
Operating Systems
R. Stockton Gaines
Editor

An Optimal Algorithm
for Mutual Exclusion
in Computer Networks

Glenn Ricart
National Institutes of Health

Ashok K. Agrawala
University of Maryland

An algorithm is proposed that creates mutual exclu-
sion in a computer network whose nodes communicate
only by messages and do not share memory. The algo-
rithm sends only 2*(N - 1) messages, where N is the
number of nodes in the network per critical section
invocation. This number of messages is at a minimum if
parallel, distributed, symmetric control is used; hence,
the algorithm is optimal in this respect. The time needed
to achieve mutual exclusion is also minimal under some
general assumptions.

As in Lamport's "bakery algorithm," unbounded se-
quence numbers are used to provide first-come first-
served priority into the critical section. It is shown that
the number can be contained in a fixed amount of memory
by storing it as the residue of a modulus. The number of
messages required to implement the exclusion can be
reduced by using sequential node-by-node processing, by
using broadcast message techniques, or by sending infor-
mation through timing channels. The "readers and
writers" problem is solved by a simple modification of
the algorithm and the modifications necessary to make
the algorithm robust are described.

Key Words and Phrases: concurrent programming,
critical section, distributed algorithm, mutual exclusion,
network, synchronization

CR Categories: 4.32, 4.33, 4.35

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

Authors' addresses: G. Ricart, Division of Computer Research and
Technology, National Institutes of Health, Bethesda, MD 20205; A.K.
Agrawala, Department of Computer Science, University of Maryland,
College Park, MD 20742.

This research was supported in part by the Air Force Office of
Scientific Research under grant AFOSR 78-3654A.
© 1981 ACM 0001-0782/81/0100-0009500.75.

1. Introduction

An algorithm is proposed that creates mutual exclu-
sion in a computer network whose nodes communicate
only by messages and do not share memory. It is assumed
that there is an error-free underlying communications
network in which transit times may vary and messages
may not be delivered in the order sent. Nodes are
assumed to operate correctly; the consequences of node
failure are discussed later. The algorithm is symmetrical,
exhibits fully distributed control, and is insensitive to the
relative speeds of nodes and communication links.

The algorithm uses only 2* (N - 1) messages between
nodes, where N is the number of nodes and is optimal in
the sense that a symmetrical, distributed algorithm can-
not use fewer messages if requests are processed by each
node concurrently. In addition, the time required to
obtain the mutual exclusion is minimal if it is assumed
that the nodes do not have access to timing-derived
information and that they act symmetrically.

While many writers have considered implementation
of mutual exclusion [2,3,4,5,6,7,8,9], the only earlier al-
gorithm for mutual exclusion in a computer network was
proposed by Lamport [10,11]. It requires approximately
3* (N - 1) messages to be exchanged per critical section
invocation. The algorithm presented here requires fewer
messages (2* (N - 1)).

2. Algorithm

2.1 Description
A node enters its critical section after all other nodes

have been notified of the request and have sent a reply
granting their permission. A node making an attempt to
invoke mutual exclusion sends a REQUEST message to
all other nodes. Upon receipt of the REQUEST message,
the other node either sends a REPLY immediately or
defers a response until after it leaves its own critical
section.

The algorithm is based on the fact that a node
receiving a REQUEST message can immediately deter-
mine whether the requesting node or itself should be
allowed to enter its critical section first. The node origi-
nating the REQUEST message is never told the result of
the comparison. A REPLY message is returned imme-
diately if the originator of the REQUEST message has
priority; otherwise, the REPLY is delayed.

The priority order decision is made by comparing a
sequence number present in each REQUEST message.
If the sequence numbers are equal, the node numbers
are compared to determine which will enter first.

2.2 Specification
The network consists of N nodes. Each node executes

an identical algorithm but refers to its own unique node
number as ME. 1

ME is a pun on "mutual exclusion."

Communications January 1981
of Volume 24
the ACM Number 1

http://crossmark.crossref.org/dialog/?doi=10.1145%2F358527.358537&domain=pdf&date_stamp=1981-01-01

Fig. 1. Three-node mutual exclusion example. (See Sect. 2.3.)

© G
{o)

1

{c)

{.)

(,)

{')

{,)

10 Communications
of
the ACM

©
{b)

2 t

{d)

{h)

(J)
January 1981
Volume 24
Number 1

Each node has
mutual exclusion:

(l)

(2)

(3)

three processes to implement the

One is awakened when mutual exclusion is invoked
on behalf of this node.
Another receives and processes REQUEST mes-
sages.
The last receives and processes REPLY messages.

