
STELLAR MERGERS WITH HPX-KOKKOS AND SYCL:
METHODS OF USING

AN ASYNCHRONOUS MANY-TASK RUNTIME SYSTEM WITH
SYCL

A PREPRINT

Gregor Daiß
University of Stuttgart

Patrick Diehl , Hartmut Kaiser
Louisiana State University

Dirk Pflüger
University of Stuttgart

May 10, 2023

ABSTRACT

Ranging from NVIDIA GPUs to AMD GPUs and Intel GPUs: Given the heterogeneity of avail-
able accelerator cards within current supercomputers, portability is a key aspect for modern HPC
applications. In Octo-Tiger, an astrophysics application simulating binary star systems and stellar
mergers, we rely on Kokkos and its various execution spaces for portable compute kernels. In turn,
we use HPX, a distributed task-based runtime system, to coordinate kernel launches, CPU tasks, and
communication. This combination allows us to have a fine interleaving between portable CPU/GPU
computations and communication, enabling scalability on various supercomputers.
However, for HPX and Kokkos to work together optimally, we need to be able to treat Kokkos
kernels as HPX tasks. Otherwise, instead of integrating asynchronous Kokkos kernel launches into
HPX’s task graph, we would have to actively wait for them with fence commands, which wastes
CPU time better spent otherwise. Using an integration layer called HPX-Kokkos, treating Kokkos
kernels as tasks already works for some Kokkos execution spaces (like the CUDA one), but not for
others (like the SYCL one).
In this work, we started making Octo-Tiger and HPX itself compatible with SYCL. To do so, we
introduce numerous software changes most notably an HPX-SYCL integration. This integration
allows us to treat SYCL events as HPX tasks, which in turn allows us to better integrate Kokkos by
extending the support of HPX-Kokkos to also fully support Kokkos’ SYCL execution space.
We show two ways to implement this HPX-SYCL integration and test them using Octo-Tiger and
its Kokkos kernels, on both an NVIDIA A100 and an AMD MI100. We find modest, yet noticeable,
speedups (1.11x to 1.15x for the relevant configurations) by enabling this integration, even when just
running simple single-node scenarios with Octo-Tiger where communication and CPU utilization are
not yet an issue. We further find that the integration using event polling within the HPX scheduler
works far better than the alternative implementation using SYCL host tasks.

Keywords SYCL, Kokkos, HPX, AMT, GPU, CUDA, HIP, SIMD

ar
X

iv
:2

30
3.

08
05

8v
2

 [
cs

.D
C

]
 9

 M
ay

 2
02

3

https://orcid.org/0000-0002-0989-5985
https://orcid.org/0000-0003-3922-8419
https://orcid.org/0000-0002-8712-2806
https://orcid.org/0000-0002-4360-0212

A PREPRINT - MAY 10, 2023

1 Introduction

Modern GPU-supercomputers like ANL’s Aurora,
NERSC’s Perlmutter and ORNL’s Frontier contain thou-
sands of compute nodes each, but use different GPUs,
ranging from NVIDIA® GPUs to AMD® GPUs and
Intel® GPUs. Developing portable High-Performance-
Computing (HPC) applications for these kinds of systems
requires both compute kernels that can efficiently target
all these different GPUs (and ideally still work well on
CPUs), as well as efficient communication and work
scheduling to avoid bottlenecks when scaling to more
GPU nodes, enabling distributed scalability. In Octo-
Tiger, an C++ astrophysics code used to simulate binary
star systems and stellar mergers [21], we address this by
using a combination of Kokkos [27] and the C++ standard
library for parallelism and concurrency (HPX) [16]. With
Kokkos, we can write portable compute kernels running
on both CPU and GPU thanks to the various memory
and execution spaces within. We further use HPX, a
distributed asynchronous many-task runtime system,
to express dependencies between kernels with HPX
futures, call methods on remote compute nodes, overlap
communication and computation, and ultimately scale to
thousands of compute nodes on machines like CSCS’s
Piz Daint [6] or ORNL’s Summit [10].

In previous work, we integrated Kokkos with HPX, allow-
ing us to obtain HPX futures for asynchronous Kokkos
kernel launches and deep copies, thus embedding them
into the HPX task graph seamlessly [7]. With this integra-
tion, we do not need to explicitly synchronize the GPU
when we need the results on the host. Instead, we simply
create a continuation for the respective HPX futures, us-
ing the results automatically when they are available (for
instance, post-processing on the host or communication).

However, this HPX-Kokkos integration only works for
some Kokkos execution spaces (the CUDA®, HIP and
HPX execution spaces to be precise). For it to function,
there needs to be a deeper integration between HPX and
the respective underlying API, allowing us to obtain an
HPX future for asynchronous API calls (for example for
cudaLaunchKernel).

On unsupported execution spaces, the HPX-Kokkos inte-
gration has to wait (fence) for the GPU results to arrive
first and then return a ready dummy future (for compat-
ibility, even though at this point it is not asynchronous
anymore). This wastes CPU time, as the wait is actively
blocking the CPU thread calling it until the GPU kernel
and associated memory copies are done, which in turn de-
lays other CPU tasks such as communication or working
on more GPU kernel launches. Notably, Kokkos already
contains a SYCL™ execution space to support Intel GPUs,
however, it is not yet supported by HPX-Kokkos.

In this work, we address this by introducing an HPX-
SYCL integration, therefore extending the number of sup-
ported execution spaces of HPX-Kokkos by the SYCL ex-
ecution space and test it and its performance with Octo-

Tiger on both NVIDIA and AMD GPUs (as we lack ac-
cess to current Intel GPUs).

Of course, this integration also allows using SYCL and
HPX together without using Kokkos, as it makes the HPX
task graph aware of asynchronous SYCL operations. This
allows a user to, for instance, define an entire graph of
operations with SYCL as usual, but in the end also to get
one HPX future for the final result, which can be used
to asynchronously schedule communication, or arbitrary
other CPU tasks, with an HPX continuation.

We investigate two alternative methods of implementing
this HPX-SYCL integration: SYCL already contains a
way to asynchronously schedule CPU work within its own
graph using host tasks depending on SYCL events. One
way to integrate HPX and SYCL is to directly use such a
SYCL host task to set an associated HPX future to the
ready state once the events it depends on are completed.
However, we also show an additional way of integrating
the frameworks which does not rely on these SYCL host
tasks and instead uses event polling implemented within
the HPX scheduler, as we found that this vastly outper-
forms the host task alternative.

Therefore, the contributions of this work are as follows:

1. We added an HPX-SYCL integration.

2. We made Octo-Tiger compatible with SYCL,
using the Kokkos SYCL execution space and
our HPX-SYCL integration. This required ad-
ditional modifications in other repositories (and
adaptations within Octo-Tiger itself).

3. We collected runtime data using Octo-Tiger on
an AMD MI100 and an NVIDIA A100, using
not only the SYCL execution space, but also the
same Kokkos compute kernels running on the
respective native execution spaces (CUDA and
HIP), as well as their predecessor kernels which
are implemented in pure CUDA and HIP. We col-
lected some of this data with the HPX-SYCL in-
tegration turned on, and other data with it turned
off.

These contributions yield multiple benefits: Octo-Tiger
users benefit from an additional Kokkos execution space
being fully available (asynchronous instead of blocking),
potentially allowing it to run on Intel GPUs and Aurora in
the future. HPX application developers benefit from the
HPX-SYCL integration because of the ability to fully in-
corporate SYCL into their own applications (either by us-
ing the Kokkos SYCL execution space and HPX-Kokkos
or by using pure SYCL). Although combining HPX with
pure SYCL might seem like an odd combination at first,
since both frameworks include task-based capabilities,
they can actually complement each other well, with SYCL
taking care of performance-portable compute kernels and
the data dependencies between them, and HPX taking
care of synchronizing the results via futures and distribut-
ing the application onto multiple compute nodes.

2

A PREPRINT - MAY 10, 2023

Figure 1: Snapshot of a double white dwarf merger with
Octo-Tiger. Between the two stars, an aggregation belt is
formed and mass from the smaller right star is transferred
to the larger star on the left. The color shows the velocity
magnitude of the stream, with red being high velocities.

In turn, SYCL application developers seeking to add dis-
tributed capabilities to their applications may benefit by
having HPX as a viable alternative to pure MPI (or frame-
works like Celerity [26]).

The remainder of the work is structured as follows: As
we focus on Octo-Tiger as a motivating example, we first
introduce Octo-Tiger and its software dependencies (no-
tably HPX and Kokkos) as well as its execution model
in the next section. Subsequently, in Section 3, we focus
on SYCL and the required software additions (notably the
HPX-SYCL integration) to make it work asynchronously
with HPX, HPX-Kokkos and, thus, with Octo-Tiger. We
then benchmark and test this integration with Octo-Tiger
in Section 4. In Section 5 we outline related work. Finally,
we finish with a conclusion and ideas for future work in
Section 6.

2 Real-World Application as a Benchmark:
Octo-Tiger

The application driving our development efforts in this
work is Octo-Tiger, as we aim to run it on the Kokkos
SYCL execution space. Octo-Tiger, itself, benefits from
the work shown here by gaining an additional execution
space, allowing it to target a wider range of platforms in
the future.

Octo-Tiger is also an ideal benchmark to test integrations
like the HPX-SYCL one planned here, due to the tight in-
terleaving of GPU and CPU work. Even in small, single-
node scenarios, we launch thousands of GPU compute
kernels each time step, tightly interleaved with CPU pre-
and post-processing. Furthermore, it still contains CUDA
and HIP kernels for the main solvers, allowing us to com-
pare performance using multiple backends.

In the following, we introduce Octo-Tiger and briefly out-
line its solvers, data structure and required software de-
pendencies. Afterward, we describe its execution model,
based on all the required software, in more detail.

2.1 Octo-Tiger: Scientific Application,
Data-Structure and Solvers

Octo-Tiger is a C++ astrophysics code, used to study bi-
nary star systems and their eventual outcomes, such as
stellar mergers [21]. These star systems contain two stars,
bound together by gravity. When close enough, they in-
teract by slowly exchanging mass. This can either be a
stable transfer, occurring over millions of years, or on un-
stable one which will disrupt one of the stars. Depending
on the system, this can lead to various outcomes, ranging
from a Type Ia supernovae, to the formation of another
star. Figure 1 shows a snapshot of a binary-star simula-
tion done with Octo-Tiger at a point where there’s visible
mass transfer occurring. In the past, Octo-Tiger was al-
ready used to investigate R Coronae Borealis stars [24]
and the merger of bipolytropic stars [15].

