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Fig. 1. NeRFshop enables intuitive selection via scribbles and interactive editing of arbitrary NeRF scenes. We

show duplicative, affine, and non-affine edits (left-to-right) with different viewpoints in the Kitchen scene.

Neural Radiance Fields (NeRFs) have revolutionized novel view synthesis for captured scenes, with recent

methods allowing interactive free-viewpoint navigation and fast training for scene reconstruction. However,

the implicit representations used by these methods—often including neural networks and complex encodings—

make them difficult to edit. Some initial methods have been proposed, but they suffer from limited editing

capabilities and/or from a lack of interactivity, and are thus unsuitable for interactive editing of captured

scenes. We tackle both limitations and introduce NeRFshop, a novel end-to-end method that allows users to

interactively select and deform objects through cage-based transformations. NeRFshop provides fine scribble-

based user control for the selection of regions or objects to edit, semi-automatic cage creation, and interactive

volumetric manipulation of scene content thanks to our GPU-friendly two-level interpolation scheme. Further,

we introduce a preliminary approach that reduces potential resulting artifacts of these transformations with a

volumetric membrane interpolation technique inspired by Poisson image editing and provide a process that

“distills” the edits into a standalone NeRF representation.
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1 INTRODUCTION
Neural Radiance Fields (NeRFs) [Mildenhall et al. 2020; Tewari et al. 2020] have completely

revolutionized novel-view synthesis of scenes captured with multi-view photos. The most recent

methods [Müller et al. 2022; Sara Fridovich-Keil and Alex Yu et al. 2022] achieve fast training of

the neural representation and allow interactive rendering of the captured scene with impressive

levels of realism. Internally, NeRF uses a volumetric representation of density and view-dependent

color to encode shape and appearance, parameterized using a multi-layer perceptron (MLP) neural

network; as such it is hard to directly manipulate the representation, e.g., to edit the captured

scene. Some initial editing methods have been recently proposed (e.g., [Xu and Harada 2022; Yuan

et al. 2022], Sec. 2.3) but they come with several limitations that hinder interactivity. Our goal is to

develop a NeRF editing solution that is interactive, can work on full scenes rather than isolated

“masked” objects, and allows free-form direct manipulation of the volumetric representation. To

our knowledge, no previous method satisfies all of these requirements.

To achieve our goals, we draw inspiration from standard image editing tools, as well as special-

ized approaches like PointShop [Zwicker et al. 2002] which provide intuitive, direct-manipulation

interfaces for manipulation of 2D and 3D content respectively. Specifically, we introduce a scribble-

based interface that allows the user to easily select a region of space, akin e.g., to image region

selection. Our method creates a cage mesh that encloses this space [Peng et al. [n. d.]; Xu and

Harada 2022] and allows the user to manipulate the mesh vertices, enabling free-form deforma-

tion and editing, similar to other content editing tools (see Figure 1). By creating a tetrahedral

representation [Garbin et al. 2022], we introduce a GPU-friendly two-level interpolation scheme,

allowing interactive updates for editing. Editing complete scenes introduces specific challenges

since inconsistent color and density artifacts can appear after (re)moving an object. We introduce a

preliminary membrane-based interpolation approach inspired by Poisson Image Editing [Pérez

et al. 2003] that reduces these artifacts. Finally, similar to “layer flattening/export” in traditional

image-editing tools, we provide a “distillation” step, that collapses all edits performed and saves a

hashgrid NeRF representation that can be loaded in established pipelines.

NeRFshop is the first complete method that allows interactive free-form editing of full NeRF

scenes, opening up vast, unexplored possibilities for creative usage of captured 3D scenes. In

summary, our main contributions are:

• A scribble-based interface for interactive object selection in NeRFs and semi-automatic cage

building.

• A direct free-form volumetric manipulation approach that is interactive thanks to a GPU-

friendly interpolation scheme.

• A preliminary membrane-based correction method that reduces color and density artifacts

resulting from user edits, and a way to “distill” the edits into a standard NeRF representation.

Our method allows free-form edits (deformation, translation/scale/rotation, and duplication of

objects), including selective removal “floaters” that are a typical artifact of NeRF reconstruction

(please see supplemental video for example editing sessions). We have implemented our method in

an interactive system built on top of Instant Neural Graphics Primitives [Müller et al. 2022]; we

will release our source code and datasets on publication. We hope our intuitive interactive system

will allow artists and researchers to experiment with creative editing and manipulation of captured

scenes.

After discussing related work in the following section, in Sec. 3 we present our scribble-based

selection interface that projects user annotations into the density volume, allowing us to create

a cage for direct user manipulation. In Sec. 4 we describe how we tetrahedralize the cage and

our design of a two-level interpolation scheme that enables interactive volumetric editing. Sec. 5
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NeRFshop: Interactive Editing of Neural Radiance Fields 3

describes our preliminary membrane-based approach to reduce color and density artifacts that

result from our various editing operations.

2 BACKGROUND AND RELATEDWORK
Our free-form editing method builds on NeRFs [Mildenhall et al. 2020], and in particular on an

interactive version based on multi-resolution hash encodings [Müller et al. 2022]. Further, we use

cages [Nieto and Susín 2013] with an interpolation scheme based on Mean Value Coordinates [Ju

et al. 2005] for free-form editing. We first present the relevant background for these two particular

areas and then briefly review other related work. Since there has been an explosion in the volume

of NeRF literature in the last few years, we refer to the excellent surveys that have recently been

published for a comprehensive review [Tewari et al. 2020; Xie et al. 2022], and only discuss work

that is directly related to our method.

2.1 Neural Radiance Fields and Acceleration Methods
NeRF [Mildenhall et al. 2020] represents a scene as a function 𝑓𝜃 with trainable parameters 𝜃 ,

mapping a 3D position x and a 3D direction d to a corresponding RGB color c and scalar density 𝜎 .