The three processes run asynchronously but operate
on a set of common variables. A semaphore is used to
serialize access to the common variables when necessary.
I f a node can generate multiple internal requests for
mutual exclusion, it must have a method for serializing
those requests.

The algorithm is expressed below in an Algol-like
language.

SHARED DATABASE
CONSTANT

me, ! This node's unique number
N; ! The number of nodes in the network

INTEGER Our_SequenceNumber ,
! The sequence number chosen by a request
! originating at this node

H i g h e s t S e q u e n c e N u m b e r initial (0),
! The highest sequence number seen in any
! REQUEST message sent or received

Outstanding_Reply_Count;
! The number of REPLY messages still
! expected

BOOLEAN Requesting Critical_Section initial (FALSE),
! TRUE when this node is requesting access
! to its critical section

Reply_Deferred [I:N] initial (FALSE);
! Reply_Deferred [j] is TRUE when this node
! is deferring a REPLY t o j ' s REQUEST message

BINARY SEMAPHORE
Shared vars initial (1);

! Interlock access to the above shared
! variables when necessary

PROCESS WHICH INVOKES MUTUAL EXCLUSION FOR
THIS NODE
Comment Request Entry to our Critical Section;

P (Shared_vats)
Comment Choose a sequence number;
RequestingCritical_Section := TRUE;
Our_Sequence_Number := Highest_Sequence_Number + l;

V (Shared_vars);
Outstanding_ReplyCount := N - l;
F O R j := I STEP l UNTIL N DO I F j # me THEN

Send_Message(REQUEST(Our_Sequence_Number, me),j);
Comment sent a REQUEST message containing our sequence num-
ber and our node number to all other nodes;

Comment Now wait for a REPLY from each of the other nodes;
WAITFOR (Outstanding_Reply_Count = 0);

Comment Critical Section Processing can be performed at this point;

Comment Release the Critical Section;
RequestingCritical_Section := FALSE;
FOR j := l STEP 1 UNTIL N DO

IF Reply_Deferred[j] THEN
BEGIN

Reply_Deferred[j] := FALSE;
Send_Message (REPLY, j);
Comment send a REPLY to node j;

END;

PROCESS WHICH RECEIVES REQUEST (k, j) MESSAGES
Comment k is the sequence number begin requested,

j is the node number making the request;

BOOLEAN Defer it ;
! TRUE when we cannot reply immediately

Highest_Sequence_Number :~

Maximum (Highest_Sequence_Number, k);
P (Shared_vars);

Defer it :=
Requesting_Critical_Section
AND ((k > Our_sequence_Number)

OR (k = Our_Sequence_Number ANDj > me));
V (Shared_vars);
Comment Defer_it will be TRUE if we have priority over

node j ' s request;
IF Defer it THEN Reply_Deferred[j] := TRUE ELSE

Send_Message (REPLY, j) ;

PROCESS WHICH RECEIVES REPLY MESSAGES
Outstanding_Reply_Count := Outstanding_Reply_Count - 1;

The REPLY processing can be represented by a decision
table:

Condition and action entries

Receiving node is also request-
ing the resource

Received message's sequence
number compared to ours

Received message's node number
compared to ours

Send REPLY back

Defer the REQUEST

Rule number

1 2 3 4

N Y Y Y

I
- < > =

I
I
1

x x i x

x!

>

k

2.3 Example
Imagine a three-node network using this algorithm.

Initially the highest sequence number at each node is
zero. Solid lines show REQUEST messages; the number
is the sequence number of the request. The dashed lines
show REPLY messages.

In Figure 1 (a), node 3 is the first to attempt to invoke
mutual exclusion. It chooses sequence number l and
sends REQUEST messages to nodes 1 and 2.

Before either message can arrive, node 2 wishes to
enter its critical section. It also chooses sequence number
1 and sends REQUEST messages to the other nodes
(Figure l(b)).

In Figure l(c) node 2's messages have arrived. At
node l, which has not yet made a request itself, a REPLY
is immediately generated. At node 3, 2's request is found
to have an identical sequence number to 3's request;
node 2 wins on the node number tie-breaking rule. A
REPLY is sent. But at node 2, 3's request is found to
have an identical sequence number but loses the tie-
breaker. A reply is deferred.

Figure l(d) shows node l making a request to enter
its critical section. It uses sequence number 2 since it has
received a REQUEST message with a sequence number
of 1 (from node 2). Owing to an anomaly in the com-
munications system, the REQUEST message to node 2
overtakes the REPLY that is on its way there. No reply
message is sent since the message's sequence number is
higher than node 2's sequence number.

11 Communications January 1981
of Volume 24
the ACM Number !

In Figure l(e), node 2 can now enter its critical
section since it has received both of the necessary replies.
Node l's REQUEST has also arrived at node 3 but has
been deferred since the request's sequence number is
higher than that selected by node 3.