The stars are modeled as self-gravitating astrophysical flu-
ids, using the inviscid Navier-Stokes equation and New-
tonian gravity. Hence, Octo-Tiger contains two coupled
solvers: A hydrodynamics solver using finite volumes
and a gravity solver [20] using the fast-multipole-method
(FMM). These solvers operate on a 3D grid. Octo-Tiger
uses adaptive mesh refinement, maximizing the refine-
ment for the area of interest, which usually is the atmo-
sphere between the stars. The data structure utilized for
this is an adaptive octree. For efficiency, instead of hav-
ing just one cell per tree-node, we use an entire sub-grid of
cells per tree-node. The size of these sub-grids is config-
urable at compile time, but the default we use is 8× 8× 8
giving us 512 per sub-grid (as larger sub-grids have ad-
verse effects regarding adaptivity, data-distribution, and
FMM performance as the FMM uses the tree-structure for
approximations).

Highlighting its portability, Octo-Tiger was previously
used on supercomputers such as NERSC’s Cori [13], Piz
Daint [6] and ORNL’s Summit [10]. Recently, we began
to target NERSC’s Perlmutter and Riken’s Supercomputer
Fugaku. It achieves this portability by using a mixture of
HPX, Kokkos and other frameworks as will be outlined in
the next section.

2.2 Octo-Tiger’s Software-Stack

2.2.1 Tasks and Distributed Computing with HPX

HPX is an Asynchronous Many-Task Runtime system
(AMT) [16]. It is itself implemented in C++, and also
implements all C++ 20 APIs regarding parallelism and
concurrency (including for example functionality like
hpx::mutex). With HPX, we can build an explicit task
graph using HPX futures. Asynchronous operations re-
turn futures, which can be chained together using contin-
uations to form such a graph. This way, subsequent work
and communication is triggered automatically whenever
a task finishes. HPX also works in distributed scenarios,
allowing us to call functions on remote components asyn-
chronously, getting futures in return. Once their respec-

3

A PREPRINT - MAY 10, 2023

tive task dependencies are fulfilled, the HPX tasks within
this task graph are executed by a pool of HPX worker
threads (each task by a single worker), with us usually
using one worker thread per available CPU core. This
means, while we may have a lot of tasks available, we just
have a few worker threads executing them over time.

Octo-Tiger is built entirely upon HPX, using the
task-based programming framework for efficient tree-
traversals and for distributed computing. To this end, each
of the aforementioned sub-grids in the octree is a HPX
component. This component contains all required data for
its sub-grid and communicates with other sub-grids using
remote function calls (via HPX) and HPX channels to fill
its ghost layers and coordinate computing. This makes
each sub-grid as self-contained unit for computing, eas-
ing distribution.

Consequently, all compute kernels only operate on one
sub-grid (and its ghost layers) at a time. However, we
can usually invoke the compute kernels concurrently for
different sub-grids.

2.2.2 Portable Compute Kernel with Kokkos and
HPX-Kokkos

Octo-Tiger’s compute kernels themselves were originally
written for single-core execution, with multiple kernels
usually running at the same time for different sub-grids.
Over time, they were ported to support Vc [19, 22],
CUDA and HIP. To unify these separate kernels, we fi-
nally settled on Kokkos. Kokkos implements a program-
ming model for developing portable kernels [27]. It con-
tains multiple execution and memory spaces, allowing
us to run kernels on various devices (such as AMD and
NVIDIA GPUs). Kokkos also already includes an exper-
imental SYCL execution and memory space, allowing its
users to target Intel GPUs.

Moreover, Kokkos is tightly integrated with HPX: Both
an HPX execution space (using HPX worker threads to
execute a Kokkos kernel) and an HPX-Kokkos integra-
tion layer exist, the latter allows returning futures for
Kokkos kernels running on supported execution spaces
(the CUDA, HIP and HPX execution space) [7]. With
the HPX-SYCL integration introduced in this work, the
list of supported execution spaces now also includes the
SYCL execution space (as HPX-Kokkos directly utilizes
the get future functionality developed in this work).

2.2.3 SIMD - Kokkos SIMD and
std::experimental::simd

Kokkos kernels allow using explicit SIMD vectorization
with C++ types [23]. In our own kernels, we use this
with the Kokkos SIMD types1, enabling us to instantiate
the types with, for example, AVX512 types when com-
piling for CPUs and scalar double types when compiling
for GPUs. The same implementation also works using

1https://github.com/kokkos/simd-math

std::experimental::simd on various CPUs. In previ-
ous work, we investigated the performance difference be-
tween these two type libraries and added SVE types [9]
for Fujitsu A64FX™ CPUs.

2.2.4 Work Aggregation and Memory Optimizations
- CPPuddle

Given the small, default size of the sub-grids with 512
cells each, and the fact that the compute kernels only work
on one sub-grid at a time, the workload per compute ker-
nel is of essential importance for our GPU performance.
Invoking just one such kernel is too little work to even
come close to fully utilize a GPU. As new sub-grids might
be created over the duration of the simulation and old ones
may be deleted or migrated (all depending on the adaptive
mesh refinement as the simulation evolves), a static work
aggregation approach (defining sets of sub-grids to always
be executed as one kernel) would not work well for Octo-
Tiger either.

Short of increasing the size of the sub-grids itself (nega-
tively impacting refinement), there are two ways of deal-
ing with this: We can either rely on executing enough
GPU kernels concurrently (using multiple GPU execu-
tors) or dynamically aggregate kernels as they are sched-
uled, depending on the load of the GPU. For dynamic ag-
gregation, we introduced work aggregation executors in
Octo-Tiger [8]. As these can be used in other HPX ap-
plications, we extracted them into another software de-
pendency, CPPuddle. This library also contains memory
pools for device-side buffers, which proved to be handy
when running the same task repeatedly for different sub-
grids. If the underlying GPU executor is currently busy,
these aggregation executors will start to bunch up compat-
ible kernels (usually the same kernel but running on a dif-
ferent sub-grid) as they are being scheduled. These will be
launched as one larger kernel when either an user-defined
maximum number of aggregated kernels is reached or the
underlying GPU executor becomes idle and can work on
it immediately. For more details we refer to [8].

2.2.5 Other Dependencies

Octo-Tiger uses some other dependencies, such as HDF5
and Silo, for the input and output files. Dependencies like
HWLOC and Boost are also indirectly included in HPX.
Also, there are some older parts of Octo-Tiger that still
use Vc, however, we are in the process of removing those
since we deprecated the Vc support within Octo-Tiger in
favor of using Kokkos kernels with explicit SIMD types.

2.3 Octo-Tiger’s Execution Model

During solver iterations, for instance with the gravity
solver, Octo-Tiger traverses the oct-tree that contains its
grid-structure. To do so, we simply call the methods ex-
ecuting the solver of neighboring (or child) tree-nodes.
Thanks to HPX, it does not matter whether they are ac-
tually located on the current compute node or a remote

4

https://github.com/kokkos/simd-math

A PREPRINT - MAY 10, 2023

HPX
Application

(Octo-
Tiger)

SYCL Execution
Space

HPX Execution
Space

Task 1

Task N

Tile 1

Tile M
...

Scalar Types

Scalar Types

SIMD Types

SIMD Types

SIMD Types
Parallelization

Split Kernel into Compute blocks via Kokkos

Launch
Kokkos Kernel
from arbitrary

thread

Receive HPX future
that will be ready

when the kernel is
finished

Run on HPX worker
threads

Launch Kernel asynchronously

CPU Execution

GPU Execution

Adapt to target
CPU via types

...

Use scalar instan-
tiation for GPU

Kokkos
HPX-Kokkos

executor

Application + HPX Kokkos + HPX Kokkos SIMD
std::simd

HPX-SYCL
Integration

Figure 2: Octo-Tiger’s execution model, adapted from [9]
for the SYCL integration and associated execution space.

node, as each tree-node is an HPX component. Calling
these methods via HPX returns futures, which we can use
to chain dependent tasks together. For example, we can
first collect the data from neighboring tree-nodes to fill
the ghost layer of the current node, using the associated
future to chain an asynchronous Kokkos kernel launch.

In turn, the compute kernels work on the sub-grid of the
current tree-node and its ghost layer. The Kokkos ker-
nel itself is launched asynchronously using HPX-Kokkos,
giving us yet another future. Each kernel is executed on
either a CPU execution space, usually the Kokkos HPX
execution space which splits the kernel into HPX tasks
that will be executed by one or more of the worker threads,
or a GPU execution space, such as the Kokkos CUDA
execution space. Depending on the execution location,
we instantiate the appropriate SIMD types within the ker-
nel, either with scalar types on GPUs or types using the
appropriate SIMD instructions on CPUs to make use of
SIMD operations and masks. We outline this execution
model, and where to plug in the HPX-SYCL integration,
in Figure 2. Of course, we could already use the Kokkos
SYCL execution space without any further integration, al-
beit only synchronously. However, to make the whole ma-
chinery described above work with SYCL as it does with
the supported execution spaces, we need HPX-Kokkos to
be able to return a future for the underlying SYCL kernel,
hence we need the HPX-SYCL integration. Otherwise,
the asynchronous creation of the task graph using the fu-
tures would become synchronous, impacting the overall
performance.

Lastly, also part of Octo-Tiger’s execution model but not
shown in this figure: We usually use a pre-allocated pool
of GPU executors, each being able to work on GPU
data-transfers/kernels independently. We can either use
only one of those (disabling concurrent GPU kernels alto-
gether) or up to 128 (theoretically more are possible but
yield no further benefits). As working on one sub-grid
at a time might not be enough work to fully utilize some
devices, even given concurrent GPU kernels, we further
employ the aforementioned dynamic work aggregation by
using the aggregation executors that can dynamically ag-
gregate kernel launches of the same kernel on different
sub-grids. As shown in [8], this is beneficial on NVIDIA
A100 GPUs and crucial on AMD MI100 GPUs.

