting modifications can be made to the 
algorithm to take advantage of  different environments. 

6.1 Implicit Reply 
The REPLY message carries only a single bit of  

information. When the message transmission time be- 
tween nodes has an upper bound, the sense of the 
response can be changed so that no reply within that 
time period indicates an implicit reply. An explicit mes- 
sage, called "D EF ERRED " ,  is sent when REPLY would 
ordinarily not be sere. 

The number of  messages required by the implicit 
reply scheme varies between l * ( N  - l) and 3 * ( N  - l) 
depending on the number of  D E F E R R E D  messages 
sent. When there is little contention for the critical sec- 
tion resource, the number of  messages approaches 
I * ( N -  1). 

Since a requesting node must usually wait for the 
maximum round-trip time before entering its critical 
section, the usefulness of  this modification depends on 
an upper bound for transmission time which is not much 
larger than the average. 

6.2 Broadcast Messages 
When the communications structure between nodes 

permits broadcast messages, the initial REQUEST mes- 
sage can be sent using that mechanism. The message 
traffic is reduced to N messages, one broadcast RE- 
QUEST and (N - 1) REPLYs. If  combined with the 
implicit reply modification discussed above, the message 
count can be as low as one. 

6.2.1 Communications medium sequencing. Broad- 
cast REQUEST messages need not contain the usual 
sequence number if their time of  successful transmission 
can be monitored. The broadcast medium enforces seri- 
alization of  the REQUESTs and a queueing order equiv- 
alent to the sequence numbers may be obtained by 
observing the order of  REQUEST messages appearing 
on the broadcast medium. 

The REPLY messages can also be broadcast, and 
only two messages per critical section invocation are 
required. REPLYs are only needed from those other 
nodes which have themselves successfully broadcast a 
prior REQUEST but received no corresponding RE- 
PLY. 

6.2.2 No communications medium sequencing. Even 
if the order of  successful REQUEST broadcasts cannot 
be monitored, it is useful to broadcast the REPLY mes- 
sages following critical section processing. The size of 
the audience depends on the degree of  contention. A 
broadcast REPLY message must contain a list of  in- 
tended recipients because it is not sufficient for nodes 
waiting for a REPLY to assume it applies to them. 2 

2 Example: While node 1 is performing critical section processing 
related to its request with sequence number 1, node 2 decides to issue 
a REQUEST message with sequence number 2. Before the REQUEST 
message arrives at node 1, node I completes its critical section process- 
ing and broadcasts the REPLY it owes some other node(s). Without a 
list of intended recipients, node 2 might think that the REPLY applies 
to its REQUEST message and continue. In fact, node 1 may make a 
new request with sequence number 2 and be entitled to enter its critical 
section first due to the tie-breaking rule. 
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6.3 Ring Structure 
The number of messages can be cut to N by process- 

ing the requests serially through a logical circuit consist- 
ing of all nodes instead of allowing processing to proceed 
concurrently. N is the minimum number of messages 
required for any distributed symmetric algorithm when 
broadcasting is not available and information is not sent 
via timing channels. 3 

The algorithm must be modified by replacing the 
REPLY message with an echo of the REQUEST mes- 
sage. As the REQUEST message travels around the 
circuit of nodes, it may be deferred at several stops. 
When it is received at the initiating node, mutual exclu- 
sion has been achieved and critical section processing 
may begin. 

A further possible modification sends the REQUEST 
message from node to node around the circuit without 
pause but the notation "DEFERRED by node j "  is 
added by each node j that is copying and deferring the 
request. The Outstanding_Reply_Count is then set ac- 
cording to the notations when it arrives back at the 
initiating node. The nodes which have marked the RE- 
QUEST as deferred generate individual REPLYs in the 
usual way. This technique comes close to N messages 
while eliminating the cumulative delays at each stop. 

6.4 Bounding Sequence Numbers 
The sequence numbers in the algorithm increase at 

each critical section invocation and are theoretically 
unbounded. The ticket numbers of the "bakery algo- 
rithm" [9] suffer from the same problem. 

A technique for limiting the amount of storage nec- 
essary to hold these unbounded numbers can be bor- 
rowed from computer communications protocols. Al- 
though the numbers themselves are unbounded, their 
range is bounded. The sequence numbers increase by no 
more than one each time a node requests entry to its 
critical section. That request cannot be granted as long 
as a lower sequence number request is outstanding. 
Therefore the numbers must fall within the range from 
x t o x  + N -  1. 

The sequence numbers can be stored modulo M 
where M _> 2N - 1. When making a comparison, the 
smaller number should be increased by M if the differ- 
ence is N or more. Thus only l o g 2 ( 2 N  - 1) bits of storage 
are needed regardless of the number of times the critical 
section is entered. 