When node 2 has finished its critical section process-
ing, it sends REPLY messages back to both nodes 1 and
3 (Figure l(f)).

In Figure l(g), nodes 1 and 3 have received their
REPLY messages from node 2 but not yet from each
other. Node 3's request has arrived at node 1. Since it
bears a smaller sequence number, a REPLY is immedi-
ately generated.

Figure l(h) shows node 3 entering its critical section
after it received both replies.

In Figure l(i), node 3 has finished its critical section
processing and is returning the deferred REPLY message
to node 1.

Finally in Figure l(j), node 1 begins critical section
processing. At the conclusion of its critical section, node
1 does nothing since it knows of no other node wishing
to invoke mutual exclusion.

2.4 Discussion

The sequence numbers are similar to the numbers
used by Lamport's "bakery algorithm." [9] The node
with the lowest number is the next one to enter the
critical section. Ties are broken by comparing node
numbers. A REPLY is generated when its sender agrees
to allow the node sending a REQUEST to enter its
critical section first.

The sequence numbers prevent high numbered nodes
from being "shut-out" by lower numbered nodes. Once
node A's REQUEST messages have been processed by
all other nodes, no other node may enter its critical
section twice before node A has entered its critical sec-
tion.

The sequence numbers and node numbers form a
virtual ordering among requesting nodes. No one of the
nodes has any more information than a list of some or
all of the other nodes following it in the virtual order.
Yet the system as a whole defines a unique virtual
ordering based on a first-come-first-served discipline.

3. Assertions

3.1 Mutual Exclusion

Mutual exclusion is achieved when no pair of nodes
is ever simultaneously in its critical section. For any pair
of nodes, one must leave its critical section before the
other may enter.

ASSERTION. Mutual exclusion is achieved.

PROOF. Assume the contrary, that at some time two
nodes (A and B) are both in their critical sections at the

12

same time. Examine the message traffic associated with
the current cycle of the algorithm that occurred in each
node just prior to this condition. Each node sent a
REQUEST to the other and received a REPLY.

CASE 1: Node A sent a REPLY to Node B's RE-
QUEST before choosing its own sequence number.
Therefore A will choose a sequence number higher than
B's sequence number. When B received A's REQUEST
with a higher number, it must have found its own
Requesting_Critical_Section = TRUE since this is set to
be TRUE before sending REQUEST and A had
received this request before sending its own REQUEST.
The algorithm then directs B to defer the REQUEST
and not reply until it has left its critical section. Then
node A could not yet be in its critical section contrary to
assumption.

CASE 2: Node B sent a REPLY to A's REQUEST
before choosing its own sequence number. This is the
mirror image of Case 1.

CASE 3: Both nodes sent a REPLY to the other's
REQUEST after choosing their own sequence num-
bers. Both nodes must have found their own Re-
questing__Critical_Section to be TRUE when receiving
the other's REQUEST message. Both nodes will com-
pare the sequence number and node number in the
REQUEST message to their own sequence and node
numbers. The comparisons will develop opposite senses
at each node and exactly one will defer the REQUEST
until it has left its own critical section contradicting the
assumption.

Therefore, in all cases the algorithm will prevent both
nodes from entering their critical sections simultaneously
and mutual exclusion is achieved.

3.2 Deadlock
The system of nodes is said to be deadlocked when

no node is in its critical section and no requesting node
can ever proceed to its own critical section.

ASSERTION. Deadlock is impossible.

PROOF. Assume the contrary, that deadlock is possi-
ble. Then all requesting nodes must be unable to proceed
to their critical sections because one or more REPLYs
are outstanding. After a sufficient period of time, the
only reason that the REPLY could not have been re-
ceived is that the REQUEST is deferred by another node
which itself is waiting for REPLYs and cannot proceed.
Therefore, there must exist a circuit of nodes, each of
which has sent a REQUEST to its successor but has not
received a REPLY.

Since each node in the loop has deferred the RE-
QUEST sent to it, it must be requesting the critical
section itself and have found that the sequence number/
node number pair in that REQUEST was greater than
its own. However, this cannot hold for all nodes in the
supposed circuit, and thus the assertion must be true.

Communicat ions January 1981
of Volume 24
the A C M Number 1

3.3 Starvation
Starvation occurs when one node must wait indefi-

nitely to enter its critical section even though other nodes
are entering and exiting their own critical sections.