3 Integrating SYCL with HPX and
Octo-Tiger

In this section, we describe how we integrated SYCL with
HPX, HPX-Kokkos, and ultimately, Octo-Tiger. We start
with a short SYCL introduction before moving to the ac-
tual integrations in the following subsections. There, we
first cover the two variations of HPX-SYCL integrations
that we tested and afterward the changes to Octo-Tiger
and its other dependencies.

3.1 SYCL

SYCL, a single source embedded domain-specific lan-
guage (eDSL) aligned with the C++ 17 standard, provides
high-level abstractions for various acceleration cards and
other devices. The SYCL specification is handled by the
Khronos group, and various implementations are avail-
able, for instance ComputeCPP™ which is developed by
Codeplay Software. hipSYCL (currently in the process
of being renamed into Open SYCL) is developed at the
University of Heidelberg [1] and supports all CPU ar-
chitectures using OpenMP and Intel GPUs using Level
Zero; AMD GPUs using ROCm; and NVIDIA GPUs us-
ing CUDA. DPC++ is part of Intel OneAPI and supports
Intel CPUs using OpenCL and Intel GPUs using Level
Zero or OpenCL; AMD GPUs using AMD ROCm™; and
NVIDIA GPUs using CUDA. It is notable that hipSYCL
and DPC++ are the only implementations supporting all
three GPU architectures. triSYCL is developed by Xilinx
and supports Intel and AMD CPUs using OpenMP or In-
tel Thread Building Blocks (TBB) and ARM CPUs using
OpenMP. In addition, Xilinx FPGAs are supported using
OpenCL. For our purposes, we require at least a SYCL
implementation that supports the SYCL 2020 specifica-
tion [12]. Specifically, we need support for USM and in

order queues. Support for SYCL host tasks is actually op-
tional, as only one of our integration implementations re-
lies on it. As Kokkos uses various OneAPI-specific exten-
sions in its SYCL execution space, we focus on DPC++
in the rest of the paper. However, we also tested the HPX-
SYCL integration itself with hipSYCL.

3.2 HPX-SYCL Integration

Here, we take a closer look at the HPX-SYCL integration.
In its most basic form, what we need is the functionality to
create HPX futures from SYCL events. If an event is not
yet complete, the associated future should not be ready.
Once the event is completed, and thus all SYCL opera-
tions required for this event are complete, the HPX future
should eventually become ready, and thus trigger all sub-
sequent tasks depending on this future. The creation of
this future needs to be low-overhead and completely non-
blocking as otherwise we lose the advantage gained by
having asynchronous SYCL kernel launches.

5

A PREPRINT - MAY 10, 2023

Listing 1: Using the basic HPX-SYCL integration.
sycl:: event event = queue.submit ([&](sycl:: handler& h) {

/* insert SYCL dependencies */
h.parallel for(num items , [=](auto i) {

/* insert numeric code here */ });/
});
// Call HPX -SYCL integration
hpx::future <void > my future =

hpx::sycl:: experimental :: detail ::get future(event);
// Add task to be executed once the event is done
hpx::future <void > continuation future =

my future.then ([& continuation triggered](auto&& fut) {
/* insert CPU work/communication/post -processing */

});
/* Suspend the current HPX task if kernel and continuation
are not yet done. This does not block the worker thread ,
it merely moves to work on another available task*/
continuation future.get()

There are two distinct ways to implement this: We can
either use SYCL host tasks directly or implement an event
polling scheme within the HPX scheduler.

3.2.1 Integration using SYCL Host Tasks

SYCL itself allows creating host tasks that depend on
SYCL events. Once the required events enter the status
info::event command status::complete, the host task

is triggered and executed on the CPU by a thread man-
aged by the SYCL runtime. This SYCL host task may
include arbitrary C++ code, hence we can use it to trigger
an HPX future. Essentially, given a SYCL event, we sim-
ply need to create a future that is not yet ready. By setting
the internal future data, we can set the future to the ready
state, automatically triggering all potential continuations
defined by the user. Hence, we use the host task as a
sort of callback that will set this internal future data when
triggered.

This is the simplest form of integration. However, it
comes with the downside of having to rely on the SYCL
runtime to handle the execution of these asynchronous
host tasks efficiently. Therefore, this method may come
with great overhead (as all CPU cores should be busy with
HPX worker threads already). Nevertheless, we include
this method here, as it seems to be the most straightfor-
ward way to achieve the integration. However, in the re-
sults, we show that (at least for Octo-Tiger) it is not a
viable solution due to the aforementioned overhead.

3.2.2 Integration via Event Polling

Instead of using SYCL host tasks, we can make use of
HPX runtime itself here. As we already have the HPX
scheduler that is repeatedly called by worker threads in
between tasks (to get a new task), we can use it to poll
SYCL events periodically, and, depending on the exe-
cution status of the events, trigger associated callbacks.
When we want a future for a given SYCL event, we sim-

ply construct a future (not ready yet) and create a struct
that contains the event and a callback lambda that sets the
data of the future when it is executed (again, turning the
future ready and triggering potential continuations). We
add this event callback struct to the scheduler. To keep
the overhead low, we use an ConcurrentQueue for this as
HPX already provides this data-structure. Using this, all
threads can add their own event callbacks for different
events without unnecessary locking.

The polling function that is called by the scheduler is a
different matter: This will be executed by only one thread
at a time. That being said, other threads trying to enter
will not wait on the mutex, but instead return immediately,
as it is enough for one thread to do the polling at a time
so other threads trying to poll might as well work on other
tasks (as there will always be another thread visiting even-
tually as long as the HPX runtime is alive). The thread
executing the poll function tries to get all events from the
concurrent queue and checks each one for completion. If
completed, the associated callback is executed. If not, the
event callback is moved to a vector to be polled again at
a later visit (inside the poll function, all events of the vec-
tor are polled once as well). This way, an HPX future for a
completed SYCL event will be ready eventually, without
ever having to call any blocking methods such as the event
wait() method. Instead, we merely have to poll the events
in-between other tasks which is handled automatically by
our integration inside the scheduler. This procedure is ex-
emplified for one future in Figure 3. In Listing 1 is an
example of how this functionality can be used.

In case we need a future for an in order SYCL queue
without having any SYCL event available, we provide
an overload for get future that inserts a dummy SYCL
single task and uses its SYCL event to get a future. It is
checked that the queue is in order as only in this case the
dummy kernel will be executed after all previous opera-
tions submitted to the queue, allowing us to use this future
to check if previously submitted commands are done even

6

A PREPRINT - MAY 10, 2023

if we do not have their events anymore (as can be the case
when those commands are submitted inside an external
library).

We implemented this integration (see pull request2) and
initially tested it with DPC++ and with hipSYCL using
some basic vector add and stream examples. For it to
work, the first hurdle was compiling HPX with the re-
spective SYCL implementation. For DPC++, we simply
had to pass the -fsycl flag for the SYCL-related source
files (such as tests and the source files that implement the
event polling) and -fno-sycl for all other files. Our ini-
tial attempt to do the same with hipSYCL’s syclcc wrap-
per failed. Here, we use hipSYCL’s CMake integration
instead, which worked out-of-the-box.

However, for the integration to work properly, the
hipSYCL default configuration needs to be considered.
First, the hipSYCL runtime needs to be kept alive. With-
out this, the entire SYCL runtime might be created and
destroyed inside the poll function if there are no other
SYCL objects alive at this point, as the poll function
creates a temporary event callback (containing a SYCL
event), which would cause re-creation of the hipSYCL
runtime. Second, one must ensure the kernels are actu-
ally being launched: hipSYCL’s default scheduler sup-
ports automatic work distribution across multiple devices,
causing it to potentially delay launching a kernel since we
will never wait on either the event or the command queue.

Both issues can be addressed simply by properly con-
figuring hipSYCL for this usage, as the behavior can
be oriented with the appropriate environment vari-
ables. We can set the scheduler to the direct one, di-
rectly launching any kernel/command, with HIPSYCL RT

SCHEDULER=direct and make sure that the hipSYCL run-
time remains alive with HIPSYCL PERSISTENT RUNTIME=1.
However, to be certain that the user does not need to re-
member setting these, we added an extra command queue
inside the HPX scheduler, keeping the runtime alive as
long as the HPX runtime itself is alive. Furthermore,
we can use this queue to trigger the flush method inside
hipSYCL to make the integration work with its default
scheduler as well.

3.2.3 HPX SYCL Executor

On top of this basic get future integration, we added
a SYCL HPX executor. This executor wraps an in

order SYCL command queue and allows the dispatch
of function calls by wrapping them in either hpx::async
(two-way execution, which means that it returns an
hpx::future) or hpx::apply (one-way execution with-
out a future). This executor only accepts SYCL queue
member functions and passes them directly to the under-
lying SYCL queue (eliminating the need to manually ob-
tain the future for these calls). This is done mostly for
user convenience. It also brings parity of features with the

2https://github.com/STEllAR-GROUP/hpx/pull/
6085

 HPX Scheduler

 HPX Application
 hpx::future (not ready)

get_future(event)
 hpx::future (ready)

 SYCL Event

fut.set_data()

poll poll poll

 SYCL Command Group (Kernel) event status now complete

Figure 3: Outline of how the event polling works. The poll
function is triggered by in between other tasks. The HPX
future will become ready once the associated SYCL event
is complete and the next poll detects it. Setting the fu-
ture to ready will automatically trigger any potential HPX
continuations.

CUDA and HIP executors within HPX that also support
hpx::async and hpx::apply. In fact, we use an in order

command queue for the SYCL executor to keep the be-
havior the same as for these other executors.

Like the basic integration described in the last section,
this executor also needed some adaptations when com-
piled with specific SYCL implementations. This time,
we needed to adapt it for DPC++, as picking the correct
member function overloads here requires taking into ac-
count the internal code location parameter DPC++ uses
(requiring additional overloads taking this parameter into
account when compilation with DPC++ is detected).