6.5 Sequence Number Incrementation 
Aside from this method for limiting the storage re- 

quired to hold sequence numbers, there is no reason for 
incrementing sequence numbers in unit steps. Two situ- 
ations make larger increments attractive: 

(1) The algorithm tends to favor lower numbered 
nodes slightly, owing to the tie-breaking rule. This 

a To involve all nodes, at least one message must be received and 
one sent per node. The minimum number of messages that meet this 
requirement is N. 

favoritism can be reduced by incrementing the sequence 
number by a random integer. The tie-breaking node 
number is still required in case the random integers used 
were equal. 

(2) Deliberate priority can be introduced by in- 
structing high priority nodes to use small increments and 
low priority nodes to use large increments. In addition, 
high priority nodes may be allowed to monopolize criti- 
cal section processing until forced to increment their 
sequence numbers past the one chosen by a lower priority 
node. In doing so, the process at a high priority node 
which receives and handles messages may choose to 
delay acting on those received from low priority nodes 
in order to keep the Highest_Sequence_Number from 
being prematurely incremented past the one chosen by 
the low priority node. 

6.6 Readers and Writers 
The algorithm is easily modified to solve the "Read- 

ers and Writers" problem [1] where writers are given 
priority. The modification is simply that "readers" never 
defer a REQUEST for another "reader"; instead they 
always REPLY immediately. "Writers" follow the orig- 
inal algorithm. 

7. Considerations for Practical Networks 

7.1 Node Numbers 
It is more convenient to draw node numbers from a 

larger range than 1 . . .  N. The algorithm may be changed 
to map the integers 1 . . .  N into the actual node numbers 
by indexing a table NAMES [1 . . .  N]. The comparison 
of node numbers should then be performed by compar- 
ing the values contained in NAMES. 

7.2 Insertion of New Nodes 
New nodes may be added to the group participating 

in the mutual exclusion algorithm. They must be as- 
signed unique node numbers, obtain a list of participat- 
ing nodes, be placed on every other node's list of partic- 
ipants, and acquire an appropriate value for their High- 
est_Sequence_Number variable. 

7.2.1 Restart interval. If the node could have been 
previously operational in the group (e.g., it failed and is 
now restarting), it should first notify other nodes that it 
failed and then wait long enough to be sure its old 
messages were delivered and the network processed its 
removal. Usually the network will already be aware of 
the node's failure, but this cannot be assumed. If this 
step was not followed, the failure may be detected at 
approximately the same time as the node rejoins the 
group. This would result in conflicting bookkeeping at 
different nodes. 

7.2.2 Reconcile participant lists. A new node must 
obtain a list of other participating nodes and have itself 
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added to the others' lists. A new node should contact a 
"sponsor" node which is already participating in the 
group. The sponsor should then invoke mutual exclusion, 
initialize the new node's participant list from its own, 
and broadcast the new node's identity before releasing 
mutual exclusion. Each node receiving this notification 
adds the new node number to its NAMES array and 
increments N, the number of active nodes. 

An alternative is possible if the communications net- 
work can deliver a message to all other nodes without 
the sender naming all the other nodes in the network. In 
this case a new node obtains a list of participants from 
a nearby node and then sends a broadcast message 
asking all other nodes to include it on their list of 
participating nodes. 

7.2.3 Set highest sequence number. The High- 
est_Sequence_Number variable of a new node must not 
be set to any value lower than the sequence number of 
any REQUEST message which would already have been 
received had the new node been continuously active. 
Until an appropriate value of Highest_Se- 
quence_Number is obtained, mutual exclusion cannot 
be requested and incoming REQUEST messages are 
processed normally. 

A new node can determine that its Highest_ 
Sequence_Number is high enough by several methods. 

(1) Ask all other nodes for their Highest_ 
Sequence_Number and use the largest. 

(2) Wait until one REQUEST message has been re- 
ceived from every other node. 

(3) Wait until the sequence numbers on REQUEST 
messages have increased by N - 1. 

(4) Wait until all (N - 1) nodes would have time to 
enter and leave their critical sections even if they 
all had outstanding requests. This requires the abil- 
ity to bound message transmission times and critical 
section times. If no REQUEST message is received 
during this time, the value of Highest_ 
Sequence_Number from any nearby node can be 
used. 

(5) Wait until the fourth REQUEST message is re- 
ceived from a single node. This method requires 
that messages are sent and delivered in the same 
order. [See Appendix.] 