ASSERTXON. Starvation is impossible.
PROOF. Assume the contrary, that starvation is pos-

sible. Nodes receiving REQUEST messages will process
them within finite time since the process which handles
them does not block. After processing the REQUEST
sent by the starving node, a receiving node cannot issue
any new requests of its own with the same or lower
sequence number. After some period of time the se-
quence number of the starving node will be the lowest of
any requesting node. Any REQUESTs received by the
starving node will be deferred, preventing any other
node from entering its critical section. By the previous
assertion, deadlock cannot occur and some process must
be able to enter its critical section. Since it cannot be any
other process, the starving process must be the one to
enter its critical section.

out of a node must double as the message into some
other node.

If the algorithm presented here is modified so that
messages are sent from node to node sequentially, it
achieves the theoretical minimum number of messages
in this case also. Parallel operation is necessarily sacri-
ficed. The modifications required are considered in Sec-
tion 6.3.

5. Delay in Granting Critical Sections

The algorithm also grants mutual exclusion with
minimum delay if some general assumptions are made.

5.1 Definition of Delay
The delay involved in granting the critical section

resource is the stretch of time beginning with the request-
ing node asking for the critical section and ending when
that node enters its critical section. The execution time
of the instructions in the algorithm is assumed to be
negligible compared to the message transmission times.

4. Message Traffic

This algorithm requires one message to (REQUEST)
and one message from (REPLY) each other node for
each entry to a critical section. If the network consists of
N nodes, 2*(N - l) messages are exchanged. It will be
shown that this number is the minimum required when
nodes act independently and concurrently. Hence, the
algorithm is optimal with regard to the number of mes-
sages exchanged.

4.1 Concurrent Processing
For a symmetrical, fully distributed algorithm there

must be at least one message into and one message out
of each node. If no message enters/leaves some node,
that node must not have been necessary to the algorithm;
then the algorithm is not symmetrical or is not fully
distributed. Furthermore, to allow the algorithm to op-
erate concurrently at all nodes, the messages entering
nodes must not wait for the message generated at the
conclusion of processing at other nodes. This would
indicate that two separate messages per node are re-
quired. The requesting node does not need to send and
receive messages to itself, however, and so a total of
2*(N - 1) messages are needed. This number must be
a minimum for any parallel, symmetric, distributed al-
gorithm.

4.2 Serial Processing
If the nodes do not act independently of each other,

it is possible to reduce the number of messages by using
serial node-by-node processing. The first condition dis-
cussed earlier (one message into and out of each node)
still holds so a minimum of N messages are required. No
parallelism can exist in such a structure since a message

13

5.2 Assumptions
The following assumptions prevent the use of central

control or extra information derived from timing:

Assumption 1. No information is available bounding
transmission time delays or giving actual transit times.
Because of this assumption, it takes one round-trip time
to determine the state of another node. By adopting this
assumption, sending information through timing chan-
nels becomes impossible.

Assumption 2. No node possesses the critical section
resource when it has not been requested. This assumption
prevents a node or series of nodes from acting as a
central control because it retained the critical section
r e sou rce .

Assumption 3. Nodes do not anticipate requests.

5.3 Bounds
Three conditions that put a lower bound on delay

times are developed and the mutual exclusion algorithm
is shown to achieve these bounds.

5.3.1 Bound 1: Minimum delay time per request.
Before a node enters its critical section, it must make
sure that no other node is entering. To do this it must
determine the current status of any other node that could
take precedence if there is a time overlap and both nodes
are said to be requesting concurrently [10]. By assump-
tion 1 this will take at least one round-trip transmission
time. By assumptions 2 and 3 this process cannot start
before the request arrives. Therefore, no request can be
serviced in less than one round-trip time.

5.3.2 Bound 2: Minimum delay time with conflict.
When two nodes are requesting concurrently, they do
not know which of them made their request first because

Communications January 1981
of Volume 24
the ACM Number 1

of the absence of timing information. A tie-breaking
scheme, representing a total ordering among requesting
nodes, must be used. Since the tie-breaking rule does not
know which node actually made the earlier request, half
of the time a critical section grant cannot be made until
after the node making the later request has received its
round-trip replies. Conflict may also occur with more
than two nodes. One of them must be selected by the tie-
breaker to be granted access to its critical section first.

5.3.3 Bound 3: System throughput. Once a node has
released the critical section resource, no other node can
enter its critical section in less than a one-way trip
transmission time. This is the minimum amount of time
needed to notify other nodes that critical section pro-
cessing has been completed and to transmit the new
values of network-wide information.

5.4 Compliance
The algorithm achieves these bounds:

CASE A: If when a critical section is released at least
one node is eligible to enter its critical section based on
Bounds 1 and 2 within a one-way trip time in the future,
the algorithm will achieve the more ambitious Bound 3.