3.2.4 Differences to other HPX GPU Executors

HPX also contains a CUDA executor (which doubles as a
HIP executor when compiled with hipcc). This executor
also supports event polling (and, of course, hpx::async
and hpx::apply). It also supports using CUDA call-
back functions directly. In fact, we used this executor
as a blueprint for implementing the SYCL executor and
the event polling SYCL integration. However, there are
some differences: In addition to getting everything com-
piled with SYCL and changing the SYCL API calls, the
SYCL executor (and integration) need to work with differ-
ent SYCL implementations and thus need additional logic
to adapt to this (as with the aforementioned workarounds
where we had to adapt to hipSYCL or DPC++). Further-
more, we cannot implement an event pool such as the
one that the CUDA executor uses, as SYCL itself lacks
the functionality to make use of our own events in calls
(which would allow us to reuse events, avoiding poten-
tially expensive constructions and destructions). Here, we
have to simply use whatever events the SYCL queue is
returning, and hope the utilized SYCL implementation is
using event pooling internally to reduce the required over-
head. On the one hand, this is beneficial when the utilized
SYCL runtime actually supports this, as it frees us from
implementing it ourselves: In fact, hipSYCL has event
pooling for CUDA and HIP events as of release 0.9.3. On

7

https://github.com/STEllAR-GROUP/hpx/pull/6085
https://github.com/STEllAR-GROUP/hpx/pull/6085

A PREPRINT - MAY 10, 2023

the other hand, in the case where the runtime does not
support event pools, we have no way of adding our own
within HPX.

3.3 Additional Software Changes

To get Octo-Tiger working with SYCL, we need more
software additions.

3.3.1 HPX-Kokkos

First, we need to modify HPX-Kokkos itself (see pull re-
quest3). As mentioned, HPX-Kokkos can return HPX fu-
tures for Kokkos kernel launches, but only for supported
execution spaces. Hence, we need to add the SYCL-
execution space to this list of supported spaces. This re-
quires adding overloads, calling the correct get future

method from HPX instead of fencing and returning a
dummy future which is the default behavior for unsup-
ported execution spaces. To do so, we need to hook
into the basic HPX-SYCL integration described in Sec-
tion 3.2.3, simply by mapping the get future call here to
the one described there. We also need to correctly con-
struct the HPX-Kokkos SYCL executor instances. Not
to be confused with the HPX-SYCL executor mentioned
above, such an executor is merely a wrapper around a
Kokkos SYCL execution space. To keep the behavior the
same as for other Kokkos execution spaces, we use an in

order command queue to construct each SYCL execution
space. Lastly, we add an additional overload for deep

copy async which directly uses the SYCL event from the
memcpy to get the associated future.

3.3.2 CPPuddle

Furthermore, we need to modify CPPuddle (see pull re-
quest4). Octo-Tiger uses CPPuddle to manage device
memory pools to avoid unnecessary allocations by reusing
old allocations that are no longer in use. This is handy
for repeated GPU tasks that require similarly sized input
buffers. Here, we merely need to add the appropriate al-
locators to get the device/host memory pools using SYCL
USM mallocs.

3.3.3 Octo-Tiger

Finally, Octo-Tiger itself requires some modifications be-
fore being able to work with SYCL (see pull request5).
Here, we switch to the appropriate HPX-Kokkos execu-
tor (using the Kokkos SYCL execution space underneath)
and the CPPuddle allocators using SYCL USM memory.
However, when running Octo-Tiger’s standard test suite,
we still noticed the results being off when running with
SYCL. Using the SYCL math functions over the std ones

3https://github.com/STEllAR-GROUP/hpx-kokkos/
pull/13

4https://github.com/SC-SGS/CPPuddle/pull/15
5https://github.com/STEllAR-GROUP/octotiger/

pull/432

(i.e. using sycl::sqrt instead of std::sqrt) fixed this is-
sue.

3.3.4 Kokkos

While not necessarily required to get Octo-Tiger work-
ing with SYCL, we also experimented with some changes
to Kokkos. First, since we are using in order queues,
we noticed that we can remove some barriers within the
SYCL execution space in Kokkos. Moreover, to use
the Kokkos SYCL execution space on AMD GPUs, we
needed to make some modifications to the Kokkos CMake
configuration to correctly pass the arguments. These
changes are not yet upstreamed as we want to refine and
test them further first. However, both the patch remov-
ing some of the fences is available6 as is the other one7

enabling Kokkos builds with AMD GPUs.

4 Results

Here, we evaluate the performance impact of our soft-
ware changes and additions introduced in Section 3. First,
we introduce the test setup, specifically we introduce the
utilized Octo-Tiger scenario, hardware and software ver-
sions. Then we cover the parameters and patches used in
our experiments and follow with the performance tests.

4.1 Test Setup

4.1.1 Scenario and Hardware:

As a benchmark scenario, we choose the Sedov-Taylor
blast wave. This scenario is one of the benchmarks origi-
nally used to verify Octo-Tiger’s output. It only uses the
hydrodynamic solver and has an analytical solution, mak-
ing it ideal for testing codes like Octo-Tiger. For our pur-
poses, being limited to the hydrodynamic solver is useful,
since this is the module that currently fully supports the
dynamic work aggregation. This allows us to finely tune
the size of the compute kernels launched (by bunching up
sub-grids while the GPU executor is busy and launching
them as one kernel once said executor is done with previ-
ous work). Hence, we can more easily take a look at the
overheads of our integration for differently sized kernels.
The support within the gravity solver for this kind of work
aggregation is not yet complete, causing us to rely on the
hydro-only scenario.

The computational effort required for this scenario is
as follows: It includes 512 leaf sub-grids, resulting in
262144 cells overall. Per time-step we call 15 GPU ker-
nels per leaf sub-grid, giving us 7680 GPU kernel calls per
time-step overall (with 15360 CPU-GPU data-transfers).

6https://github.com/STEllAR-GROUP/
OctoTigerBuildChain/blob/sycl_toolchain/kokkos_
sycl_less_fencing.patch

7https://github.com/STEllAR-GROUP/
OctoTigerBuildChain/blob/sycl_toolchain_hip/
kokkos_hip_arch.patch

8

https://github.com/STEllAR-GROUP/hpx-kokkos/pull/13
https://github.com/STEllAR-GROUP/hpx-kokkos/pull/13
https://github.com/SC-SGS/CPPuddle/pull/15
https://github.com/STEllAR-GROUP/octotiger/pull/432
https://github.com/STEllAR-GROUP/octotiger/pull/432
https://github.com/STEllAR-GROUP/OctoTigerBuildChain/blob/sycl_toolchain/kokkos_sycl_less_fencing.patch
https://github.com/STEllAR-GROUP/OctoTigerBuildChain/blob/sycl_toolchain/kokkos_sycl_less_fencing.patch
https://github.com/STEllAR-GROUP/OctoTigerBuildChain/blob/sycl_toolchain/kokkos_sycl_less_fencing.patch
https://github.com/STEllAR-GROUP/OctoTigerBuildChain/blob/sycl_toolchain_hip/kokkos_hip_arch.patch
https://github.com/STEllAR-GROUP/OctoTigerBuildChain/blob/sycl_toolchain_hip/kokkos_hip_arch.patch
https://github.com/STEllAR-GROUP/OctoTigerBuildChain/blob/sycl_toolchain_hip/kokkos_hip_arch.patch

A PREPRINT - MAY 10, 2023

1 2 4 8 16 32 64 128
Number GPU Executors [log]

1486

429

770

252

100

1000

Ti
m

e-
pe

r-t
im

es
te

p
in

 m
s [

lo
g]

Sedov Blast Wave Scenario on a NVIDIA A100:
 Time-per-timestep with and without the (host task) HPX-SYCL Integration

 (Using 32 HPX worker threads, without dynamic work aggregation)
Time-per-timestep HPX-SYCL OFF
Time-per-timestep HPX-SYCL ON

0.2
0.4
0.6

HP
X-

SY
CL

 O
N

Sp
ee

du
p

(w
.r.

t t
o

OF
F)

0.52x 0.54x 0.47x 0.40x 0.35x
0.46x 0.54x 0.60x

HPX-SYCL ON Speedup (w.r.t to OFF)

(a) A100: Increasing Number of GPU execu-
tors

1 2 4 8 16 32 64
Number Max Aggregation [log]

2581

500

770

183

100

1000

Ti
m

e-
pe

r-t
im

es
te

p
in

 m
s [

lo
g]

Sedov Blast Wave Scenario on a NVIDIA A100:
 Time-per-timestep with and without the (host task) HPX-SYCL Integration

 (Using 32 HPX worker threads and 1 GPU executor)
Time-per-timestep HPX-SYCL OFF
Time-per-timestep HPX-SYCL ON

0.2
0.4
0.6

HP
X-

SY
CL

 O
N

Sp
ee

du
p

(w
.r.

t t
o

OF
F)

0.52x

0.18x 0.12x 0.10x 0.12x 0.19x
0.37x

HPX-SYCL ON Speedup (w.r.t to OFF)

(b) A100: Increasing number of kernels ag-
gregated

1 2 4 8 16 32
Number HPX Worker Threads [log]

1060

282

1243

117
100

Ti
m

e-
pe

r-t
im

es
te

p
in

 m
s [

lo
g]

Sedov Blast Wave Scenario on a NVIDIA A100:
 Time-per-timestep with and without the (host task) HPX-SYCL Integration

 (Using 32 GPU executors, with up to 8 kernels aggregated)
Time-per-timestep HPX-SYCL OFF
Time-per-timestep HPX-SYCL ON

0.2
0.4
0.6
0.8
1.0
1.2

HP
X-

SY
CL

 O
N

Sp
ee

du
p

(w
.r.

t t
o

OF
F)

1.17x 1.10x
0.93x

0.73x
0.48x

0.33x
HPX-SYCL ON Speedup (w.r.t to OFF)

(c) A100: Best combinations

1 2 4 8 16 32 64 128
Number GPU Executors [log]

2192

941

1584

885

600

1000

Ti
m

e-
pe

r-t
im

es
te

p
in

 m
s [

lo
g]

Sedov Blast Wave Scenario on a AMD MI100:
 Time-per-timestep with and without the (host task) HPX-SYCL Integration

 (Using 32 HPX worker threads, without dynamic work aggregation)
Time-per-timestep HPX-SYCL OFF
Time-per-timestep HPX-SYCL ON