Images are rendered using volumetric ray-marching [Max 1995] along a ray r:

𝐶 (r) =
𝑁∑︁
𝑖=1

𝑇𝑖 (1 − exp(−𝜎𝑖𝛿𝑖 ))c𝑖 with 𝑇𝑖 = exp

(
−

𝑖−1∑︁
𝑗=1

𝜎 𝑗𝛿 𝑗

)
(1)

where samples are taken along the ray r with intervals 𝛿𝑖 .

Initially, NeRF relied on a single large MLP to encode each scene, resulting in slow training

and rendering due to numerous network evaluations per ray [Mildenhall et al. 2020]. Hybrid

representations leverage spatial locality, dramatically improving training speeds, typically relying

on spatial data structures to store local features: sparse voxel octrees [Sara Fridovich-Keil and Alex

Yu et al. 2022; Takikawa et al. 2021], tri-planar grids [Chan et al. 2022], codebooks [Takikawa et al.

2022], hash tables [Müller et al. 2022], low-rank tensor grids [Chen et al. 2022], or point clouds [Xu

et al. 2022]. These features are then aggregated locally and decoded by a relatively shallow MLP (if

required).

We build our method on Instant-NGP [Müller et al. 2022], which is fully GPU-accelerated,

allowing for truly interactive navigation. This leads to several constraints that we need to respect

in our interactive editing solution. During ray-marching, Instant-NGP alternates between traversal,

inference, and ray compaction; when rays no longer contribute meaningful samples, they are

dropped and the remaining rays are reordered. The (fixed) inference workload is distributed

according to the number of active rays to maintain uniform GPU occupancy. A key component of

Instant-NGP is a trainable sparse occupancy grid that is queried directly from the CUDA kernels

performing SIMT (Single Instruction, Multiple Threads) operations. Thus, memory coherency

and minimal throughput must be enforced across ray compactions. To do so, it uses fast CUDA

(micro-)kernels, maximizing memory coherency. Our solution can easily be integrated with this

procedure without disrupting the original design, by introducing intermediate kernel routines that

remap samples according to user-defined edits before inference.

2.2 Cage Building and Geometry Processing
Cage-based deformations are a popular and versatile tool for shape editing [Nieto and Susín 2013].

The basic principle is to build a bounding mesh—the cage—around the object, enabling the user to

modify its vertices and propagate the geometric edits into the cage volume. Let {v1, . . . , v𝑛} ∈ R3

be the original positions of the cage vertices. To displace a point x, cage-based deformations rely
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on pre-computing generalized barycentric coordinates [Floater 2015] {𝜆1, . . . , 𝜆𝑛} ∈ R w.r.t. the

canonical positions of the vertices of the cage i.e.,

x =

𝑛∑︁
𝑖=1

𝜆𝑖v𝑖 where

𝑛∑︁
𝑖=1

𝜆𝑖 = 1 and 𝜆𝑖 ≥ 0 (2)

and deriving its new position x̂ as a 𝜆-weighted sum of the displaced cage vertices v̂1, . . . , v̂𝑛 :

x̂ =

𝑛∑︁
𝑖=1

𝜆𝑖 v̂𝑖 . (3)

This is commonly done using generalized barycentric coordinates, which come in different flavors;

we choose to use Mean Value Coordinates (MVC) [Hormann and Floater 2006] for our edits due to

their efficiency and simplicity.

Cage-based deformations are well suited for NeRF editing since they are a natural fit for the

manipulation of volumetric data, but creating the cages by hand is a tedious and time-consuming

process. Automatic cage-building algorithms address this issue [Xian et al. 2009] but often re-

sult in complex meshes, leading us to choose a more adaptive solution inspired by Bounding

Proxies [Calderon and Boubekeur 2017], which also employ an adaptive cage mesh simplification

scheme.

2.3 Editing NeRFs
There have been several attempts to edit the shape and appearance of NeRFs; these are typically

specific, hardly interactive and/or apply only to synthetic scenes, making them unsuitable for our

goals. Nonetheless, we have been inspired by many of the underlying ideas, which we discuss next.

Editing via learned decompositions. One stream of research has investigated NeRF variants that

allow rigid transformations of individual objects using learned decompositions of a scene [Bing

et al. 2022; Mirzaei et al. 2022; Stelzner et al. 2022; Yang et al. 2021a]. These methods typically

require additional inputs such as segmentation masks [Bing et al. 2022; Yang et al. 2021b], depth

[Stelzner et al. 2022], and/or require additional auxiliary networks [Bing et al. 2022; Mirzaei et al.

2022]. In contrast to our approach, these methods do not allow flexible non-rigid editing and fall

short of interactivity.

Editable spatial encodings. Scene editing can be realized by employing suitable local encodings of

the positional input to the NeRF. Commonly, regular grids [Lazova et al. 2022] or adaptive tree-like

structures [Liu et al. 2020] are used, which allow coarse-level editing. We overcome this costly and

limiting discretization and perform flexible and fine-grained continuous edits.

Reconstruction of deforming scenes. In the context of deformable scene reconstructions, non-

rigid NeRFs [Kania et al. 2022; Luo et al. 2022; Park et al. 2021a,b; Pumarola et al. 2020; Tretschk

et al. 2021; Weng et al. 2022] have been developed. Typically, a deformation network is used to

regress displacements from a canonical configuration. Depending on the parameterization used,

this provides some control over the deformation, but only within the distribution given by the

input data. In contrast, our approach allows full free-form edits of static scenes.

Conditional generative approaches [Jang and Agapito 2021; Kosiorek et al. 2021; Liu et al. 2021;

Wang et al. 2022] leverage large datasets to learn category-level or scene-level NeRF distributions,

which are then “editable” via their latent codes. The context is however very different from our

case of interactive fine-grain editing of a single captured scene.

Proxy-based editing approaches are most closely related to our approach. Here, explicit geometric

proxies are extracted from the volumetric NeRF representation, allowing editing with conventional
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methods. NeRF-Editing [Yuan et al. 2022] extracts an explicit simplified surface mesh from a trained

NeRF, which is further turned into a tetrahedral mesh. Similar to our method, mesh edits can be

mapped to the tetrahedra, allowing ray-bending; however, their surface-based reconstruction can be

problematic for intricate geometries. Deforming-NeRF [Xu and Harada 2022] uses automatic cage-

building, while displacements are propagated using Mean Value Coordinates (MVC) [Ju et al. 2005].