If the next node to enter its critical section is eligible
under Bounds 1 and 2 within a one-way trip time in the
future, then at least one one-way trip time has elapsed
already since that node made its request. Since it is next,
only the node currently releasing the critical section
could be delaying a REPLY message and this REPLY
will be triggered by the release of the critical section.
This final reply will reach the next node in a one-way
trip time satisfying Bound 3.

CASE B: Case A does not hold. The algorithm
achieves Bound 1 or Bound 2 depending upon interfer-
ence. The node with lowest sequence number /node num-
ber pair among requesting nodes will have none of its
requests queued by other nodes and, hence, will enter its
critical section in the minimum amount of time given by
Bounds 1 and 2.

In short, the algorithm achieves Bound B whenever
it can do so without violating Bounds 1 and 2. The
algorithm therefore has minimal delay times under as-
sumptions 1, 2, and 3.

The delay time envelope when plotted against arrival
rate is discussed further in [12].

When a particular network has closely bounded mes-
sage delay times and either synchronized docks or
knowledge of transit times, this timing information can
be used to reduce delay times still further [13].

6. Modifications

Several interesting modifications can be made to the
algorithm to take advantage of different environments.

6.1 Implicit Reply
The REPLY message carries only a single bit of

information. When the message transmission time be-
tween nodes has an upper bound, the sense of the
response can be changed so that no reply within that
time period indicates an implicit reply. An explicit mes-
sage, called "D EF ERRED " , is sent when REPLY would
ordinarily not be sere.

The number of messages required by the implicit
reply scheme varies between l * (N - l) and 3 * (N - l)
depending on the number of D E F E R R E D messages
sent. When there is little contention for the critical sec-
tion resource, the number of messages approaches
I * (N - 1).

Since a requesting node must usually wait for the
maximum round-trip time before entering its critical
section, the usefulness of this modification depends on
an upper bound for transmission time which is not much
larger than the average.

6.2 Broadcast Messages
When the communications structure between nodes

permits broadcast messages, the initial REQUEST mes-
sage can be sent using that mechanism. The message
traffic is reduced to N messages, one broadcast RE-
QUEST and (N - 1) REPLYs. If combined with the
implicit reply modification discussed above, the message
count can be as low as one.

6.2.1 Communications medium sequencing. Broad-
cast REQUEST messages need not contain the usual
sequence number if their time of successful transmission
can be monitored. The broadcast medium enforces seri-
alization of the REQUESTs and a queueing order equiv-
alent to the sequence numbers may be obtained by
observing the order of REQUEST messages appearing
on the broadcast medium.

The REPLY messages can also be broadcast, and
only two messages per critical section invocation are
required. REPLYs are only needed from those other
nodes which have themselves successfully broadcast a
prior REQUEST but received no corresponding RE-
PLY.

6.2.2 No communications medium sequencing. Even
if the order of successful REQUEST broadcasts cannot
be monitored, it is useful to broadcast the REPLY mes-
sages following critical section processing. The size of
the audience depends on the degree of contention. A
broadcast REPLY message must contain a list of in-
tended recipients because it is not sufficient for nodes
waiting for a REPLY to assume it applies to them. 2

2 Example: While node 1 is performing critical section processing
related to its request with sequence number 1, node 2 decides to issue
a REQUEST message with sequence number 2. Before the REQUEST
message arrives at node 1, node I completes its critical section process-
ing and broadcasts the REPLY it owes some other node(s). Without a
list of intended recipients, node 2 might think that the REPLY applies
to its REQUEST message and continue. In fact, node 1 may make a
new request with sequence number 2 and be entitled to enter its critical
section first due to the tie-breaking rule.

14 Communications January 1981
of Volume 24
the ACM Number 1

6.3 Ring Structure
The number of messages can be cut to N by process-

ing the requests serially through a logical circuit consist-
ing of all nodes instead of allowing processing to proceed
concurrently. N is the minimum number of messages
required for any distributed symmetric algorithm when
broadcasting is not available and information is not sent
via timing channels. 3

The algorithm must be modified by replacing the
REPLY message with an echo of the REQUEST mes-
sage. As the REQUEST message travels around the
circuit of nodes, it may be deferred at several stops.
When it is received at the initiating node, mutual exclu-
sion has been achieved and critical section processing
may begin.

A further possible modification sends the REQUEST
message from node to node around the circuit without
pause but the notation "DEFERRED by node j " is
added by each node j that is copying and deferring the
request. The Outstanding_Reply_Count is then set ac-
cording to the notations when it arrives back at the
initiating node. The nodes which have marked the RE-
QUEST as deferred generate individual REPLYs in the
usual way. This technique comes close to N messages
while eliminating the cumulative delays at each stop.