0.2
0.4
0.6

HP
X-

SY
CL

 O
N

Sp
ee

du
p

(w
.r.

t t
o

OF
F)

0.72x 0.72x 0.71x 0.70x 0.80x 0.90x 0.94x 0.95x

HPX-SYCL ON Speedup (w.r.t to OFF)

(d) MI100: Increasing Number of GPU ex-
ecutors

1 2 4 8 16 32 64
Number Max Aggregation [log]

3706

523

1584

260

100

1000

Ti
m

e-
pe

r-t
im

es
te

p
in

 m
s [

lo
g]

Sedov Blast Wave Scenario on a AMD MI100:
 Time-per-timestep with and without the (host task) HPX-SYCL Integration

 (Using 32 HPX worker threads and 1 GPU executor)
Time-per-timestep HPX-SYCL OFF
Time-per-timestep HPX-SYCL ON

0.2
0.4
0.6

HP
X-

SY
CL

 O
N

Sp
ee

du
p

(w
.r.

t t
o

OF
F)

0.72x

0.24x 0.17x 0.17x 0.19x 0.30x
0.50x

HPX-SYCL ON Speedup (w.r.t to OFF)

(e) MI100: Increasing number of kernels ag-
gregated

1 2 4 8 16 32
Number HPX Worker Threads [log]

1314

244

1466

213

100

Ti
m

e-
pe

r-t
im

es
te

p
in

 m
s [

lo
g]

Sedov Blast Wave Scenario on a AMD MI100:
 Time-per-timestep with and without the (host task) HPX-SYCL Integration

 (Using 8 GPU executors, with up to 32 kernels aggregated)
Time-per-timestep HPX-SYCL OFF
Time-per-timestep HPX-SYCL ON

0.2
0.4
0.6
0.8
1.0
1.2

HP
X-

SY
CL

 O
N

Sp
ee

du
p

(w
.r.

t t
o

OF
F)

1.12x 1.10x 1.11x 1.00x
0.85x 0.87x

HPX-SYCL ON Speedup (w.r.t to OFF)

(f) MI100: Best combinations

Figure 4: Runs with the SYCL-Integration (host task version) turned on (orange) and turned off (gray). In 4a and 4d
we do not use the dynamic work aggregation and instead only increase the number of GPU executors. In 4b and 4e
we only use one executor, but increase the maximum number of kernels aggregated into one kernel launch. In 4c and
4f we see the best combinations. The Kokkos optimization patch is applied to all runs.

This assumes we have the dynamic work aggregation de-
scribed above turned off and further highlights why we
need it within the hydro module in the first place. The
measured runtime per time-step is the average over 15
time-steps, and we use double precision for all simula-
tions. The best compute time reached for this exact sce-
nario (on the same hardware) in previous work was 86.6
ms on an NVIDIA® A100 [8]. This runtime includes not
just all GPU kernels, but also things like CPU-GPU data-
transfers, post-processing on the CPU, scheduling of the
GPU kernels, determination of the time-step size and no-
tably, all logic required for the work aggregation. Hence,
it is a scenario that tries to run a large amount of small
kernels, with the GPU busy running them and the CPU
busy scheduling and potentially aggregating them.

We run this scenario on two nodes: The first node contains
a NVIDIA A100 GPU, and an Intel® Xeon® Platinum
8358 CPU. The second node contains an AMD MI100
GPU and an AMD EPYC™ 7H12 CPU. We use 32 HPX
worker threads on both CPUs to keep the runs more com-
parable to each other (by thus limiting HPX to 32 CPU
cores on both machines). The software versions (git com-

mits) we use can be found in Table 1. In particular, we use
DPC++ (OneAPI) as a compiler and SYCL implementa-
tion, since the Kokkos SYCL execution space makes use
of OneAPI extensions such as sycl ext oneapi enqueue

barrier and sycl ext intel usm address spaces.

4.1.2 Parameters and Configurations:

We run Octo-Tiger in multiple software configurations by
applying patches to its dependencies.

The first patch8 simply turns off the HPX-SYCL integra-
tion within HPX to allow us to judge its benefits. To make
everything compile correctly, the interface needs to stay
the same, hence return an HPX future for a given SYCL
event. With the patch to turn off the integration, HPX
waits for the SYCL event and only then returns a ready
future via hpx::make ready future(), effectively turning
it from an asynchronous operation to a synchronous one.

8https://github.com/STEllAR-GROUP/
OctoTigerBuildChain/blob/sycl_toolchain/remove_
hpx_sycl_integration.patch

9

https://github.com/STEllAR-GROUP/OctoTigerBuildChain/blob/sycl_toolchain/remove_hpx_sycl_integration.patch
https://github.com/STEllAR-GROUP/OctoTigerBuildChain/blob/sycl_toolchain/remove_hpx_sycl_integration.patch
https://github.com/STEllAR-GROUP/OctoTigerBuildChain/blob/sycl_toolchain/remove_hpx_sycl_integration.patch

A PREPRINT - MAY 10, 2023

Boost 1.75.0 HWLOC 2.7.1
HDF5 1.8.12 Silo 4.10.2
Kokkos 23a5e941 HPX-Kokkos 6f6b6552

JEMALLOC 5.2.1 HPX 56418953

CPPuddle 969902f 4 Octo-Tiger e9694705
ROCm 5.2.0 CUDA 11.7
DPC++/Intel OneAPI 44c6437684d6

Table 1: Software versions used in the experiments. As we use multiple experimental pull requests, we added the
exact git commits and associated PRs.
1 part of https://github.com/kokkos/kokkos/pull/5628
2 part of https://github.com/STEllAR-GROUP/hpx-kokkos/pull/13
3 part of https://github.com/STEllAR-GROUP/hpx/pull/6085
4 part of https://github.com/SC-SGS/CPPuddle/pull/15
5 part of https://github.com/STEllAR-GROUP/octotiger/pull/432

By default, this patch is not applied for the following tests,
unless stated otherwise (HPX-SYCL OFF).

The second patch contains the Kokkos optimizations men-
tioned previously. In early tests of our integration we
found that the Kokkos SYCL backend contains multi-
ple barriers (sycl ext oneapi enqueue barrier), reduc-
ing the benefits we gain with our integration. Fortunately,
we also found that we can get rid of some of those bar-
riers when using in order queues, as this queue property
already enforces the same kind of ordering. By default,
this patch is applied for the following tests unless stated
otherwise.

The third change we apply is switching between the host

task based HPX-SYCL integration and the event polling
based integration. This is done at compile time within
HPX-Kokkos, as this is the point where we call the basic
get future functionality. Depending on the configuration
here, we either call the event polling version or the host

task version.

Other parameters we consider are the number of HPX
worker threads, the number of GPU executors, and the
maximum number of GPU kernels that may be aggregated
together by one executor. Firstly, the number of HPX
worker threads defines how many overall CPU threads are
working on the available HPX tasks, thus this parameter
effectively steers how many CPU cores are used by HPX.
Secondly, the number of GPU executors steers the num-
ber of concurrent GPU kernels/data-transfers that are pos-
sible. Lastly, the maximum number of aggregated GPU
kernels requires a more detailed explanation: When we
encounter a kernel that is compatible for aggregation (as
marked by the programmer), we suspend the current task
and wait for other threads to hit the same kernel on differ-
ent sub-grids. We then launch all of them as one bigger,
aggregated kernel if we either hit a maximum number of
tasks encountering the kernel (this is the maximum ag-
gregation parameter), or if the underlying GPU executor
becomes idle which may trigger the aggregated kernel to
launch sooner (avoiding deadlocks caused by odd num-
bers of sub-grids). This aggregation increases the size

of the actual kernels running on the GPU, thus avoiding
starving the GPU with numerous but tiny compute ker-
nels, and decreases the load on the GPU runtime as we
need fewer overall API calls.

The dynamic work aggregation also influences how often
the get future functionality is called. For each leaf sub-
grid we run five separate GPU kernels before we have to
transfer the results back to the host for post-processing
and communicating them to the neighbors.

With the work aggregation turned on (i.e. a maximum
larger than one kernel), we have one additional get

future call at the beginning of the first sub-grid encoun-
tered when aggregating (as this future is used internally by
the aggregation executor to notice when the GPU stream
it uses becomes idle). However, this is only done once per
aggregated kernel.

The other get future call is to communicate the results
of the aggregated kernel. This means that we effectively
decrease the number calls to our HPX-SYCL integration
when going beyond a maximum of two aggregated ker-
nels.

4.2 Performance Tests

For our first two performance tests, we run Octo-Tiger
with the HPX-SYCL integration turned on (using host
tasks for the first test and event polling for the second test),
and then run it again with the HPX patch that disables
the integration altogether for comparison. Afterward, we
look at the performance with and without our experimen-
tal Kokkos optimizations mentioned in Section 3.3.4. Fi-
nally, we take a short look at how the performance of
these Kokkos SYCL runs relate to the same runs using
the Kokkos CUDA/HIP execution spaces and the native
CUDA/HIP kernels still within Octo-Tiger.

10

https://github.com/kokkos/kokkos/pull/5628
https://github.com/STEllAR-GROUP/hpx-kokkos/pull/13
 https://github.com/STEllAR-GROUP/hpx/pull/6085
https://github.com/SC-SGS/CPPuddle/pull/15
https://github.com/STEllAR-GROUP/octotiger/pull/432

A PREPRINT - MAY 10, 2023

4.2.1 Test 1 - Performance Impact of the Host Task
Based HPX-SYCL Integration

For our first test, we take a look at the host task version
of our integration as described in Section 3.2.1. We run
the Sedov Blast Wave scenario with and without the inte-
gration turned on. The results can be found in Figure 4.
As we will do in the following tests, we usually look at
three different configurations: For the first graph (4a), the
number of HPX worker threads (and thus CPU cores used
by HPX) were fixed to 32 and the dynamic work aggrega-
tion was disabled. We then increase the number of GPU
executors until we reach 128. This way we can see the
effects of multiple CPU cores trying to use the integration
on a varying number of SYCL command queues (as each
GPU executor contains one underlying in order SYCL
command queue).