While we also use cages and MVC, Deforming-NeRF does not use a tetrahedral mesh but stores

MVC coordinates on a regular lattice to avoid computing such coordinates at each sampling point;

this may cause discretization artifacts. In contrast, our two-level interpolation scheme and adaptive

tetrahedral lookup table allow for interactive direct volumetric deformations. VolTeMorph [Garbin

et al. 2022] also uses a tetrahedral data structure for ray-bending, demonstrated for pre-processed

physically-based animations and face control. To perform point-tetrahedron lookups, VolTeMorph

uses a GPU-based ray-acceleration approach based on BVH traversal in contrast to our method,

which is grid-based. Further, their selection and cage-building process is complex, requiring external

tools and refinement, while our integrated approach handles the entire pipeline for arbitrary full

scenes.

We next discuss two recently accepted methods, concurrent with ours. CageNeRF [Peng et al.

[n. d.]] builds a cage by first extracting a fine-scale mesh and then optimizing for a coarser cage.

Contrary to our two-level interpolation scheme, they explicitly use the deformed fine-scale mesh

to perform a backward re-mapping. The method has only been demonstrated on isolated synthetic

objects. CLA-NeRF [Tseng et al. 2022] trains an extra segmentation feature in addition to color

and density on a collection of articulated objects and uses it to derive simple joints, allowing

deformations. While they allow for free-form interactive editing, only category-level edits can be

performed.

2.4 Selecting and Deforming Objects and Seamless Edits
Wenext briefly discuss related literature on object selection and deformation. For amore extensive

introduction, please refer to the recent survey [Yuan et al. 2021]. Whenever edits are performed on

a NeRF, inconsistencies at surfaces arise. We diminish these artifacts by introducing a solution that

is inspired by gradient-domain editing which we briefly review below.

Selection. Object selection in photos has been explored for decades (see Szeliski [Szeliski 2022],

chap. 6). In the context of NeRF, recent approaches inject semantic priors into the model. This is

achieved either by utilizing pre-trained segmentation models [Fu et al. 2022; Kundu et al. 2022;

Zhi et al. 2021], which are limited to predefined object categories, or by relying on general feature

fields [Caron et al. 2021; Radford et al. 2021], as done in Distill-NeRF [Kobayashi et al. 2022].

Gradient-domain Editing is a standard technique used for seamless cloning, panorama stitching,

etc. in the context of image and video editing [Bhat et al. 2010; Levin et al. 2004; McCann and

Pollard 2008; Pérez et al. 2003]. Finite differences are used to approximate image gradients that

can be edited and/or constrained, and a new image is produced by solving a Poisson equation. To

avoid the expensive solver step, several methods have been proposed; in this work, we build on

Instant Image Cloning [Farbman et al. 2009] that interprets the Poisson equation as a membrane

interpolation scheme based on Mean Value Coordinates.

3 SELECTION AND SEMI-AUTOMATIC CAGE BUILDING
We introduce a scribble-based interface allowing the user to select objects—or a volumetric region

represented as voxels—in a scene that will be edited (Fig. 2a,b). The user is then free to extend the

selection (Fig. 2c), before it is turned into a cage (Fig. 2d) that can be manipulated. The cage is used

to create a tetrahedral structure (Fig. 2e), which steers the volumetric deformation process.
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(a) Scribbling (b) Reprojection (c) Region Growing (d) Cage Building (e) Tetrahedralization

Fig. 2. The user scribbles on the target object or volumetric region in space (a). NeRFshop then reprojects the

scribbles into the 3D volume (b). We perform region growing (c) and build a cage (d). Finally, we discretize the

volume using a tetrahedral mesh (e).

Region Growing

... ...

(a) (b) (c)

Fig. 3. (a) Starting from seed points (red dots in first image), our density-aware region growing scheme

proceeds iteratively by considering direct neighbors of each valid cell. (b) The final selection contains all

densities the user wants to modify. However, the resulting volumemay be too fine for robust tetrahedralization

and editing. (c) We perform morphological operations to simplify the shape of the selected volume.

We usemultiple 3D grids to store discretized values, following the same structure as the occupancy
grids of Instant-NGP [Müller et al. 2022], which uses the grid as a powerful acceleration structure

to reduce the number of aggregated samples along each ray via empty space skipping. We next

describe how we can exploit and extend these grid structures for the purpose of intuitive object

selection.

3.1 Selection
To select a region in the NeRF scene to be manipulated, the user scribbles over that region

in the current rendered view (see also supplementary video). The scribbles are then reprojected

from screen-space to the underlying volume by ray-marching, using a process akin to Eq. 1. Ray-

marching continues until the accumulated transmittance drops below a user-defined threshold,

which we set to 10
−3

in all our experiments except for floater removal where we set it to 0.8. The

reprojected points (i.e., locations where traversal terminates) are mapped to the nearest voxel in a

binary occupancy grid covering the scene. We refer to these selected cells as seeds.
Next, we can extend the initial, sparse selection using a region-growing procedure similar to

flood filling: When invoked, we fill a queue with the cell indices of the seeds and then proceed

iteratively by adding all direct neighbors of the current selection to the queue and flagging each

cell based on a density threshold (Fig. 3a). The user is free to decide when to stop the expansion

by performing multiple, adjustable growing steps consecutively. To allow for fine-grained control,

NeRFshop provides tools to discard cells in case the user is not satisfied with the current selection.

3.2 Cage Building
With the selected grid cells ready, we now construct a cage mesh that acts as the geometric

editing interface for the user. We require two properties: The cage should have a single connected

component, and it should bound the selected region while staying close to the selected voxels.
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(a) (b) (c)

Fig. 4. (a) Original cage mesh resulting from applying Marching Cubes on the selection grid. (b) Performing

decimation through edge collapses results in a mesh that does not bound the region to be edited. Let � be

an edge (horizontal dashed line) that is to be collapsed into vertex v. Without constraints, the mesh might

shrink (orange region). (c) We enforce conservative bounding by including a linear constraint.