6.4 Bounding Sequence Numbers
The sequence numbers in the algorithm increase at

each critical section invocation and are theoretically
unbounded. The ticket numbers of the "bakery algo-
rithm" [9] suffer from the same problem.

A technique for limiting the amount of storage nec-
essary to hold these unbounded numbers can be bor-
rowed from computer communications protocols. Al-
though the numbers themselves are unbounded, their
range is bounded. The sequence numbers increase by no
more than one each time a node requests entry to its
critical section. That request cannot be granted as long
as a lower sequence number request is outstanding.
Therefore the numbers must fall within the range from
x t o x + N - 1.

The sequence numbers can be stored modulo M
where M _> 2N - 1. When making a comparison, the
smaller number should be increased by M if the differ-
ence is N or more. Thus only l o g 2 (2 N - 1) bits of storage
are needed regardless of the number of times the critical
section is entered.

6.5 Sequence Number Incrementation
Aside from this method for limiting the storage re-

quired to hold sequence numbers, there is no reason for
incrementing sequence numbers in unit steps. Two situ-
ations make larger increments attractive:

(1) The algorithm tends to favor lower numbered
nodes slightly, owing to the tie-breaking rule. This

a To involve all nodes, at least one message must be received and
one sent per node. The minimum number of messages that meet this
requirement is N.

favoritism can be reduced by incrementing the sequence
number by a random integer. The tie-breaking node
number is still required in case the random integers used
were equal.

(2) Deliberate priority can be introduced by in-
structing high priority nodes to use small increments and
low priority nodes to use large increments. In addition,
high priority nodes may be allowed to monopolize criti-
cal section processing until forced to increment their
sequence numbers past the one chosen by a lower priority
node. In doing so, the process at a high priority node
which receives and handles messages may choose to
delay acting on those received from low priority nodes
in order to keep the Highest_Sequence_Number from
being prematurely incremented past the one chosen by
the low priority node.

6.6 Readers and Writers
The algorithm is easily modified to solve the "Read-

ers and Writers" problem [1] where writers are given
priority. The modification is simply that "readers" never
defer a REQUEST for another "reader"; instead they
always REPLY immediately. "Writers" follow the orig-
inal algorithm.

7. Considerations for Practical Networks

7.1 Node Numbers
It is more convenient to draw node numbers from a

larger range than 1 . . . N. The algorithm may be changed
to map the integers 1 . . . N into the actual node numbers
by indexing a table NAMES [1 . . . N]. The comparison
of node numbers should then be performed by compar-
ing the values contained in NAMES.

7.2 Insertion of New Nodes
New nodes may be added to the group participating

in the mutual exclusion algorithm. They must be as-
signed unique node numbers, obtain a list of participat-
ing nodes, be placed on every other node's list of partic-
ipants, and acquire an appropriate value for their High-
est_Sequence_Number variable.

7.2.1 Restart interval. If the node could have been
previously operational in the group (e.g., it failed and is
now restarting), it should first notify other nodes that it
failed and then wait long enough to be sure its old
messages were delivered and the network processed its
removal. Usually the network will already be aware of
the node's failure, but this cannot be assumed. If this
step was not followed, the failure may be detected at
approximately the same time as the node rejoins the
group. This would result in conflicting bookkeeping at
different nodes.

7.2.2 Reconcile participant lists. A new node must
obtain a list of other participating nodes and have itself

15 Communications January 1981
of Volume 24
the ACM Number i

added to the others' lists. A new node should contact a
"sponsor" node which is already participating in the
group. The sponsor should then invoke mutual exclusion,
initialize the new node's participant list from its own,
and broadcast the new node's identity before releasing
mutual exclusion. Each node receiving this notification
adds the new node number to its NAMES array and
increments N, the number of active nodes.

An alternative is possible if the communications net-
work can deliver a message to all other nodes without
the sender naming all the other nodes in the network. In
this case a new node obtains a list of participants from
a nearby node and then sends a broadcast message
asking all other nodes to include it on their list of
participating nodes.

7.2.3 Set highest sequence number. The High-
est_Sequence_Number variable of a new node must not
be set to any value lower than the sequence number of
any REQUEST message which would already have been
received had the new node been continuously active.
Until an appropriate value of Highest_Se-
quence_Number is obtained, mutual exclusion cannot
be requested and incoming REQUEST messages are
processed normally.

A new node can determine that its Highest_
Sequence_Number is high enough by several methods.

(1) Ask all other nodes for their Highest_
Sequence_Number and use the largest.

(2) Wait until one REQUEST message has been re-
ceived from every other node.