In the second graph (4b), we use only one GPU executor,
but enable the dynamic work aggregation. This allows the
aggregation of up to 64 kernels into one larger aggregated
GPU kernel. Although, usually the number of kernels be-
ing aggregated into a single kernel ends up being smaller
than this maximum number, as the aggregated kernel is
being launched immediately when the executor becomes
idle (even if it has not reached maximum aggregation ca-
pacity yet).

Lastly, in the third graph (4c), we take a look at the best
combination of the previous two parameters that we found
(32 GPU executors with up to eight kernels aggregated
on the A100). We then run this combination not only
with 32 HPX worker threads but also try fewer threads.
This is usually the most interesting test, as it not only
tests the configuration we are most likely to use in pro-
duction runs, but also begins to artificially weaken the
CPU performance (by using less workers), which in turn
should make the HPX-SYCL integration more valuable,
as waiting on SYCL results (with the integration turned
off) blocks the CPU threads. The other three graphs (4d,
4e, 4f) work accordingly for the MI100 node, showing the
same experiments done for this machine. This part of the
experiment setup will stay the same for the next two tests
as well. While we change the software configuration for
those tests, the parameters we vary stay the same.

Overall, looking at the speedup bars in each of the graphs
in test 1, it becomes apparent that the integration actu-
ally significantly decreases performance, most likely due
to the host tasks being handled by different threads in-
ternally by the SYCL runtime. This can be seen in two
ways: We get better (integration) speedups when using
less HPX worker threads in graphs 4c and 4f as there is
less contention between the HPX worker threads and the
threads of the SYCL runtime. We further see a more se-
vere slowdown in scenarios which rely heavily on the dy-
namic work aggregation (4b, 4e), as the CPU has to man-
age the work aggregation scheduling here as well. Inter-
estingly, the run with the best combination of GPU execu-
tors and work aggregation on the MI100 (4f), performs
better than the one on the A100 (4c) when the integration

is turned on. We plan to investigate this further in future
work. However, even here this integration is not too bene-
ficial: We only see a benefit when using few HPX worker
threads (and thus few cores). In most configurations, this
host task integration is detrimental to the performance.

4.2.2 Test 2 - Performance Impact of the Event
Polling HPX-SYCL Integration

Given the disappointing results of the host task integra-
tion, it is clear that we need an alternative. The event
polling version we implemented does not suffer from
the same drawbacks, as everything is handled by the
HPX threads themselves in a way that is optimized for
multi-threaded usage. However, the continuous polling is
adding a different kind of overhead, making it important
to also check this integration by running Octo-Tiger once
with it enabled and once while it is disabled.

Hence, we are now repeating the same tests as in the pre-
vious section, but using the event polling version of our
integration. The results can be found in Figure 5. This
time, we can achieve clear speedups, especially for the
graphs that only use one GPU executor (5b, 5e) but with
the work aggregation enabled. Here, we benefit from the
aggregation the most, as CPU-time becomes increasingly
more valuable as the worker threads are busy coordinat-
ing the work aggregation on top of their other tasks. Even
for the graphs with the best combinations (5c, 5f) we see
clear benefits. Slightly more so when using fewer HPX
worker threads, however, even when using all 32 workers
with the best combination, we see a speedup of 1.11x on
the A100 node and one of 1.15x on the MI100 node. Note
that the best combination on the MI100 node is different
from the A100 one, as we benefit less from concurrent
GPU executors on the AMD GPU, and instead just use
8 GPU executors with up to 32 kernels aggregated. We
have seen a similar effect in previous tests using HIP on
this machine, which was one of the original triggers for us
to implement the dynamic work aggregation executor [8].

4.2.3 Test 3 - Performance Impact of the Kokkos
Modifications

The last two tests were about the HPX-SYCL integra-
tion, but always had the Kokkos optimization patch ap-
plied (both the runs with and without integration). In this
test, we always have the (event polling) HPX-SYCL in-
tegration enabled, but toggle whether we use the Kokkos
modification patch. As mentioned, this patch basically
just skips a few barriers in case the Kokkos SYCL exe-
cution space is using an in order queue. When using it
with Octo-Tiger we did not notice any deviation in the ac-
tual results of our tests. However, it made a performance
impact. The results can be found in Figure 6. The patch
is consistently beneficial, with us reaching speedups of
around 1.06 and 1.12 for the best combination runs. The
speedup on the A100 node without dynamic work aggre-
gation (6a) stands out. We benefit more from the con-
current GPU executors on NVIDIA hardware, so keeping

11

A PREPRINT - MAY 10, 2023

1 2 4 8 16 32 64 128
Number GPU Executors [log]

773

528

377

304
263251

100

1000

Ti
m

e-
pe

r-t
im

es
te

p
in

 m
s [

lo
g]

Sedov Blast Wave Scenario on a NVIDIA A100:
 Time-per-timestep with and without the HPX-SYCL Integration

 (Using 32 HPX worker threads, without dynamic work aggregation)
Time-per-timestep HPX-SYCL OFF
Time-per-timestep HPX-SYCL ON

1.0
1.2
1.4

HP
X-

SY
CL

 O
N

Sp
ee

du
p

(w
.r.

t t
o

OF
F)

1.00x
1.17x

1.28x
1.12x 1.07x 1.01x 1.00x 1.01x

HPX-SYCL ON Speedup (w.r.t to OFF)

(a) A100: Increasing Number of GPU execu-
tors

1 2 4 8 16 32 64
Number Max Aggregation [log]

773

434

262

203
181
161

100

1000

Ti
m

e-
pe

r-t
im

es
te

p
in

 m
s [

lo
g]

Sedov Blast Wave Scenario on a NVIDIA A100:
 Time-per-timestep with and without the HPX-SYCL Integration

 (Using 32 HPX worker threads and 1 GPU executor)
Time-per-timestep HPX-SYCL OFF
Time-per-timestep HPX-SYCL ON

1.0
1.2
1.4

HP
X-

SY
CL

 O
N

Sp
ee

du
p

(w
.r.

t t
o

OF
F)

1.00x 1.03x
1.16x 1.23x 1.17x 1.16x 1.19x

HPX-SYCL ON Speedup (w.r.t to OFF)

(b) A100: Increasing number of kernels ag-
gregated

1 2 4 8 16 32
Number HPX Worker Threads [log]

1047

562

308

183

125
107Ti

m
e-

pe
r-t

im
es

te
p

in
 m

s [
lo

g]

Sedov Blast Wave Scenario on a NVIDIA A100:
 Time-per-timestep with and without the HPX-SYCL Integration

 (Using 32 GPU executors and aggregate up to 8 kernels per launch)
Time-per-timestep HPX-SYCL OFF
Time-per-timestep HPX-SYCL ON

1.0
1.2
1.4

HP
X-

SY
CL

 O
N

Sp
ee

du
p

(w
.r.

t t
o

OF
F)

1.19x 1.21x 1.16x 1.16x 1.09x 1.11x

HPX-SYCL ON Speedup (w.r.t to OFF)

(c) A100: Best combinations

1 2 4 8 16 32 64 128
Number GPU Executors [log]

1589

1236

994
935
901

600

Ti
m

e-
pe

r-t
im

es
te

p
in

 m
s [

lo
g]

Sedov Blast Wave Scenario on a AMD MI100:
 Time-per-timestep with and without the HPX-SYCL Integration

 (Using 32 HPX worker threads, without dynamic work aggregation
Time-per-timestep HPX-SYCL OFF
Time-per-timestep HPX-SYCL ON

1.0
1.2
1.4

HP
X-

SY
CL

 O
N

Sp
ee

du
p

(w
.r.

t t
o

OF
F)

1.00x 1.10x 1.14x 1.10x 1.03x 1.04x 0.99x 1.00x

HPX-SYCL ON Speedup (w.r.t to OFF)

(d) MI100: Increasing Number of GPU ex-
ecutors

1 2 4 8 16 32 64
Number Max Aggregation [log]

1589

851

499

322

243
216

100

1000

Ti
m

e-
pe

r-t
im

es
te

p
in

 m
s [

lo
g]

Sedov Blast Wave Scenario on a AMD MI100:
 Time-per-timestep with and without the HPX-SYCL Integration

 (Using 32 HPX worker threads and 1 GPU executor)
Time-per-timestep HPX-SYCL OFF
Time-per-timestep HPX-SYCL ON

1.0
1.2
1.4

HP
X-

SY
CL

 O
N

Sp
ee

du
p

(w
.r.

t t
o

OF
F)

1.00x 1.05x
1.20x

1.39x 1.33x 1.26x 1.23x

HPX-SYCL ON Speedup (w.r.t to OFF)

(e) MI100: Increasing number of kernels ag-
gregated

1 2 4 8 16 32
Number HPX Worker Threads [log]

1314

733

421

308

213
182

100

1000

Ti
m

e-
pe

r-t
im

es
te

p
in

 m
s [

lo
g]

Sedov Blast Wave Scenario on a AMD MI100:
 Time-per-timestep with and without the HPX-SYCL Integration

 (Using 8 GPU executors and aggregate up to 32 kernels per launch)
Time-per-timestep HPX-SYCL OFF
Time-per-timestep HPX-SYCL ON

1.0
1.2
1.4

HP
X-

SY
CL

 O
N

Sp
ee

du
p

(w
.r.

t t
o

OF
F)

1.10x 1.12x 1.18x 1.11x 1.09x 1.15x

HPX-SYCL ON Speedup (w.r.t to OFF)

(f) MI100: Best combinations

Figure 5: Runs with the SYCL-Integration (event polling version) turned on (orange) and turned off (gray). In 5a and
5d we do not use the dynamic work aggregation and instead only increase the number of GPU executors. In 5b and 5e
we only use one executor, but increase the maximum number of kernels aggregated into one kernel launch. In 5c and
5f we see the best combinations. The Kokkos optimization patch is applied to all runs.

them better fed with kernels (without any blocking) yields
a larger advantage. Overall, applying the patch is benefi-
cial in all tested configurations.