To satisfy the bounding property, we apply morphological operators [Calderon and Boubekeur

2017], specifically, a closing operation with a cube as the structuring element for the dilation step

and a sphere as structuring element for the subsequent erosion. This helps achieve a grid free of

gaps, simplifying the downstream steps of the pipeline by filtering the geometry and topology of

the selection (Fig. 3c). The size of the structuring elements is crucial for a proper simplification

of the topology of the selection. We provide the user with the possibility to choose the dilation

and erosion structuring elements, as well as their corresponding radii. The result of this process is

a 3D binary grid indicating the simplified selection, from which we extract a surface mesh using

marching cubes [Lorensen and Cline 1987].

The mesh we obtain usually contains too many vertices and edges to enable intuitive editing

and ensure interactivity (Fig. 4a). We thus seek to simplify it. However, naïvely applying standard

edge collapsing techniques [Garland and Heckbert 1997] would violate the property that the cage

encloses the selected region (Fig. 4b). As a remedy, we follow standard practice [Deng et al. 2011;

Platis and Theoharis 2003; Sander et al. 2000] and add an extra linear constraint to guarantee strict

inclusion when performing each edge collapse (Fig. 4c). To improve the stability and consistency

of our decimation scheme, inspired by the work of Platis and Theoharis [Platis and Theoharis

2003], we add three extra per-edge conditions: First, the canonical link condition [Dey et al. 1998]

is tested to ensure the mesh remains a manifold when collapsing an edge. Second, we avoid highly

connected vertices, i.e., ones with a high valence, since these degenerate cases tend to result in

unintuitive editing behavior, and they interfere with edge collapse. Thus, we simply enforce an

upper valence bound. We found a valence bound of 12 to work well in practice but allow the user to

adjust this value inside NeRFshop. Third, we prevent triangles from becoming too thin, again with

the intention to raise the usability of the cage. To this end, we measure the triangles’ compactness

(for details, please see Appendix A) and make sure that no mesh simplification step increases the

compactness of the involved triangles.

Finally, we apply a post-processing step using MeshFix [Attene et al. 2013] to avoid holes, self-

intersections, and degenerate elements. In practice, we noticed that this can slightly alter the cage

volume in some cases, resulting in a mesh that does not perfectly bound the selection. Nonetheless,

we found this step essential to perform consistent interpolations and tetrahedralization. In the rare

event where post-processing with MeshFix causes issues, the user can easily adjust the cage by

hand.
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(a) (b)

/

/
/

/

/

/

Fig. 5. We use two nested levels of interpolation: (a) Tetrahedral mesh vertices store MVC-interpolated values.

(b) Point queries x are barycentrically interpolated from these pre-computed tetrahedral values.

4 INTERACTIVE VOLUMETRIC EDITING
The cage creation as described in the previous section allows the user to interactively manipulate

the selected region. This includes both rigid transformations (i.e., all cage vertices are displaced

using the same transformation), and non-rigid deformations (i.e., subsets of vertices are displaced

independently). Our goal is to propagate the cage vertex displacements into corresponding manip-

ulations of the enclosed density volume. To this end, we tetrahedralize the cage. Since we have

created the cage carefully (Sec. 3), its triangle mesh is robust enough so that we can use TetGen [Si

2015] without modifications to extract a tetrahedral mesh from the cage. In the following, we refer

to the initial configuration of the scene as the canonical space, and refer to the configuration of the

scene after cage-based manipulation by the user as the deformed space.
We employ a two-level interpolation scheme, as illustrated in Fig. 5. The first level is the MVC-

based interpolation done in a pre-processing step. The second level is an online barycentric inter-

polation inside the tetrahedron. The latter avoids the Ω(𝑁 ) MVC computation during rendering

at each sample location in a cage with N vertices. It further maps well to the GPU-accelerated

rendering pipeline of Instant-NGP [Müller et al. 2022], which proceeds in ray batches and relies on

finely optimized CUDA kernels. Our two-level interpolation scheme enables interactive cage-based

editing and renders user-edited scenes at real-time frame rates.

Let v𝑖 ∈ R3
with 𝑖 ∈ {1, . . . , 𝑛} be the initial positions of the cage vertices, and p𝑗 ∈ R3

𝑗 ∈ {1, . . . ,𝑚} the initial positions of the vertices of its tetrahedral mesh, the first 𝑛 of which are

identical to the positions of the cage vertices. In a pre-processing step, we now compute the matrix

of MVC coefficients 𝑤 𝑗,𝑖∈ R for all p𝑗 with respect to all v𝑖 , i.e., we compute 𝑤 𝑗,𝑖 such that

p𝑗 =

𝑛∑︁
𝑖=1

𝑤 𝑗,𝑖v𝑖 with

𝑛∑︁
𝑖=1

𝑤 𝑗,𝑖 = 1 ∀𝑗 . (4)

When the user updates the cage vertices to new locations v̂𝑖 ∈ R3
, we can efficiently update the

tetrahedral vertices, including interior ones, using the pre-computed MVC coordinates.

p̂𝑗 =

𝑛∑︁
𝑖=1

𝑤 𝑗,𝑖 v̂𝑖 . (5)

In addition to the new edited position p̂𝑗 , each vertex in the tetrahedral mesh always stores its

initial position p𝑗 to be used for look-ups during rendering. When deforming each tetrahedron, its

local rotation matrix is estimated with SVD, which we use to account for view-dependent effects

(see below).

Let us consider a single edit with a corresponding cage in canonical and deformed space. When-

ever a sample x lies inside its deformed volume, we first determine the deformed-space tetrahedron

Proc. ACM Comput. Graph. Interact. Tech., Vol. 6, No. 1, Article . Publication date: May 2023.