(3) Wait until the sequence numbers on REQUEST
messages have increased by N - 1.

(4) Wait until all (N - 1) nodes would have time to
enter and leave their critical sections even if they
all had outstanding requests. This requires the abil-
ity to bound message transmission times and critical
section times. If no REQUEST message is received
during this time, the value of Highest_
Sequence_Number from any nearby node can be
used.

(5) Wait until the fourth REQUEST message is re-
ceived from a single node. This method requires
that messages are sent and delivered in the same
order. [See Appendix.]

The new node may request access to its critical section
after any of the above methods has been used to verify
that its Highest_Sequence_Number variable is suffi-
ciently high.

7.3 Removal of Nodes
A node wishing to leave the group may do so by

notifying all other nodes of its intention. The other nodes
should acknowledge this message. While waiting for
acknowledgement, the departing node may not request
mutual exclusion and must continue to send REPLY
messages to any REQUEST messages it receives. Each

node checks to see if the departing node is listed in its
NAMES array, and if so, removes it and decrements the
value of N, the number of active nodes, by one. If
messages may be delivered out of order, a node awaiting
a REPLY message from a departing node should pretend
the REPLY was received.

7.4 Node Failures
In practice some nodes fail and will not respond to

messages directed at them. To prevent this situation from
stopping the proposed mutual exclusion algorithm, a
timeout-recovery mechanism may be added. The
timeout detection of a failed node relies on knowledge
of an upper bound on the time which may elapse before
a working node responds to a message and an estimate
of the maximum processing time within a critical section.
The only message in the original algorithm which de-
mands a response is the REQUEST message.

A requesting node should start a timer when the
REQUEST messages are sent. The timer should be
restarted when a REPLY is received and cancelled when
the critical section processing begins.

A bit map, Awaiting_Reply [1 . . . N], can be used to
identify which nodes have not yet sent a REPLY mes-
sage. The Awaiting_Reply array is set to all TRUE
values before a REQUEST message is issued. Individual
bits are turned off when REPLY messages are received.

If the timer expires, 4 all nodes for which Awaiting_
Reply is TRUE are suspected of having failed. A probing
message, ARE_YOU_THERE(me), should be sent to
each suspect node. If no answer is received during a
second timeout period, ~ the suspect node has failed.

When an ARE_YOU_THERE(j) message is re-
ceived, Reply_Deferred[j] should be examined. If it is
FALSE, it must be that the REQUEST was not received,
the REPLY was lost, or the node has restarted; the
correct response is REPLY(me). If Reply_Deferred[j] is
TRUE, a YES_I_AM_HERE message should be sent to
confirm that the node is alive.

The timeout does not impose an upper limit on the
duration of a critical section. If critical section processing
exceeds the timeout, all nodes will respond with YES I
AM_HERE messages and a new timeout period may
begin.

When it has been determined that node j has failed,
this can be broadcast by the node detecting the failure.
Any node which is awaiting a REPLY message from the
failed node should pretend that a REPLY was received.
In addition the node should be erased from the NAMES
array if present and N, the number of active nodes,
decremented by one.

If the failed node recognizes that it has failed and
has been restarted, it may return to the group through

4 The appropriate value is worst-case round-trip message trans-
mission time plus worst-case processing time at the distant node plus
a reasonable estimate of maximum critical section time.

In this case just round-trip message time plus worst-case process-
ing time at the distant node.

16 Communications January 1981
of Volume 24
the ACM Number 1

the mechanism for adding a new node. If it does not
know that it has failed and issues new REQUEST mes-
sages, any node which receives the REQUEST message
and does not fred the node's name in its NAMES array
may return a special message notifying the node that it
should restart itself and use the insertion protocol.

8. Conclusion

An algorithm is presented that implements mutual
exclusion in a computer network. No algorithm uses
fewer messages, operates faster, and exhibits concurrent,
symmetric, and distributed control. The algorithm is safe
and live and mechanisms exist to handle node insertion,
removal, and failure.

Modifications can be made to reduce the number of
messages by taking advantage of serial processing,
broadcast messages, and transmitting information
through omitted responses. The sequence numbers can
be stored in limited memory by keeping them as residues
of a modulus that is at least twice as large as the number
of nodes. The readers and writers problem is solved by
the same algorithm with a simple modification.

Appendix. The Effect of Message Ordering
The algorithm presented in this paper does not de-

pend on messages being delivered or acted upon in the
order in which they are sent. I f such a condition does
exist, there is a stronger limit to the number of times
other nodes can enter their critical sections before a
requesting node A can.

Without delivery in order of transmission, the worst
case anMysis shows that N(N + 1)/2 - 1 nodes can enter
their critical section before Node A may.