4.2.4 Test 4 - Performance Using Different
Execution Backends

On the A100 node we can now use multiple backends for
the kernels: plain CUDA, Kokkos using the CUDA execu-
tion space, and Kokkos using the SYCL execution space.
This warrants a closer look at how these different back-
ends perform with Octo-Tiger using the same scenario and
the same hardware. The results for this can be found in
Figure 7 (both for the A100 and MI100 node). The (event
polling) HPX-SYCL integration is ON and the Kokkos
optimization patch is applied. Interestingly, in this sce-
nario, the Kokkos SYCL backend seems to be competitive
compared to its CUDA equivalent. From what we are able
to tell from the profiler output, the average runtime per
kernel is actually better with SYCL. However, we are los-
ing some runtime again in the overhead, since the HPX-
CUDA integration is using an event pool, while we have
to get our SYCL events from the SYCL runtime, resulting

in frequent creation and destruction of these SYCL events.
Notably, the Kokkos CUDA execution space version here
is a bit slower than it was in previous work, where we
used Clang 12 instead of DPC++ [8] and an older ver-
sion of Octo-Tiger which did not yet include the SIMD
types within the Kokkos kernels (which might add a bit
of overhead to the GPU execution). It is noteworthy, that
independent of the GPU backend used, Octo-Tiger per-
forms better on the A100 GPU than it does on the MI100
one. This shows that the kernels themselves need more
optimization for the AMD GPU.

5 Related work

From the application perspective, other astrophysics
codes support SYCL’s abstraction layer as well. DPE-
cho9, a code for general relativistic magneto hydrodynam-
ics, uses Intel MPI and hipSYCL. ARGOT, a radiative
transfer code, uses Intel DPC++ to support GPUs (Intel
CPU + NVIDIA GPU) and Intel FPGAs [18]. However,

9https://github.com/LRZ-BADW/DPEcho

12

https://github.com/LRZ-BADW/DPEcho

A PREPRINT - MAY 10, 2023

1 2 4 8 16 32 64 128
Number GPU Executors [log]

773

528

377

304
263251

100

1000

Ti
m

e-
pe

r-t
im

es
te

p
in

 m
s [

lo
g]

Sedov Blast Wave Scenario on a NVIDIA A100:
 Time-per-timestep with and without the Kokkos patch

 (Using 32 HPX worker threads, without dynamic work aggregation)
Time-per-timestep without Kokkos fence patch
Time-per-timestep with Kokkos fence patch

1.0
1.2
1.4 Ko

kk
os

 P
at

ch
 S

pe
ed

up

1.05x 1.15x 1.22x 1.29x 1.34x 1.34x 1.32x 1.35x

Kokkos Patch Speedup

(a) A100: Increasing Number of GPU execu-
tors

1 2 4 8 16 32 64
Number Max Aggregation [log]

773

434

262

203
181
161

100

1000

Ti
m

e-
pe

r-t
im

es
te

p
in

 m
s [

lo
g]

Sedov Blast Wave Scenario on a NVIDIA A100:
 Time-per-timestep with and without the Kokkos patch
 (Using 32 HPX worker threads and 1 GPU executor)

Time-per-timestep without Kokkos fence patch
Time-per-timestep with Kokkos fence patch

1.0
1.2
1.4 Ko

kk
os

 P
at

ch
 S

pe
ed

up

1.05x 1.05x 1.08x 1.09x 1.07x 1.09x 1.05x

Kokkos Patch Speedup

(b) A100: Increasing number of kernels ag-
gregated

1 2 4 8 16 32
Number HPX Worker Threads [log]

1047

562

308

183

125
107Ti

m
e-

pe
r-t

im
es

te
p

in
 m

s [
lo

g]

Sedov Blast Wave Scenario on a NVIDIA A100:
 Time-per-timestep with and without the Kokkos patch

 (Using 32 GPU executors and aggregate up to 8 kernels per launch)
Time-per-timestep without Kokkos fence patch
Time-per-timestep with Kokkos fence patch

1.0
1.2
1.4 Ko

kk
os

 P
at

ch
 S

pe
ed

up

1.17x 1.22x 1.17x 1.19x 1.14x 1.12x

Kokkos Patch Speedup

(c) A100: Best combinations

1 2 4 8 16 32 64 128
Number GPU Executors [log]

1589

1236

994
935901

600

Ti
m

e-
pe

r-t
im

es
te

p
in

 m
s [

lo
g]

Sedov Blast Wave Scenario on a AMD MI100:
 Time-per-timestep with and without the Kokkos patch

 (Using 32 HPX worker threads, without dynamic work aggregation
Time-per-timestep without Kokkos fence patch
Time-per-timestep with Kokkos fence patch

1.0
1.2
1.4 Ko

kk
os

 P
at

ch
 S

pe
ed

up

1.22x 1.21x 1.14x 1.09x 1.11x 1.11x 1.05x 1.01x

Kokkos Patch Speedup

(d) MI100: Increasing Number of GPU ex-
ecutors

1 2 4 8 16 32 64
Number Max Aggregation [log]

1589

851

499

322

243
216

100

1000

Ti
m

e-
pe

r-t
im

es
te

p
in

 m
s [

lo
g]

Sedov Blast Wave Scenario on a AMD MI100:
 Time-per-timestep with and without the Kokkos patch
 (Using 32 HPX worker threads and 1 GPU executor)

Time-per-timestep without Kokkos fence patch
Time-per-timestep with Kokkos fence patch

1.0
1.2
1.4 Ko

kk
os

 P
at

ch
 S

pe
ed

up

1.22x 1.19x 1.16x 1.15x 1.14x 1.11x 1.12x

Kokkos Patch Speedup

(e) MI100: Increasing number of kernels ag-
gregated

1 2 4 8 16 32
Number HPX Worker Threads [log]

1314

733

421

308

213
182

100

1000

Ti
m

e-
pe

r-t
im

es
te

p
in

 m
s [

lo
g]

Sedov Blast Wave Scenario on a AMD MI100:
 Time-per-timestep with and without the Kokkos patch

 (Using 8 GPU executors and aggregate up to 32 kernels per launch)
Time-per-timestep without Kokkos fence patch
Time-per-timestep with Kokkos fence patch

1.0
1.2
1.4 Ko

kk
os

 P
at

ch
 S

pe
ed

up

1.07x 1.08x 1.12x 1.09x 1.11x 1.06x

Kokkos Patch Speedup

(f) MI100: Best combinations

Figure 6: Runs with the applied Kokkos optimization patch (green) and without the patch (gray). In 6a and 6d we do
not use the dynamic work aggregation and instead only increase the number GPU executors. In 6b and 6e we only use
one executor but increase the maximum number of kernels aggregated into one kernel launch. In 6c and 6f, we see the
best combinations. The HPX-SYCL integration (event polling version) is on for all runs.

0 200 400 600
Time-per-timestep in ms

CUDA:
32 Cores

128 GPU executors
4 Max aggregation

KOKKOS_SYCL:
32 Cores

32 GPU executors
8 Max aggregation

KOKKOS CUDA:
32 Cores

64 GPU executors
8 Max aggregation

KOKKOS CPU-only :
32 Cores

 explicit SIMD

LEGACY CPU:
32 Cores

autovectorization only

Co
m

pu
te

 b
ac

ke
nd

 93 ms

 107 ms

 112 ms

 280 ms

 509 ms

(a) Best runs on the NVIDIA
A100

0 200 400 600
Time-per-timestep in ms

KOKKOS HIP:
32 Cores

128 GPU executors
32 Max aggregation

HIP:
32 Cores

16 GPU executors
16 Max aggregation

KOKKOS_SYCL:
32 Cores

8 GPU executors
32 Max aggregation

KOKKOS CPU-only :
32 Cores

 explicit SIMD

LEGACY CPU:
32 Cores

autovectorization only

Co
m

pu
te

 b
ac

ke
nd

 167 ms

 169 ms

 182 ms

 275 ms

 531 ms

(b) Best runs on the AMD
MI100

Figure 7: Sedov Blast Scenario with Octo-Tiger using all
the available backends on both the A100 node (7a) and
the MI100 node (7b). We used the best combinations for
each backend and added CPU-only runs for comparison.

the applications, e.g. black holes and cosmology, of these
two codes are different from Octo-Tiger.

From the integration of SYCL within asynchronous mul-
titask systems, we focus on the integration of the asyn-
chronous tasks of the SYCL API. One could just call the
SYCL API on one thread, block the thread while wait-
ing for the event. However, we are interested in integrat-
ing the SYCL API call into the asynchronous execution
graph. Chapel [4] supports Intel DPC++ as one of their
GPU API modules since October 21. Unitah [11] support
SYCL via Kokkos SYCL [14]. Chiu et al. compared the
SYCL default task graph with the CUDA graph execution
model10 for large-scale machine learning work loads [5].
Other notable AMTs are: Charm++ [17], Legion [2], and
PaRSEC [3]. A detailed comparison is given in [25]. Fo-
cusing on the programming model, Charm++ and HPX
are very close; however, HPX conforms to the C++ stan-
dard and Charm++ is a library that uses the C++ program-
ming language. The overheads using HPX and Charm++
are compared with MPI and OpenMP in [28].

10https://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html#cuda-graphs

13

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cuda-graphs
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cuda-graphs

A PREPRINT - MAY 10, 2023

6 Conclusion and Future Work

For this work, we began making Octo-Tiger and HPX it-
self compatible with SYCL. To do so, we introduced mul-
tiple software changes, most important of which is the
HPX-SYCL integration.

Integrating these two frameworks certainly seems like an
odd choice initially, as both contain similar functionality
for expressing execution graphs (one using SYCL events,
the other using HPX futures). However, there are ad-
vantages, as both frameworks have their own specialties:
With SYCL we can quickly build the asynchronous de-
pendencies between GPU kernels and data-transfers, as
shown in Octo-Tiger’s hydro solver, where we first sched-
ule 5 GPU kernels and their associated CPU-GPU data
transfers for each sub-grid, before HPX gets involved
again. HPX, on the other hand, excels in scheduling asyn-
chronous CPU work, whether it is on the local compute-
node or a remote one. For instance, after scheduling the
GPU work with SYCL, we use HPX by getting a fu-
ture when the GPU work for a sub-grid is done, then use
this future to schedule the CPU post-processing and the
communication with neighboring sub-grids without ever
blocking the CPU host threads. Although we only looked
at single-node runs in this work, this should become even
more important in distributed runs, as the interleaving
of computation and communication becomes increasingly
more important the more nodes we use, especially in tree-
based codes like Octo-Tiger.