The new node may request access to its critical section 
after any of the above methods has been used to verify 
that its Highest_Sequence_Number variable is suffi- 
ciently high. 

7.3 Removal of Nodes 
A node wishing to leave the group may do so by 

notifying all other nodes of its intention. The other nodes 
should acknowledge this message. While waiting for 
acknowledgement, the departing node may not request 
mutual exclusion and must continue to send REPLY 
messages to any REQUEST messages it receives. Each 

node checks to see if the departing node is listed in its 
NAMES array, and if so, removes it and decrements the 
value of N, the number of active nodes, by one. If 
messages may be delivered out of order, a node awaiting 
a REPLY message from a departing node should pretend 
the REPLY was received. 

7.4 Node Failures 
In practice some nodes fail and will not respond to 

messages directed at them. To prevent this situation from 
stopping the proposed mutual exclusion algorithm, a 
timeout-recovery mechanism may be added. The 
timeout detection of a failed node relies on knowledge 
of an upper bound on the time which may elapse before 
a working node responds to a message and an estimate 
of the maximum processing time within a critical section. 
The only message in the original algorithm which de- 
mands a response is the REQUEST message. 

A requesting node should start a timer when the 
REQUEST messages are sent. The timer should be 
restarted when a REPLY is received and cancelled when 
the critical section processing begins. 

A bit map, Awaiting_Reply [1 . . .  N], can be used to 
identify which nodes have not yet sent a REPLY mes- 
sage. The Awaiting_Reply array is set to all TRUE 
values before a REQUEST message is issued. Individual 
bits are turned off when REPLY messages are received. 

If the timer expires, 4 all nodes for which Awaiting_ 
Reply is TRUE are suspected of having failed. A probing 
message, ARE_YOU_THERE(me), should be sent to 
each suspect node. If no answer is received during a 
second timeout period, ~ the suspect node has failed. 

When an ARE_YOU_THERE(j) message is re- 
ceived, Reply_Deferred[j] should be examined. If it is 
FALSE, it must be that the REQUEST was not received, 
the REPLY was lost, or the node has restarted; the 
correct response is REPLY(me). If Reply_Deferred[j] is 
TRUE, a YES_I_AM_HERE message should be sent to 
confirm that the node is alive. 

The timeout does not impose an upper limit on the 
duration of a critical section. If critical section processing 
exceeds the timeout, all nodes will respond with YES I 
AM_HERE messages and a new timeout period may 
begin. 

When it has been determined that node j has failed, 
this can be broadcast by the node detecting the failure. 
Any node which is awaiting a REPLY message from the 
failed node should pretend that a REPLY was received. 
In addition the node should be erased from the NAMES 
array if present and N, the number of active nodes, 
decremented by one. 

If the failed node recognizes that it has failed and 
has been restarted, it may return to the group through 

4 The appropriate value is worst-case round-trip message trans- 
mission time plus worst-case processing time at the distant node plus 
a reasonable estimate of maximum critical section time. 

In this case just round-trip message time plus worst-case process- 
ing time at the distant node. 
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the mechanism for adding a new node. If it does not 
know that it has failed and issues new REQUEST mes- 
sages, any node which receives the REQUEST message 
and does not fred the node's name in its NAMES array 
may return a special message notifying the node that it 
should restart itself and use the insertion protocol. 

8. Conclusion 

An algorithm is presented that implements mutual 
exclusion in a computer network. No algorithm uses 
fewer messages, operates faster, and exhibits concurrent, 
symmetric, and distributed control. The algorithm is safe 
and live and mechanisms exist to handle node insertion, 
removal, and failure. 

Modifications can be made to reduce the number of 
messages by taking advantage of serial processing, 
broadcast messages, and transmitting information 
through omitted responses. The sequence numbers can 
be stored in limited memory by keeping them as residues 
of  a modulus that is at least twice as large as the number 
of  nodes. The readers and writers problem is solved by 
the same algorithm with a simple modification. 

Appendix. The Effect of Message Ordering 
The algorithm presented in this paper does not de- 

pend on messages being delivered or acted upon in the 
order in which they are sent. I f  such a condition does 
exist, there is a stronger limit to the number of times 
other nodes can enter their critical sections before a 
requesting node A can. 

Without delivery in order of transmission, the worst 
case anMysis shows that N(N + 1)/2 - 1 nodes can enter 
their critical section before Node A may. 