To determine this bound, assume that A has the highest node
number and therefore the least priority in breaking ties. A's sequence
number may be (N - 1) higher than the lowest outstanding sequence
number. (See Section 6.4.) It is possible, by judiciously ordering the
delivery of messages, for each other node to enter its critical section
with its sequence number taking on each value between its current
value and A's value. To get the worst case, assume that all nodes have
chosen a distinct sequence number with A's number the highest.
Therefore, one node can enter its critical section N times before A may,
another (N - 1), another (N - 2) and so on down to the node whose
REQUEST message caused A's sequence number selection. This takes
two critical section entries at most. This sum, N + (N - 1) + (N - 2)
+ . . . + 3 + 2, is the number of times other nodes may enter their
critical section after A has made a request in the worst case.

If delivery is guaranteed to be in the order of trans-
mission, no other node may enter its critical section more
than twice between the time that A selects a sequence
number and A is permitted to enter its critical section.
No more than 2*(N - 1) critical sections are possible
before A may enter.

To get this bound observe that after node .4 has done its "Node
Requests Critical Section" processing, it cannot receive more than one
REQUEST from another node (j) which contains a lower or equal
sequence number. By the time it gets the REPLY from this REQUEST,
it must also have received A's REQUEST; it cannot thereafter select a
lower or equal sequence number. Each other n o d e j can enter its critical
section at most once because of an already approved REQUEST and
once with the one REQUEST which contains a lower or equal sequence
number. I f every other node follows this worst case pattern, at most
2*(N - 1) critical section entries may preceed A's

When delivery in order is used, a new node may
assume its Highest_Sequence_Number is synchronized
when it has heard the fourth REQUEST message from
the same node.

Assume that a n o d e j sent its REQUEST messages before the new
node came on-line. The new node is not synchronized until it holds a
higher number in Highest_SequenceNumber than the sequence num-
ber used by j. The reference node B (which is generating the four
requests) can enter its critical section at most twice before node j enters
its critical section. Therefore, by the time B enters its critical section
the third time, no nodes l ikej exist which did not know about the new
node when they made their requests. Reference node B may have
issued three REQUEST messages seen by the new node before entering
its critical section for the third time. The fourth REQUEST message
guarantees that the critical section was entered for the third time.

Acknowledgment. The authors wish to thank R.
Stockton Gaines for his detailed and helpful comments
on the presentation of this material.

Received 3/78; revised 3/80; accepted 9/80

References
1. Courtois, P.J., Heymans, F., and Parnas, D.L. Concurrent control
with "readers" and "writers." Comm. ACM 14, 10 (Oct. 1971), 667-
668.
2. deBruijn, N.G. Additional comments on a problem in concurrent
programming and control. Comm. ACM 10, 3 (March 1967), 137-
138.
3. Dijkstra, E.W. Hierarchical ordering of sequential processes. Acta
lnformatica 1, 2 (1971), 115-138.
4. Dijkstra, E.W. Solution of a problem in concurrent programming
control Comm. ACM 8, 9 (Sept. 1965), 569.
5. Dijkstra, E.W. The structure of the THE multiprogramming
system. Comm. ACM 11, 5 (May 1968), 34!-346.
6. Eisenberg, M.A., and McGuire, M.R. Further comments on
Dijkstra's concurrent programming control problem. Comm. A CM
15, 11 (Nov. 1972), 999.
7. Hill, J. Carver. Synchronizing processors with memory-contents-
generated interrupts. Comm. ACM 16, 6 (June 1973), 350-351.
8. Knuth, D.E. Additional comments on a problem in concurrent
programming control. Comm. ACM 9, 5 (May 1966), 321-322.
9. Lamport, U A new solution of Dijkstra's concurrent
programming problem. Comm. ACM 17, 8 (Aug. 1974), 453-455.
10. Lamport, U Time, clocks and the ordering of events in a
distributed system. Comm. A CM 21, 7 (July 1978), 558-565.
11. Lamport, L. Time, clocks and the ordering of events in a
distributed system. Rep. CA-7603-2911, Mass. Comptr. Assoc.,
Wakefield, Mass. March 1976.
12. Ricart, G., and Agrawala, A.K. Performance of a distributed
network mutual exclusion algorithm. Tech. Rept. TR-774, Dept.
Comptr. Sci., Univ. of Maryland, College Park, Md., March 1979.
13. Ricart, G., and Agrawala, A.K. Using exact timing to implement
mutual exclusion in a distributed network. Tech. Rept. TR-742, Dept.
Comptr. Sci., Univ. of Maryland, College Park, Md. March 1979.

17 Communications January 1981
of Volume 24
the ACM Number 1