While we implemented the HPX-SYCL integration using
both the host task SYCL feature and event polling, in
the end, the version using event polling within the HPX
scheduler proved to be clearly superior in our tests. Over-
all, the speedups in Octo-Tiger when using the integra-
tion are modest, yet noticeable, ranging from 1.11x to
1.15x for the best configurations (using 32 HPX worker
threads and the best combination of GPU executors and
maximum number of aggregated kernels). Furthermore,
the Kokkos optimization patch we used shows promise,
though at the point of submission, we think it requires
further testing with codes beyond Octo-Tiger before up-
streaming it. Between these Kokkos changes and the
SYCL integration, Octo-Tiger’s overall runtime behavior
when using the Kokkos SYCL execution space becomes
comparable to the one using the Kokkos CUDA execution
space.

For future work, we would like to make use of two oppor-
tunities that the groundwork in this paper enables: First,
since we updated and optimized Octo-Tiger’s toolchain to
work with SYCL, we can now realistically target the up-
coming Intel GPUs for future Octo-Tiger runs. Hence, we
would like to re-run the tests shown here on the respective
Intel hardware in the future. Secondly, one of the ma-
jor advantages of using HPX is that it enables distributed
runs. We would like to revisit the benefit of the HPX-
SYCL integration in more complex, distributed scenarios
on Perlmutter, as blocking the cores by waiting for SYCL

results (without the integration) should have a more pro-
found negative performance impact here as it can impact
the interleaving of computation and communication.

References

[1] Aksel Alpay and Vincent Heuveline. Sycl beyond
opencl: The architecture, current state and future di-
rection of hipsycl. In Proceedings of the Interna-
tional Workshop on OpenCL, pages 1–1, 2020.

[2] Michael Bauer et al. Legion: Expressing locality and
independence with logical regions. In SC’12: Pro-
ceedings of the International Conference on High
Performance Computing, Networking, Storage and
Analysis, pages 1–11. IEEE, 2012.

[3] George Bosilca et al. Parsec: Exploiting heterogene-
ity to enhance scalability. Computing in Science &
Engineering, 15(6):36–45, 2013.

[4] Bradford L Chamberlain et al. Parallel programma-
bility and the chapel language. The International
Journal of High Performance Computing Applica-
tions, 21(3):291–312, 2007.

[5] Cheng-Hsiang Chiu et al. An Experimental Study of
SYCL Task Graph Parallelism for Large-Scale Ma-
chine Learning Workloads. In Euro-Par 2021: Par-
allel Processing Workshops: Euro-Par 2021 Inter-
national Workshops, Lisbon, Portugal, August 30-
31, 2021, Revised Selected Papers, pages 468–479.
Springer, 2022.

[6] Gregor Daiß et al. From Piz Daint to the Stars:
Simulation of Stellar Mergers Using High-Level Ab-
stractions. In Proceedings of the International Con-
ference for High Performance Computing, Network-
ing, Storage and Analysis, SC ’19, New York, NY,
USA, 2019. Association for Computing Machinery.

[7] Gregor Daiß et al. Beyond fork-join: Inte-
gration of performance portable Kokkos kernels
with HPX. In 2021 IEEE International Parallel
and Distributed Processing Symposium Workshops
(IPDPSW), pages 377–386. IEEE, 2021.

[8] G. Daiß, P. Diehl, D. Marcello, A. Kheirkha-
han, H. Kaiser, and D. Pflüger. From task-based
gpu work aggregation to stellar mergers: Turn-
ing fine-grained cpu tasks into portable gpu ker-
nels. In 2022 IEEE/ACM International Workshop on
Performance, Portability and Productivity in HPC
(P3HPC), pages 89–99, Los Alamitos, CA, USA,
nov 2022. IEEE Computer Society.

[9] G. Daiß, S. Singanaboina, P. Diehl, H. Kaiser, and
D. Pflüger. From merging frameworks to merg-
ing stars: Experiences using hpx, kokkos and simd
types. In 2022 IEEE/ACM 7th International Work-
shop on Extreme Scale Programming Models and
Middleware (ESPM2), pages 10–19, Los Alamitos,
CA, USA, nov 2022. IEEE Computer Society.

14

A PREPRINT - MAY 10, 2023

[10] Patrick Diehl et al. Octo-tiger’s new hydro module
and performance using hpx+ cuda on ornl’s summit.
In 2021 IEEE International Conference on Clus-
ter Computing (CLUSTER), pages 204–214. IEEE,
2021.

[11] J Davison de St Germain et al. Uintah: A massively
parallel problem solving environment. In Proceed-
ings the Ninth International Symposium on High-
Performance Distributed Computing, pages 33–41.
IEEE, 2000.

[12] The Khronos SYCL Working Group. Sycl 2020
specification (revision 6), 2021.

[13] Thomas Heller et al. Harnessing billions of tasks
for a scalable portable hydrodynamic simulation of
the merger of two stars. The International Jour-
nal of High Performance Computing Applications,
33(4):699–715, 2019.

[14] John K. Holmen et al. Porting uintah to heteroge-
neous systems. In Proceedings of the Platform for
Advanced Scientific Computing Conference, PASC
’22, New York, NY, USA, 2022. Association for
Computing Machinery.

[15] Kundan Kadam et al. Numerical simulations of mass
transfer in binaries with bipolytropic components.
Monthly Notices of the Royal Astronomical Society,
481(3):3683–3707, 2018.

[16] Hartmut Kaiser et al. HPX-the C++ standard library
for parallelism and concurrency. Journal of Open
Source Software, 5(53):2352, 2020.

[17] Laxmikant V Kale and Sanjeev Krishnan. Charm++
a portable concurrent object oriented system based
on C++. In Proceedings of the eighth annual confer-
ence on Object-oriented programming systems, lan-
guages, and applications, pages 91–108, 1993.

[18] Ryuta Kashino et al. Multi-hetero acceleration
by gpu and fpga for astrophysics simulation on
oneapi environment. In International Conference
on High Performance Computing in Asia-Pacific Re-
gion, pages 84–93, 2022.

[19] Matthias Kretz and Volker Lindenstruth. Vc: A c++
library for explicit vectorization. Software: Practice
and Experience, 42(11):1409–1430, 2012.

[20] Dominic C Marcello. A very fast and angular mo-
mentum conserving tree code. The Astronomical
Journal, 154(3):92, 2017.

[21] Dominic C Marcello, Sagiv Shiber, Orsola
De Marco, Juhan Frank, Geoffrey C Clayton,
Patrick M Motl, Patrick Diehl, and Hartmut Kaiser.
Octo-Tiger: a new, 3D hydrodynamic code for
stellar mergers that uses HPX parallelization.
Monthly Notices of the Royal Astronomical Society,
504(4):5345–5382, 2021.

[22] David Pfander et al. Accelerating Octo-Tiger: Stel-
lar Mergers on Intel Knights Landing with HPX.
In Proceedings of the International Workshop on

OpenCL, IWOCL ’18, pages 19:1–19:8, New York,
NY, USA, 2018. ACM.

[23] Damodar Sahasrabudhe, Eric T Phipps,
Sivasankaran Rajamanickam, and Martin Berzins.
A portable SIMD primitive using Kokkos for hetero-
geneous architectures. In International Workshop
on Accelerator Programming Using Directives,
pages 140–163. Springer, 2019.

[24] Jan E Staff et al. The role of dredge-up in double
white dwarf mergers. The Astrophysical Journal,
862(1):74, 2018.

[25] Peter Thoman, , et al. A taxonomy of task-
based parallel programming technologies for high-
performance computing. The Journal of Supercom-
puting, 74(4):1422–1434, 2018.

[26] Peter Thoman et al. The celerity high-level api: C++
20 for accelerator clusters. International Journal of
Parallel Programming, 50(3-4):341–359, 2022.

[27] Christian R. Trott et al. Kokkos 3: Program-
ming Model Extensions for the Exascale Era. IEEE
Transactions on Parallel and Distributed Systems,
33(4):805–817, 2022.

[28] Nanmiao Wu et al. Quantifying Overheads in
Charm++ and HPX using Task Bench, 2022.

A Supplementary materials

The Octo-Tiger build scripts are available on GitHub11.
For the runs on the A100 node we used the git branch
sycl toolchain of this repository, for the ones on the
MI100 node sycl toolchain hip.

11https://github.com/STEllAR-GROUP/
OctoTigerBuildChain

15

https://github.com/STEllAR-GROUP/OctoTigerBuildChain
https://github.com/STEllAR-GROUP/OctoTigerBuildChain

	1 Introduction
	2 Real-World Application as a Benchmark: Octo-Tiger
	2.1 Octo-Tiger: Scientific Application, Data-Structure and Solvers
	2.2 Octo-Tiger's Software-Stack
	2.2.1 Tasks and Distributed Computing with HPX
	2.2.2 Portable Compute Kernel with Kokkos and HPX-Kokkos
	2.2.3 SIMD - Kokkos SIMD and [language=c++]std::experimental::simd
	2.2.4 Work Aggregation and Memory Optimizations - CPPuddle
	2.2.5 Other Dependencies

	2.3 Octo-Tiger's Execution Model

	3 Integrating SYCL with HPX and Octo-Tiger
	3.1 SYCL
	3.2 HPX-SYCL Integration
	3.2.1 Integration using SYCL Host Tasks
	3.2.2 Integration via Event Polling
	3.2.3 HPX SYCL Executor
	3.2.4 Differences to other HPX GPU Executors

	3.3 Additional Software Changes
	3.3.1 HPX-Kokkos
	3.3.2 CPPuddle
	3.3.3 Octo-Tiger
	3.3.4 Kokkos

	4 Results
	4.1 Test Setup
	4.1.1 Scenario and Hardware:
	4.1.2 Parameters and Configurations:

	4.2 Performance Tests
	4.2.1 Test 1 - Performance Impact of the Host Task Based HPX-SYCL Integration
	4.2.2 Test 2 - Performance Impact of the Event Polling HPX-SYCL Integration
	4.2.3 Test 3 - Performance Impact of the Kokkos Modifications
	4.2.4 Test 4 - Performance Using Different Execution Backends

	5 Related work
	6 Conclusion and Future Work
	A Supplementary materials