To determine this bound, assume that A has the highest node 
number and therefore the least priority in breaking ties. A's sequence 
number may be (N - 1) higher than the lowest outstanding sequence 
number. (See Section 6.4.) It is possible, by judiciously ordering the 
delivery of  messages, for each other node to enter its critical section 
with its sequence number taking on each value between its current 
value and A's value. To get the worst case, assume that all nodes have 
chosen a distinct sequence number with A's number the highest. 
Therefore, one node can enter its critical section N times before A may, 
another (N - 1), another (N - 2) and so on down to the node whose 
REQUEST message caused A's sequence number selection. This takes 
two critical section entries at most. This sum, N + (N - 1) + (N - 2) 
+ . . .  + 3 + 2, is the number of  times other nodes may enter their 
critical section after A has made a request in the worst case. 

If  delivery is guaranteed to be in the order of  trans- 
mission, no other node may enter its critical section more 
than twice between the time that A selects a sequence 
number and A is permitted to enter its critical section. 
No more than 2*(N - 1) critical sections are possible 
before A may enter. 

To get this bound observe that after node .4 has done its "Node 
Requests Critical Section" processing, it cannot receive more than one 
REQUEST from another node ( j )  which contains a lower or equal 
sequence number. By the time it gets the REPLY from this REQUEST, 
it must also have received A's REQUEST; it cannot thereafter select a 
lower or equal sequence number. Each other n o d e j  can enter its critical 
section at most once because of  an already approved REQUEST and 
once with the one REQUEST which contains a lower or equal sequence 
number. I f  every other node follows this worst case pattern, at most 
2*(N - 1) critical section entries may preceed A's 

When delivery in order is used, a new node may 
assume its Highest_Sequence_Number is synchronized 
when it has heard the fourth REQUEST message from 
the same node. 

Assume that a n o d e j  sent its REQUEST messages before the new 
node came on-line. The new node is not synchronized until it holds a 
higher number in Highest_SequenceNumber than the sequence num- 
ber used by j.  The reference node B (which is generating the four 
requests) can enter its critical section at most twice before node j enters 
its critical section. Therefore, by the time B enters its critical section 
the third time, no nodes l ikej  exist which did not know about the new 
node when they made their requests. Reference node B may have 
issued three REQUEST messages seen by the new node before entering 
its critical section for the third time. The fourth REQUEST message 
guarantees that the critical section was entered for the third time. 

Acknowledgment. The authors wish to thank R. 
Stockton Gaines for his detailed and helpful comments 
on the presentation of  this material. 

Received 3/78; revised 3/80; accepted 9/80 

References 
1. Courtois, P.J., Heymans, F., and Parnas, D.L. Concurrent control 
with "readers" and "writers." Comm. ACM 14, 10 (Oct. 1971), 667- 
668. 
2. deBruijn, N.G. Additional comments on a problem in concurrent 
programming and control. Comm. ACM 10, 3 (March 1967), 137- 
138. 
3. Dijkstra, E.W. Hierarchical ordering of  sequential processes. Acta 
lnformatica 1, 2 (1971), 115-138. 
4. Dijkstra, E.W. Solution of  a problem in concurrent programming 
control Comm. ACM 8, 9 (Sept. 1965), 569. 
5. Dijkstra, E.W. The structure of the THE multiprogramming 
system. Comm. ACM 11, 5 (May 1968), 34!-346. 
6. Eisenberg, M.A., and McGuire, M.R. Further comments on 
Dijkstra's concurrent programming control problem. Comm. A CM 
15, 11 (Nov. 1972), 999. 
7. Hill, J. Carver. Synchronizing processors with memory-contents- 
generated interrupts. Comm. ACM 16, 6 (June 1973), 350-351. 
8. Knuth, D.E. Additional comments on a problem in concurrent 
programming control. Comm. ACM 9, 5 (May 1966), 321-322. 
9. Lamport, U A new solution of  Dijkstra's concurrent 
programming problem. Comm. ACM 17, 8 (Aug. 1974), 453-455. 
10. Lamport, U Time, clocks and the ordering of  events in a 
distributed system. Comm. A CM 21, 7 (July 1978), 558-565. 
11. Lamport, L. Time, clocks and the ordering of events in a 
distributed system. Rep. CA-7603-2911, Mass. Comptr. Assoc., 
Wakefield, Mass. March 1976. 
12. Ricart, G., and Agrawala, A.K. Performance of  a distributed 
network mutual exclusion algorithm. Tech. Rept. TR-774, Dept. 
Comptr. Sci., Univ. of  Maryland, College Park, Md., March 1979. 
13. Ricart, G., and Agrawala, A.K. Using exact timing to implement 
mutual exclusion in a distributed network. Tech. Rept. TR-742, Dept. 
Comptr. Sci., Univ. of  Maryland, College Park, Md. March 1979. 

17 Communications January 1981 
of  Volume 24 
the ACM Number 1 