NeRFshop: Interactive Editing of Neural Radiance Fields 9

Deformed space Canonical space
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(a) Rendering edited objects in NeRFshop
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(b) Lookup table for tetrahedron intersection

Fig. 6. (a) Rendering edited scenes: during ray marching, we map all samples that intersect with deformed

tetrahedra into canonical space, where we infer the values for integration. (b) We pre-compute a tetrahedron

lookup table using a voxel grid, where each cell stores all intersecting tetrahedra. The structure is linearized

into a 1D array 𝑇 following the 3D Morton order of the grid, with an auxiliary array 𝑈 for bookkeeping.

x falls into. We then compute the barycentric coordinates 𝜆𝑘 of x with respect to the vertices p̂𝑗 of

the deformed tetrahedron (Fig. 5b). Finally, we map back and query the NeRF in canonical space at

a location computed from barycentric interpolation of the vertex positions p𝑗 of the corresponding
unmodified tetrahedron (Fig. 6a). To account for view-dependent changes in radiance due to defor-

mation, we can use our local rotation estimates to transform the view direction input for the NeRF.

Our approach enables stacking edits, i.e., further deform the outcome of a previous deformation. It

is also possible to create multiple (deformed) copies of an object. This is achieved by backmapping

recursively and testing for intersection with each edit’s deformation cage in reverse order.

To render an image in deformed space, we use volume rendering with quadrature through Eq. 1

which can be rewritten as:

𝐶 (r) =
𝑁∑︁
𝑖=1

𝑇𝑖𝛼𝑖c𝑖 where 𝑇𝑖 =
𝑖−1∏
𝑗=1

(1 − 𝛼𝑖 ) and 𝛼𝑖 = (1 − exp(−𝜎𝑖𝛿𝑖 )). (6)

Samples that intersect a canonical cage can be included or skipped for copying or non-copying

edits, respectively.

Rendering and editing as described above require determining which deformed tetrahedron

encloses a given 3D query position for all samples along each view ray. For interactive performance,

this needs to be performed in parallel for several rays, thus demanding an appropriate implementa-

tion. To this effect, ray tracing libraries (e.g., OptiX [Parker et al. 2010]) can be leveraged by tracing

rays in arbitrary directions and testing which tetrahedra the intersected triangles belong to, as

shown by previous work [Garbin et al. 2022; Wald et al. 2019]. However, our implementation is built

on top of Instant-NGP for which we cannot trivially exploit hardware ray tracing pipelines, as it

uses carefully designed software rendering routines. Enabling support for hierarchical acceleration

structures would require additional per-ray states (e.g., traversal stack) to be maintained across

multiple ray compaction steps.

As a consequence, we solve this problem using an adaptive lookup table, which is illustrated

in Fig. 6b. Similar to our selection method (Sec. 3), we discretize our 3D domain into a regular

voxel grid. Each voxel contains a list of the tetrahedra that intersect it, obtained through inclusion

tests and cube-triangle intersections for each triangle of the tetrahedron. The evaluation of each

voxel-tetrahedron pair can be done independently and list generation for voxels requires a simple

prefix sum, which makes the construction perfectly parallel. The voxels are linearized into a 1D

array 𝑇 by following a Morton order [Morton 1966] to ensure high locality and reusability of
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transferred data during ray traversal, regardless of the view direction. Since voxels contain a

variable number of entries, we use an auxiliary array𝑈 to store the result of the prefix sum and to

perform efficient lookups. We can now use these two arrays to quickly determine the candidate

tetrahedra for a query position: We first map the query position to its enclosing grid cell and query

𝑈 to obtain the candidate tetrahedra indices in 𝑇 . With the dynamic lookup table, our two-level

interpolation scheme enables efficient rendering when naïve Ω(𝑁 ) MVC calculation would be

intractable. Our experiments showed that the average number of tested tetrahedra per sample

ranges from 2 for coarse cages to 7 for detailed ones (using ≈ 50/1k cage vertices, respectively).

Therefore, we consider this a good trade-off between memory footprint and efficiency.

5 MEMBRANE-BASED CORRECTION AND DISTILLATION
In this section, we discuss a first attempt at correcting visual artifacts after editing, and a way to

consolidate edits in a “distillation” process to convert the edited scene into an established NeRF

format. These are two useful examples of how NeRFshop enables the recreation of operations we

know from image editing, specifically, Poisson-style image fusion and editing layer collapse (image

export). Many similar operations could be provided in our environment.

5.1 Membrane-based Correction
Moving an object in a NeRF can give rise to inconsistencies in appearance. For example, if the cage

is large and includes density from a surface supporting the object, this density will incorrectly

move with the displaced object, resulting in a “broken” color transition at the new location (Fig. 10).

Similarly, in the case of disocclusions (e.g., due to the translation of an object), the NeRF may not

have reliable appearance information and display unpredictable content.

We observe that these problems have strong analogies to “cut-and-paste” image editing operations,

for which Poisson Image Editing [Pérez et al. 2003] is a gold-standard solution. However, the

adaptation of Poisson editing to the NeRF setting is not straightforward, since we need to not only

consider color as in the case of images but also volumetric density. To this end, we propose a first

attempt at a volumetric membrane-based correction method for both color and density, by adapting

Instant Image Cloning [Farbman et al. 2009]. Our preliminary approach approximates the costly

Poisson solver with a color correction membrane using Mean Value Coordinates, which fits well

with our tetrahedral MVC interpolation scheme, allowing efficient computation. In the following,

we denote quantities 3D space at the vertices of the canonical and deformed cage using subscripts

“in” and “out”, respectively.

We proceed in three steps: The first two steps precompute necessary quantities from the cage

and vertices of its tetrahedral mesh, respectively, while the third step uses these quantities during

interactive rendering. Specifically, we consider densities 𝜎 and view-dependent colors c, where
the latter is baked into low-order spherical harmonics (SH), avoiding NeRF network evaluations

during interactive rendering.

Step 1: Cage Vertex Preprocessing. At each initial cage vertex position v𝑘 , we query the NeRF

network and store the corresponding density 𝜎
(𝑘)
in

and view-dependent color c(𝑘)
in

. As the user moves

the cage vertices yielding new positions v̂𝑘 , we compute corresponding new densities 𝜎
(𝑘)
out

and

colors c(𝑘)
out

at these locations, which act as the outside quantities to be matched. From these vertex

quantities, we now compute density-weighted color residuals c(𝑘)
res

for our correction membranes,

encouraging propagation only when there is sufficient density:
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c(𝑘)
res

= c(𝑘)
out

−min

(
𝛼
(𝑘)
in

𝛼
(𝑘)
out

, 1

)
c(𝑘)
in
, (7)

with 𝛼
(𝑘)
in

= 1 − exp

(
−𝜎 (𝑘)

in
𝛿𝑐

)
and 𝛼

(𝑘)
out

= 1 − exp

(
−𝜎 (𝑘)

out
𝛿𝑐

)
. Note that if 𝛼

(𝑘)
in

is similar to 𝛼
(𝑘)
out

, the

residual in Eq. 7 approaches the original Image Cloning formulation [Farbman et al. 2009].

Step 2: Propagation to Tetrahedral Mesh Vertices. We use MVC interpolation to propagate the resid-

uals at the cage vertices to the vertices of the tetrahedral mesh. To avoid interpolating meaningless

colors from vertices with no density, we again employ an 𝛼-weighted interpolation scheme:

cres (x) =
∑𝑛

𝑘=1
𝑤𝑘 (x)𝛼 (𝑘)

out
c(𝑘)𝑟𝑒𝑠∑𝑛

𝑘=1
𝛼
(𝑘)
out

(8)

We evaluate this formulation for all tetrahedral mesh vertices, and store for each vertex cres, 𝜎out,
and the residual density 𝜎res = 𝜎out − 𝜎in.

Step 3: Rendering. For each sample query during rendering, we interpolate the values of cres, 𝜎out,
and 𝜎res using tetrahedral barycentric coordinates 𝜆. Different from standard ray marching, these

quantities need to be taken into account when computing final pixel values. Following notation

from Eq. 6, we employ correction-aware alpha terms:

𝛼 ′
𝑖 = 1 − exp (−(𝜎𝑖 + 𝜎res𝛿𝑖 )) . (9)

We then obtain the final corrected color

c′𝑖 =
𝛼𝑖c𝑖 + 𝛼outcres
𝛼𝑖 + 𝛼out

, (10)

with 𝛼out defined as in step 1. The volume rendering equation thus becomes:

𝐶 ′(r) =
𝑁∑︁
𝑖=1

𝑇 ′
𝑖 𝛼

′
𝑖 c

′
𝑖 where 𝑇 ′

𝑖 =

𝑖−1∏
𝑗=1

(1 − 𝛼 ′
𝑖 ). (11)

Due to the normalized nature of MVCs and the lack of a directional prior, this approach can result

in density bleeding. To avoid this we cap the residual density so that adding it to the inside density

does not exceed the initial outside density at this location.

5.2 NeRF Distillation
In image or 3D scene editing, the last steps of a project include finalizing edits (e.g., collapse

layers or apply modifiers) and exporting the result to a standardized format. Publishing the data in

this way allows it to be visualized, shared or converted by applications that can process the format.

While NeRFs are a relatively new medium, the landscape of data formats and useful applications is

quickly developing. Instant-NGP plays an important role in this: solutions for virtual reality and

codeless rendering of Instant-NGP hashgrids are already available. Recent work laid the foundations

for converting between various NeRF representations, including the Instant-NGP hashgrid [Fang

et al. 2023].

In a similar spirit to image editing best-practice, we propose a NeRF distillation approach that

“collapses” all edits performed by the user into the default hashgrid format of Instant-NGP. To

achieve this, we re-train the scene, but additionally consider the user-provided edits to forward-map

samples during optimization (Fig. 7). Importantly, this process enables us to perform distillation

based on the original input images. For each sample 𝑠 generated along rays through the scene, we

check whether it is transformed by an edit 𝑖 . If it is, this constitutes a new mapping 𝑠 → 𝑠𝑖 . Note
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Deformed space (copy)

r

Canonical space

p

r'

(a) Ray Copying

Deformed space (remapped)

Canonical space

p

r

r'

(b) Ray Remapping (c) Distilling edit (left) to NeRF

Fig. 7. Scene edits are distilled into a regular NeRF representation by re-training and respecting deformations

for aggregation and gradient propagation. Additional instances of an initial ray r are created for every

transformative mapping, e.g., r’ for a copied object in (a); both rays integrate samples and compute gradients

according to the target image pixel p. Shared sample locations (e.g., outside of cages) are only updated

by one instance. For non-copying edits (b), the initial ray r is remapped and r’ clears the space inside the
canonical-space cage.

that �� may again be transformed by an edit � , thus mappings (e.g., � → �� � ) can arise recursively. If

a sample remains in canonical space, we say that it has only the “default mapping”. During training,

we keep track of all unique mappings along each traced ray.

In a second step, we re-trace each ray � with more than one mapping, as well as copies � ′

attempting to apply the identified mappings to each sample along � . Each mapping implies one

or more deformations, which will copy or remap updates that would normally occur in canonical

space. However, a mapping � → �� may be “broken” if �� lies inside the deformed cage of a later edit

� , i.e., deforming space according to � overwrites the result of deformation by � . Note that “broken”

mappings can also occur for the initial rays, i.e., the default mapping is no longer possible. We

found that simply skipping “broken” mappings suffices to distill a wide range of edits, however, a

more principled solution would be desirable to support arbitrary editing scenarios (Section 7).

Finally, we adapt the methods for color composition and gradient computation. A sample location

may be shared (outside cages in Fig. 11a and b) or unique to a mapping. Shared sample locations

only receive gradients from the first ray that references them. If an edit is non-copying, the contents

at its source must be cleared. Failure to do so causes random density or color in the left-behind

empty space. Samples that end up in the undeformed cage of a non-copying edit during their

mapping are part of these clearing rays. They accumulate density at their respective locations and

their integration target is empty space (zero density).

6 IMPLEMENTATION, RESULTS, AND EVALUATION
We first provide some details of our implementation, then present the results of our method of

synthetic and real scenes. We also provide a comparison to previous work, demonstrating our clear

advantage in the speed of updates.

6.1 Implementation
Our pipeline is built on top of the Instant-NGP [Müller et al. 2022] open-source codebase.

We use the same cascaded hierarchy of 128
3
resolution grids, each spanning a larger domain

[−2�−1 + 0.5, 2�−1 + 0.5]3 centered around (0.5, 0.5, 0.5) where � ∈ {1, . . . , �} and � ∈ [1, 5]. Please
refer to the original paper for more details. Since the sampling strategy along each ray of Instant-

NGP depends on the occupancy grids of the scene, we need to update them to take into account

the density of the deformed objects after the edits. To do so, we uniformly sample� = � × 128
3
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Fig. 8. We showcase three types of different edits (affine, non-affine, and duplication) while keeping the same

viewpoint in three different scenes. Subtler edits are highlighted by red glyphs. All were applied interactively.
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Fig. 9. Affine, non-affine, and duplicative edits with different viewpoints in the Hallway scene

cells and evaluate the density network of the NeRF at a random position within this cell. We then

update the grid with exponential decay based on these samples. In a nutshell, the sampling along

each ray is carried out in deformed space while the evaluation is performed in canonical space

following the backward mapping scheme described in Sec. 4.

For specific geometry processing algorithms, we use the C++ library libigl [Jacobson et al. 2018]

that provides direct bindings to TetGen [Si 2015] for the tetrahedralization step of cage-building,

and we use its existing implementation of the “Progressive Hulls” algorithm for constrained mesh

simplification introduced by Sander et al. [Sander et al. 2000]. The provided code reimplements

the quadratic programming solver by Goldfarb and Idnani [Goldfarb and Idnani 1983] based on

the dual method. NeRFshop offers an extensive user interface, allowing the user to perform a wide

range of coarse and precision edits interactively. We use Dear ImGui to create interactive panes,
tabs and gizmos for intuitive 3D manipulation. Auxiliary visual elements (wireframes, grids) are

added through OpenGL for our custom selection methods.
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6.2 Results
We used 5 scenes, Lego from NeRF Synthetic dataset, XmasBalls

1
, Kitchen from [Prakash

et al. 2022], as well as two real-world scenes (Hallway and Statues) that we captured ourselves.

We apply different and diverse deformations and edits for all scenes, both synthetic and captured,

focusing on affine and non-affine transformations and object duplication. We also use our tools

to clean up and fix typical artifacts, i.e., fog or floaters, that often appear during the optimization.

We show these results in Fig. 1 and Fig. 8, 9. The edit operations are best understood by watching

the supplementary video, where we can see that edits can be easily performed with our direct-

manipulation interface. NeRFshop allows intuitive, direct-manipulation editing of NeRF, allowing

free-form deformations, and unleashing artistic creativity for captured scenes.

Without additional correction, superfluous density can be captured by a coarse cage and deformed

along with the object of interest (e.g., the table surface stuck to the cup in the bottom left of Fig. 9).

In Fig. 10, we illustrate the effect of the membrane correction; we see that distillation helps reduce

artifacts incurred by the editing operation, even though some artifacts remain. Fig. 11 demonstrates

our NeRF distillation and how it preserves the quality of the edited NeRF, allowing the edited result

to be viewed in the original Instant-NGP codebase and its extensions (e.g., for virtual reality).

without with without with

Fig. 10. Effect of our membrane correction step in two different cases. We observe that the artifacts due to

“leftover matter” captured at the boundary of the undeformed cage are diminished.

Fig. 11. Distilling 3 edits in the Statues scene (left, compare with Fig. 8) into a self-contained NeRF (right).

6.3 Comparisons
We compare our method with the two most relevant and recent methods NeRF-Editing [Yuan

et al. 2022] and Deforming-NeRF [Xu and Harada 2022]. We designed an experiment in which we

1
Captured by Hugues Bruyère (@smallfly).
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create a synthetic scene in Blender we call Hand that simulates a more realistic environment than

the synthetic NeRF Blender dataset that consists of objects on a white background. Using Hand,

we handcrafted a coarse cage which we deformed toward a target folded position (see first row of

Fig. 12) and also derived intermediate positions (34% and 67% of the deformation). A custom Blender

plugin was used for the ground truth deformation which follows closely the implementation of

MVC-based deformations introduced by Ju et al. [Ju et al. 2005]. We then rendered images from

several viewpoints with Blender’s internal renderer, Cycles. We refer to these images as ground

truth. Finally, we provided the same cages (original, intermediates, and target) to all pipelines and

rendered the resulting deformations from the same camera poses. We used a resolution of 800×800
pixels and one sample per pixel in all cases. Ours and Deforming-NeRF were run on an Nvidia

A6000, while NeRF-Editing was rendered on an Nvidia RTX 3090.

Deforming-NeRF [Xu and Harada 2022] relies on Plenoxels [Sara Fridovich-Keil and Alex Yu

et al. 2022] as a backend for rendering. To achieve the best rendering performance possible, we

trained the scene for 8 epochs, each with 12 800 iterations, and performed upsampling of the

grid every 2 epochs with the following resolutions: 128
3 → 256

3 → 512
3 → 640

3
. To produce

comparable deformation, we used Mean Value Coordinates and a discretized grid of size 128
3
to

cache these pre-computed coordinates, as it is the value recommended in the original publication.

The background with the default hyper-parameters from the original method.

For NeRF-Editing [Yuan et al. 2022] we trained for 3 hours to get sufficiently good quality results.

We then extracted a mesh for the target object and deformed it according to the given target cage.

To propagate this edit we follow the instructions of the authors and convert the extracted mesh

into a tetrahedral mesh before optimizing the vertex positions to match the target positions. To

render the final results we use 64 coarse steps and 64 steps using importance sampling. We chose

not to render the background as the extracted mesh included a part of the table, leading to artifacts

when editing the hand.

Ours: We train the scene for 30k steps (3min 32 s) before enforcing the edits by directly setting

the cage vertices in canonical and deformed space. The hashgrid is parameterized with the default

settings for Instant-NGP (16 levels, 2 features per level, 16 entries at base resolution).

Deforming-NeRF [Xu and Harada 2022] takes 0.954 s on average to render a frame before edits,

NeRF-Editing [Yuan et al. 2022] takes 4.503 s, and ours 0.189 s. After edits, the times for each method

are respectively 2.561 s, 35.696 s, and 0.243 s. We can see that Deforming-NeRF and Nerf-Editing

incur a 2.68× and 7.92× overhead respectively for the same editing operation making them clearly

unsuitable for interactive editing, while ours is only 1.28× slower and remains largely interactive.

We found that our method introduces no significant artifacts due to deformation, even when the

magnitude of the deformation is large. Competing methods have severe constraints regarding the

scene setup, e.g., NeRF-Editing needs a clear separation between foreground and background. This

is the reason why NeRF-Editing has no rendered background and why Deforming-NeRF has a

lower quality for the background even without any deformation.

We address interactivity in NeRF editing with an intuitive, responsive and fully self-contained

solution that provides screen-based selection, 3D scene manipulation scheme, compositing, and

trivial portability of the results. To enable the latter two, we propose our membrane-based correction

and distillation steps. Building on Instant-NGP, we achieve interactive editing and maintain real-

time rendering of scenes due to careful design choices (MVC, two-level interpolation scheme, per-

sample backmapping). Our dynamic lookup table ensures that coordinate-based mapping remains

computationally tractable, even with detailed cages. NeRFshop leverages the GPU while minimizing

the performance impact on Instant-NGP’s carefully tuned routines. In contrast, interactive usability

with previous NeRF editing methods faces several challenges. The cage-building processes of NeRF-

Editing [Yuan et al. 2022] and Deforming-NeRF [Xu and Harada 2022] is automatic, but still require
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additional refinements which have to be carried out manually in specialized software (e.g. Blender).

The automated parts of their respective pipelines involve multiple, slow-running steps to carry out

simple edits and provide no means to visualize intermediate results. Once edited, the results can

only be visualized by their respective rendering solutions, using auxiliary data structures created

by their processing pipeline. This severely limits portability of the edited scenes.
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Fig. 12. In this figure, we show a comparison with other methods. From left to right we modulate the

magnitude of the deformation starting with no deformation at all. On the top row, we see the ground truth

rendered by Blender Cycles and deformed in Blender.

7 DISCUSSION AND FUTUREWORK
Our selection interface is rudimentary and the user interface could be redesigned to be easier

to use. In addition, the actual selection algorithm itself could, e.g., use semantic scene analysis

building on appearance features to improve and simplify the task.

Currently, we do not account for lighting inconsistencies due to edits. Changing the lighting

conditions of a NeRF is still an open problem [Boss et al. 2021; Zhang et al. 2021]; correcting

shadows, highlights, and lighting overall is left as an exciting avenue for future work.

The first attempt at membrane-based editing presented here can be improved. One limitation is

that our tetrahedral volume is too coarse to allow high-quality Poisson-like smoothing; an adaptive

refinement approach for the bounding cage could help. Making such a method sufficiently fast

to maintain interactivity is an open challenge, however. We could also build on more advanced
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methods such as Screened Poisson [Bhat et al. 2008; Morel et al. 2014] to take both the inside and

outside densities into account.

The distillation approach we described suffices to create Instant-NGP NeRF representations of

many editing scenarios, including all modifications shown in our supplemental video. However, it

can fail in scenes with destructive edits, i.e., when large regions of non-empty space are overwritten.

This effectively constitutes a “broken” mapping: for instance, if one object is moved to overlap with

another in canonical space, the default mapping of the overwritten object onto itself is no longer

feasible. In these cases, the training will attempt to consolidate information in the images with the

edited scene by hallucinating superfluous density and color elsewhere in the scene. These artifacts

could be addressed by a more sophisticated mechanism for handling “broken” sample mappings,

e.g., by recovering or approximating missing density/color for integration along rays.

8 CONCLUSION
We proposed a novel end-to-end method allowing interactive direct manipulation of Neural

Radiance Fields with free-form editing. We presented a fully self-contained pipeline composed of a

scribble-based selection scheme followed by a user-supervised 3D region growing and carefully

chosen morphological operations. Thanks to constrained mesh decimation, we obtain a cage that the

user can interactively manipulate to perform free-form edits. To reduce visual artifacts due to these

edits, we propose a preliminary membrane interpolation correction scheme inspired by Poisson

image processing. We show our approach on several synthetic and real scenes, demonstrating

interactive edit operations such as duplication, translation/scale/rotation, free-form non-rigid

deformations, and floater removal as shown in the supplemental video. Overall, we hope that our

solutions will empower new trends in neural scene manipulation and enable artists to express their

creativity and apply their editing skills to NeRFs.
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A COMPACTNESS
The compactness 𝑐 (𝑇 ) of a triangle 𝑇 is given by its isoperimetric quotient (also named Polsby-

Popper score in 2d) which is defined as:

𝑐 (𝑇 ) = 4𝜋𝐴(𝑇 )
𝑃 (𝑇 )2 where 𝐴(𝑇 ) and 𝑃 (𝑇 ) are respectively its area and perimeter (12)

Intuitively, compactness describes how far from circular the triangle is or more precisely, how the

area of the triangle differs from a circle with the same perimeter. In order to ensure collapsed edges

do not decrease compactness too much we relatively bound the minimum compactness 𝑐𝑒 of the

triangles of the candidate edge by the value of minimum compactness 𝑐𝑣 of the triangles resulting

from the potential collapse. As suggested by Platis and Theoharis [Platis and Theoharis 2003], we

use 𝑟 = 0.8.
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